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ABSTRACT 
 

Farmers producing crops under rainfed conditions face rainfall variability as a major risk 
factor. Numerical climate models and crop simulation models are tools that can support decision 
making to manage such climate risks. However, temporal and spatial variability in rainfall and 
differences in the scales at which these tools represent processes make it difficult to combine 
them for use in climate risk analysis. The objective of this study was to understand the rainfall 
spatial variability in the Southeast US at daily and monthly time scales as a basis for developing 
bridges between these tools. We first determined the historical record length that is stationary 
followed by an analysis of the monthly spatial characteristics of rainfall variables. Rainfall data 
from 523 weather stations (National Climate Data Center – NOAA) were obtained for the period 
1915 to 2004 and divided into 15-year subsets for comparisons. Differences in rainfall were 
found between the most recent 15-year period and all others occurring during 90 years period of 
record. Thus only data from 1990 to 2004 (208 weather stations) were used to avoid the detected 
changes in rainfall in the region. Correlation, covariance, and variance matrices of daily and 
monthly rainfall amounts were calculated at monthly steps. The same statistics were also 
computed for frequency of rainfall events and monthly number of rainy days. Results show 
different spatial patterns at different temporal scales.  Two spatial patterns were well established:  
1) a widely spread correlation in a northeast – southwest direction was found around weather 
stations during the frontal rainy season; and 2) concentric short distance-decay in correlations 
existed around weather stations during the convective season. Spatial correlations among daily 
rainfall amounts are needed for spatia l weather generators in a storm-by-storm basis whereas 
monthly spatial statistics are needed to ensure the validity of downscaled data from numerical 
seasonal rainfall forecasts. 
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INTRODUCTION 
 

Rainfall varies considerably over space and time. Agricultural systems have evolved in 
response to this variability, but in most regions of the world, rainfall variability continues to be a 
major source of risks for agricultural production.  For example, a widespread persistent drought, 
can threaten the economies and food security of entire communities and regions. Research is 
being conducted to better understand climate variability, its impacts on agricultural systems, and 
how to reduce those risks through decisions and policies that take climate variability into 
account. 

 
Crop simulation models (Jones et al., 2003) are now widely used to ana lyze climate 

variability impacts on agricultural systems. Limited availability of daily weather variables over 
long time periods continues to be a problem for researches in most regions of the world. Yet 
variability is high so that only a few years of data are not adequate for representing a location. In 
order to have sufficient lengths of record, statistical methods are used to generate daily 
realizations of rainfall and other variables for use in crop models for many applications (Hansen 
and Indeje, 2004; Podestá et al., 2002). These daily stochastic weather generators are also being 
used to downscale climate forecasts for use in environmental models (Briggs and Wilks, 1996; 
Grondona et al., 2000; Wilks, 2002). One goal of our research is to use daily weather generators 
to downscale 6-month climate forecasts from the Florida State University climate model (Cocke 
and LaRow, 2000) coupled to the Community Land Model (Bonan et al., 2002; Zeng et al., 
2002) - FSUCLM (Shin et al., 2005) to any point in the Southeast (SE) USA. 

 
The problem with most currently available weather generators, such as those of Parlange 

and Katz (2000), Racsko et al. (1991), Richardson and Wright (1984), and Schoof et al. (2005), 
is that they create daily realizations for points in space without considering spatial correlation or 
persistence of rainfall events and amounts over space. This is not a problem if one’s interest is in 
statistical properties of rainfall, other weather variables, and crop production in a single location 
or field. But if spatially independent generated weather data are used to aggregate rainfall or crop 
model outputs over space for subsequent analyses of these aggregated variables, spatial 
correlations of the variables must be taken into account for the same time scale at which the data 
are used as inputs to models. Because crop models respond to daily rainfall, if two months have 
the same rainfall amounts but different temporal distributions, simulated crop responses may 
differ widely. 

 
A number of questions arose as we considered how to incorporate spatial correlations in 

generating rainfall over large areas. For example, what are the inherent correlations of rainfall 
across the SE USA, and how do those correlations vary with time? Are correlations of rainfall 
over space the same for monthly and daily rainfall amounts? This study was conducted to help 
answer these questions and to guide us in designing a daily weather generator that will produce 
realizations of daily weather that preserves spatial patterns of the original data. Objectives were: 
1) to quantify spatial correlations of daily rainfall events and daily amounts over this region; 2) 
to determine how these correlations vary during the year; and 3) to compare spatial correlations 
at daily and monthly time scales. 
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STUDY AREA 
 

The study area consists of the states of Alabama, Florida, and Georgia, between 35°23’ 
N, 88°59’ W and 24°57’ N, 79°26’ W. Elevations range from 0 to 1435 meters above sea level 
and covers a total area of 421,072 km2. This region has some of the warmest conditions in the 
US. However, it is the only region in the USA to show widespread but discontinuous cooling of 
1 to 2° C over almost the entire area between 1910 and 1997 (Karl et al., 1993). Annual rainfall 
averages from 1100 to 1400 mm, with the highest annual precipitation along the Gulf of Mexico 
coast and in south Florida (USGS, 2006). Rainfall occurs throughout the year caused by two 
different processes. During most of fall and winter, rainfall occurs by fronts coming from the 
northwestern US crossing the area (Frontal rainy season; FR). During most of spring and 
summer, rainfall occurs mainly by convective processes and tropical storms (Convective rainy 
season; CR). The temporal trend in annual precipitation shows rainfall increases by 20 to 30 % 
or more from 1910 to 1997 across Mississippi, Arkansas, South Carolina, Tennessee, Alabama, 
and parts of Louisiana, with mixed changes across most of the remaining area. Trends in wet and 
dry spells during the 20th century, as indicated by the Palmer Drought Severity Index (PDSI), are 
spatially consistent with the region’s annual precipitation trends, showing a strong tendency to 
more wet spells in the Gulf Coast states and a moderate drought tendency in most other areas. 
(SRAT, 2002). 

 
DATA AND M ETHODOLOGY 
 
Weather station network 
 

The historical daily weather data record for 1048 weather stations was obtained from the 
National Climate Data Center (http://nndc.noaa.gov/?home.shtml). The period from 1915 to 
2004 was selected from this record due to the quality and quantity of rainfall data. This 
information was organized and checked for errors and missing values. Range errors and zeros 
substituted for replacing missing values were identified and deleted. For monthly analyses, 
months with less than 20 days for which data were recorded were not considered. Weather 
stations beyond their state and county limits for which coordinates could not be corrected were 
deleted. After this screening process, 523 weather stations remained for further analyses. 

 
Selecting the historical record length for spatial analyses 
 

Before analyzing the spatial correlations of daily and monthly rainfall data, we analyzed 
the data to determine whether significant shifts in rainfall had occurred over the 90 years of 
record. Few weather stations had a complete 90-year historical record, making it difficult to 
identify these shifts. Therefore all available monthly weather station data across the 90-year 
period were spatially interpolated using ordinary Kriging (Clark and Harper, 2001; Isaaks and 
Srivastava, 1989).  Interpolation was performed on the residuals after removing the spatial 
trends. Observed data at weather stations were preserved during these interpolations. Each pixel 
from the resulting monthly rainfall maps were divided into 6 periods of 15 years each and 
statistically compared using Analysis of Variance F statistic followed by a Duncan’s multiple 
range test for each grid cell. 
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De-trending spatial data  
 
Most geo-statistical techniques assume that sample data come from a fixed distribution. 

Because there were spatial trends in the rainfall values, the trends were modeled by a polynomial 
equation using latitude and longitude as predictors (Clark and Harper, 2001). Polynomial 
equations from first to third degree were fitted by the least squares method. The degree of the 
polynomial equation for each month and year was selected by comparing the sum of squared 
residuals as a percentage of the original variation. This process yielded 1080 polynomial 
equations of first and third degrees. Afterwards, trend values were calculated and subtracted 
from the monthly observed rainfall values to compute residuals. These residuals were not 
significantly different from a normal distribut ion for any of the cases. Then, for each month and 
year, semivariograms were calculated using the following algorithm (Isaaks and Srivastava, 
1989; Table 1): 
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After obtaining the γ(h) values, models were fit to describe the changes in variance of 
rainfall amounts versus distance from each station, using a weighted non- linear least-squares 
method (Jian et al., 1996; Whelan et al., 2001). The Stable model of Whelan et al. (2001) was 
used to fit the semivariograms, defined as (Table 1): 
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Table 1: Variable description. 
Symbol Definition Units 

i, j Weather stations unitless 
xi, xj Rainfall amount at weather stations i and j mm 
µi, µj Mean rainfall amount at weather stations i and j mm 
s i, s j Standard deviation rainfall amount mm 

( )hγ  Semi-variance at distance h mm2 

( )hγ̂  Estimated semi-variance at distance h mm2 

n Number of observations unitless 
N(h) Number of pairs of weather stations whose location are separated by h unitless 

h Distance km 
d0 Nugget (vertical jump from the value of 0 at the origin to the value of the 

semivariogram at small distances) 
mm2 

d1 Sill (the semi-variance at which semivariogram reaches a plateau after 
adding d0) 

mm2 

A Range (the distance at which the semivariogram reaches a plateau) km 
β A parameter ranging from 0 to 2 unitless 
ρ ij Correlation between weather stations i and j unitless 
Cij Covariance between weather stations i and j mm2 
Vij Variance between weather stations i and j mm2 
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The Range (A), Nugget (d0), and Sill (d1) were then analyzed. To preserve the observed 
data where weather stations were located, the Nugget was always forced to 0. The sum of 
squared error, the root mean square error and Akaike information criterion (AIC; Webster and 
McBratnew, 1989) were evaluated to determine the best fit model. The AIC evaluates the 
goodness of fit as well as the parsimony of the model. Smaller values of AIC determine the best 
model. 

 
After the semivariogram models were fit, monthly rainfall residuals were interpolated by 

using ordinary Kriging to obtain monthly maps of the residuals in a 5 km × 5 km grid resolution. 
Spatial trends were added to these interpolated residuals, yielding the monthly rainfall maps for 
all 90 years of the historical record. 

 
Statistical analysis of climate   
 
These analyses were performed to find areas where rainfalls mean (variance) were 

statistically different in time, i.e. areas affected by changes in climate. The 90-year historical 
record was divided into six periods of 15 years each (1915-1929, 1930-1944, 1945-1959, 1960-
1974, 1975-1989, and 1990-2004). All analyses were performed on a monthly basis. 

 
The six 15-year periods were statistically compared through an Analysis of Variance F 

statistic for each 5 km × 5 km grid cell. The probability value (P-value) that the F test statistic is 
at least as large as the observed F value was assessed by using the F distribution table (α = 0.05) 
with 5 and 84 degrees of freedom. After P-values were calculated for each grid cell, they were 
spatially aggregated to obtain probability maps of statistical differences. Each map showed areas 
where statistically significant shifts of monthly rainfall amounts were found in at least one of the 
six 15-year periods. 

 
Because some areas showed statistically significant differences, the next step was to 

know when these differences occurred. This was done in order to select the number of years to 
use to analyze spatial variability of current climate conditions for use in this study. Duncan’s 
multiple range tests were performed for each grid cell across the domain. Results were spatially 
aggregated producing maps; however in this case, 5 maps for each month were generated. Each 
map compared the latest period of record (1990 through 2004) versus one of the five remaining 
15-year periods. 

 
Correlation, Covariance and Variance of rainfall over space 

 
To avoid the effects of the rainfall shift detected in the study area, only the period from 

1990 to 2004 was used for further analysis. For this period, only 208 weather stations were 
available. In this section we determined how correlation (ρij), covariance (Cij), and variance (Vij) 
vary monthly during the year by using daily and monthly rainfall amounts and frequencies. 

 
Analyses using daily data 
 
Rainfall amount: Daily rainfall amount data from this 15-year period were split into 12 

monthly subsets of data. Each subset, containing 15 years of daily rainfall data, was used to 
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calculate ρij, Cij, and Vij among all the weather stations, thus forming matrices of rank 208. To 
avoid overestimation of ρij and Cij as well as the underestimation of Vij, days without rainfall at 
both weather stations were not used. Calculations were performed using the following equations 
(Table 1): 
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The distance between each pair of weather stations was calculated by using its 
geographical coordinates and applying the Pythagorean Theorem. Results from the three 
statistics at different distances were analyzed as monthly scatter plots. Because of the scatter in 
the data, results were classified into five distance classes: 0-50, 51-150, 151-350, 351-700, and 
701-1400 km. For each class, means and standard deviations of the three statistics were 
calculated. 

 
To visualize the spatial variability of ρij of one weather station (i) against the remaining 

(j), one weather station from each state was used as examples. Thus, values of ρij were assigned 
at the geographical coordinates of the remaining 207 weather stations. At the selected weather 
stations (i), ρii was assigned a value of 1.0. Finally, all values were interpolated using ordinary 
Kriging. The analysis was performed taking only one of the three selected weather stations at a 
time. The selected weather stations were: Sylacauga, AL (33°12’ N latitude, 86°16’ W longitude, 
and 149 m altitude), Mountain Lake, FL (28°56’ N latitude, 81°36’ W longitude, and 38 m 
altitude), and Hawkinsville, GA (32°17’ N latitude, 83°28’ S longitude, and 83 m altitude). 
Results are presented for the months of January and July. 

 
Occurrence of rainfall events: To calculate the ρij, Cij, and Vij matrices of occurrence of 

rainfall events, values of 1 and 0 replaced the values of rainfall amount for days with and without 
rainfall, respectively, over the 15-year period used in the study. As in the previous step, the data 
were divided into monthly subsets. Afterwards, Eq. [3], [4], and [5] were applied to each sub-
dataset containing the 208 weather stations, thus producing the respective matrices. The data 
were further divided into the same five distance-based classes of the previous step for further 
analysis. To visualize the spatial correlation (ρij) of one weather station versus the remaining 
stations, the same three weather stations selected in the previous step were used. Ordinary 
Kriging was used to interpolate ρij values. 

 
Analyses using monthly data 
 
Rainfall amount: Rainfall data aggregated at different temporal scales explain different 

spatial processes and relationships among weather stations. To understand the effects of this 
temporal aggregation, for each year and weather station, the total monthly rainfall amount was 
computed by summing all daily values in the month. Next, the 15-year period was divided into 
subsets for each of the 12 months of the year. Eq. [3] to [5] were then modified for analyzing 
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monthly rainfall values. These modified equations were applied to the monthly sub-datasets for 
obtaining the ρij, Cij, and Vij matrices. As before, results were classified according to their 
distances between stations. Finally mean and standard deviation of each distance-based class 
were calculated. To visualize the spatial variability of ρij, the same three weather stations 
selected in the previous step were used. Ordinary Kriging was used to interpolate ρij values. 

 
Monthly number of rainy days: To perform this analysis, the number of rainy days was 

computed for each month of each year of the 15-year period. As in the previous step, the dataset 
was divided into subsets for the 12 months of the year. For each subset, Eq. [3] to [5] were 
modified to compute ρij, Cij, and Vij for number of rainy days per month. The same 
methodologies used in the steps before for estimating mean and standard deviation of ρij in the 
distance-based classes as well as the correlation’s spatial variability visualization were used for 
this variable. 

 
RESULTS AND DISCUSSION 
 
Changes in rainfall over the 90-year time period 

 
The spatial trends of monthly rainfall amounts over 90 years from December to April 

followed first-degree polynomial equations. For the remaining months, trends corresponded to 
cubic equations. These monthly spatial trends were used for interpolation, and will also be used 
later to evaluate the spatia l structure of seasonal rainfall forecasts and spatial weather generator 
performance. These polynomial equations explained from 40 to 81% of the rainfall spatial 
variability when aggregated over the 90-year period. Analyzing individual trends by month and 
by year (Table 2), these percentages explained on average from 31 to 55% of the spatial 
variability. However, for individual months and years, these trends explained up to 91% of the 
spatial variability. 

 
 

Table 2:  Statistics of the monthly coefficients of determination (R2) obtained from year-by-
year polynomial equation fitting. 

Month Mean Standard 
deviation 

Jan 0.408 0.228 
Feb 0.380 0.231 
Mar 0.378 0.236 
Apr 0.313 0.199 
May 0.396 0.173 
Jun 0.434 0.182 
Jul 0.387 0.159 

Aug 0.431 0.149 
Sep 0.506 0.166 
Oct 0.532 0.189 
Nov 0.545 0.180 
Dec 0.403 0.219 
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Maps of probabilities (not shown) demonstrated that were significantly different monthly 
rainfall amounts for the different 15-year periods of time for January and July. Areas with p-
values less than 0.05 indicated areas where at least one of the 15-year periods was significantly 
different from the others. Areas where statistical differences were found varied monthly. This 
suggests that the processes leading to the changes were not a result of local conditions but were 
related to broader climate processes. 

 
After finding these significant differences, Duncan’s Multiple Range Test was used to 

determine whether each 15-year period of time differed from the most recent period of record 
(1990 through 2004). Figure 1 shows for January and July the areas where significant differences 
occurred. January maps indicated that the Panhandle of Florida, southeastern Alabama and part 
of southwestern Georgia showed significantly different rainfall regimen in the last 15 years. July 
maps indicated that central western Georgia showed a significantly different rainfall regimen in 
the last 30 years when compared to earlier periods. For January monthly rainfall in the changed 
areas increased over time while during July monthly rainfall decreased. These results are 
consistent with those reported by Maul and Hanson (1990) and Stahle and Cleaveland (1992) and 
possibly related to the less common summer blocking pattern of the Atlantic Subtropical 
Anticyclone reported by Davis et al. (1997). 

 
These results demonstrated statistically significant spatial and temporal changes in the 

rainfall regimens during the last 90 years. Our goal was to provide information on spatial 
characteristics of current rainfall regimes for downscaling numerical climate forecasts and for 
generating spatially coherent rainfall events and amounts. Thus, further spatial analyses used 
only the 1990 through 2004 rainfall data.  

 
Correlation, Covariance and Variance 

 
Analyses using daily data 
 
Rainfall amount: Each point in Figure 2 represented the covariance of rainfall between 

each station and one other specific station, computed using the daily data for the 15 years for 
each month. Thus, there was a maximum of about 450 days of data to estimate each point, but 
this was reduced since only days when rainfall occurred in at least in one station were used. The 
shape of the cloud of points and the absolute values were similar during both Spring-Summer 
and Fall-Winter seasons, and similar between those seasons. However at short distances, March 
and September showed greater covariance values than the other months. These are the 
transitional months that include the vernal and autumnal equinoxes. These months also include 
the transitions from frontal rainy (FR) season, which occurs from October to March, to the 
convective rainy (CR) season, from April to September. 

 
As expected, the correlation of rainfall amounts over space decayed versus distance, and 

the variance increased with distance (Sumner, 1983). Correlation ind ices at all distances were 
greater during the FR season than during the CR season. Correlations during the CR season were 
statistically non-significant at closer distances than during the FR season. On the other hand, 
monthly standard deviations increased versus distance but did not show any apparent relationship 
to the FR and CR seasons. During the CR season, correlations did not exceed values of 0.8, 
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whereas a few values near 1.0 were observed during the FR season. Large variance values were 
found at short distances during the CR season in comparison with the FR season. 

 
At short distances there were also some small correlation and covariance values as well 

as large values of variance. Different rainfall regimens can be expected when daily data are 
analyzed (Romero and Baigorria, in press). In the Peninsula of Florida, for example, weather 
stations located near the Atlantic coastline had different rainfall regimes than those near the Gulf 
of Mexico coastline. Similarly, weather stations near the coastline may differ from those further 
from the coastline. Thus, rainfall is not stationary over space, which would violate assumptions 
used in computing semivariograms with only one realization of spatial data unless the data are 
de-trended. 

 
 

 
Fig. 1 Maps of Duncan’s multiple range tests (α = 0.05) for January and July. Shadow areas 

show areas where shifts in rainfall have been detected between the last 15-year period 
and each remaining period. 
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Fig. 2: Monthly variation of the covariance matrices for daily rainfall amounts versus distance 

for six months of the year (1990 – 2004). 
 

 
Figures 3 and 4 show spatial patterns in ρij in all directions. Variations in absolute values 

of ρij showed larger correlations (smaller variances) around the selected weather stations during 
the FR season (Figure 3) than during the CR season (Figure 4). This is explained by the size of 
the weather fronts or cells involved in the precipitation process. Geographic areas with strong 
correlations and small variances were larger during the FR season than during the CR season. 
Correlations were less concentric in January than in July. Both correlations and variances 
showed a more diagonal pattern during the FR season than during the CR season. There was 
more directionality (anisotropy) (northeast – southwest) in the spatial variation of ρij during FR 
season than during the CR season. This directionality was parallel to the usual weather front 
patterns in this region. In concordance with Sharon (1974), daily spatial variation of ρij and 
rainfall occurring from convective systems (CR season) typically showed correlations that 
decreased rapidly in all directions over short distances. 
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Fig. 3: Spatial variability of correlations for daily rainfall amount, frequency of rainfall events, 

monthly rainfall amount, and rainy days in January (1990 – 2004). (a) Sylacauga, AL, 
(b) Mountain Lake, FL, and (c) Hawkinsville, GA. 

 
Occurrence of rainfall events: These results showed how each rainfall event was 

correlated with rainfall events at other weather stations on a daily basis. This variable responded 
similarly to that for ρij values relative to the FR season versus the CR season. However, monthly 
variations in the maximum and minimum correlations for rainfall occurrences were less than 
those for daily rainfall amounts. Individual correlation values for July showed a maximum of 
0.65 compared with the maximum in January of 0.9; however, both of these values were lower 
than those obtained for rainfall amount. The Vij cloud shape in July (not shown) increased faster 
over short distances than in January, where low variance values were found at about 400 km or 
less. Despite variances during January and July reaching values greater than 0.4, in general 
terms, variance in January reached a plateau of around 0.23, while in July it reached a plateau 
around 0.30, both around 250 km from the station. 

 
Spatial variations of daily rainfall event correlations showed characteristics similar to 

those for daily rainfall amount in terms of seasonal differences (Figures 3 and 4). Concentric and 
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short distance decay functions occurred around selected weather stations for the CR season 
(Figure 4), whereas they were widely spread in a northeast – southwest direction for the FR 
season (Figure 3). For all weather stations, FR season showed stronger correlations than CR 
season. 

 
Analyses of monthly data 
 
Rainfall amount: Strong correlations in monthly rainfall amounts were found as far away 

as 600 km from the selected stations during January (Figures 3 and 4). In July however, these 
same values occurred around 200 km or less. Many negative correlations as well as larger 
variances were reached at shorter distances during July than during January, which corresponds 
to the different atmospheric physics producing the rainfall. Variances during the CR season had 
maximum values around 24,000 mm2, while for the FR season values reached a maximum of 
only 16,000 mm2. 
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Fig. 4: Spatial variability of correlation for daily rainfall amount, frequency of rainfall events, 

monthly rainfall amount, and rainy days in July (1990 – 2004). (a) Sylacauga, AL, (b) 
Mountain Lake, FL, and (c) Hawkinsville, GA. 
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There were differences in spatial patterns of rainfall amount correlation values relative to 
those found for daily rainfall data vs. monthly rainfall data. Positive correlation values higher 
than 0.8 were found using monthly rainfall amounts, whereas for daily data all correlations were 
less than 0.7. Higher standard deviations of correlation values were found using monthly data 
compared to daily data. Correlation values and homogeneous correlation areas using monthly 
data were respectively higher and larger than the ones using daily data, independently of the 
analyzed month (Figures 3 and 4). This correlation pattern was because using daily data, rainfall 
amounts were correlated on a storm by storm basis. This, together with the rainfall event data, 
showed the size of the rainfall cell producing rainfall in a specific event. For using in a daily 
spatial weather generator, the highly correlated areas showed the size of the areas that would be 
involved in a storm event and how much rainfall would fall in every rain-gage. Spatial 
relationships among different monthly rainfall variables are governed by different climatic, 
oceanic, topographic and geographic drivers at different times. Thus, monthly spatial statistics 
would be useful to ensure the validity of downscaling data from numerical seasona l rainfall 
forecasts, which are produced based on atmospheric circulation patterns. 

 
Monthly number of rainy days: Number of rainy days with measured rainfall larger > 0.1 

mm divided by the total number of days is an estimate of the probability of rainfall in a specific 
month and weather station. Thus the correlation among weather stations showed how rainfall 
occurrence was likely to persist over space. Even though the absolute number of rainy days 
varied from season to season, there was no seasonal pattern in the correlation values. Figures 3 
and 4 showed that homogeneous areas of correlation were larger compared with the daily 
occurrences of rainfall events. Correlation values were less concentric around the weather station 
using monthly data than daily data. 

 
CONCLUSIONS 

 
In the SE-USA, changes in rainfall amounts during the last ninety years were observed. 

These changes varied over space and time of year. To avoid influences of climate change in our 
study, only the last 15-year period was used to characterize spatial variability of rainfall. For this 
time period, rainfall amounts in Alabama, Florida, and Georgia were found to have a linear 
geographical trend during December to April and cubic during the remaining months. 

 
Using both daily and monthly rainfall data, two well defined rainfall spatial correlation 

patterns were found correspond ing to the weather frontal and the convective rainy seasons. 
Spatial correlations during the frontal rainy season were characterized by a widely spread pattern 
in a northeast – southwest direction around weather stations, which is perpendicular to the usual 
weather front paths. During the convective rainy season, correlations were characterized by small 
concentric patterns in which correlations decreased rapidly over short distances from each 
weather station. However, larger areas of higher correlations were found using monthly rainfall 
amounts than when using daily rainfall amounts. Spatial correlations among daily rainfall 
amounts and occurrence of events are needed for spatial weather generators on a storm-by-storm 
basis. Spatial correlations among monthly rainfall amounts and rainfall persistence are needed to 
ensure the validity of downscaled data from numerical seasonal rainfall forecasts. 
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