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Fig. 1: Daily and monthly spatial correlations of observed rainfall events and amounts between 
one weather station [(a) Sylacauga, Alabama; (b) Mountain Lake, Florida; and (c) Hawkinville, 

Georgia]

 

and 522 weather stations across the three states (Baigorria et al., 2007)
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1. Rainfall events:

Fig. 3: Software used to produce correlation 
matrices and to generate rainfall data

Methods

Results

Agricultural systems have evolved in response to spatial and temporal 
rainfall variability but, in most regions of the world, rainfall

 

variability 
continues to be a major source of risk for farmers. Adequate 
quantification of this variability requires rainfall records over a long time 
period. However, the availability of daily rainfall data over long time 
periods continues to be a problem. To increase rainfall record lengths, 
statistical methods are used to generate daily realizations of rainfall for 
many applications. 

2. Rainfall amounts:

Fig. 4: Observed versus Generated correlations of

 

daily rainfall events in January

Fig. 5: Observed versus Generated correlations of

 

daily rainfall events in July

Fig. 6: Observed versus Generated correlations of 
daily rainfall amounts in January

Fig. 7: Observed versus Generated correlations of daily

 

rainfall amounts in July

Fig. 2: Location of the seven weather stations 
used in the present study

One issue with most currently available weather generators is that they 
create daily realizations for points in space without considering spatial 
correlation or persistence of rainfall events and amounts over space. 
Spatial variability may not be a problem if one’s interest is in temporal 
properties of rainfall and its effects on crop production at points or 
fields. But, if spatially independent generated data are used to

 

aggregate rainfall or model outputs over space for subsequent 
analyses, spatial correlations of the variables must be taken into 
account for the same time scale at which the data are used as inputs to 
models. 

To develop a weather generator capable to preserve both the temporal 
and the spatial structure of the observed rainfall data.

Analysis of the main statistics obtained from individual weather

 

stations 
by using both data generation methodologies, matched those from the 
observed climatology. However, analysis of the spatial structure

 

of the 
generated data was only preserved by the new geospatial method.
Analysis of a generated time series longer than the 100 years performed 
in this study will provide more stable and reliable statistics.

•

 

Daily rainfall data (1974 –

 

2004) of seven weather

 

stations located in North 
Central Florida obtained 
from the National Climate 
Data Center (NCDC).

•

 

The resulting matrix was scaled and multiplied by the natural logarithm

 

of the corresponding 2-parameter Gamma function.
•

 

100 years of rainfall data were generated using this new method

 

and 
also using an existing weather generator (WGEN; Richardson and

 

Wright, 1984).
• Results were compared to the observed correlations.

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

×

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

nn

n

n
c
n

c

Ch

ChChCh

Rnd

Rnd

Rnd

Rnd

,

,12,11,111

0000
..........000
...............00
....................0

...........

...

...

...

...

...

...

2. Generating rainfall events:

3. Generating rainfall amounts:

1. Correlation matrices and

 

Markov chain parameters:
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•

 

Correlation matrices of daily rainfall

 

events and daily rainfall amounts

 

were calculated at monthly steps.
•

 

Probabilities of dry-wet and wet-wet 
days were calculated individually 
for each weather station.

•

 

Monthly Choleski factorization matrices were calculated based on the 
rainfall event correlation matrices.

•

 

For each day to be generated, seven random numbers, ranging from 
0 to 1, were sampled from a Uniform Distribution.

•

 

The matrix of random numbers was multiplied by the Choleski 
factorization matrix, yielding correlated values from 0 to 1.

• Rainfall events were assigned using a First Order Markov chain.

•

 

Monthly Choleski factorization matrices were calculated based on the 
rainfall amount correlation matrices considering only those n

 

weather 
stations with rainfall events generated in the step before.

•

 

For each day to be generated, n

 

random numbers, ranging from  0 to

 

1, were sampled from a 2-parameter Gamma distribution.
•

 

The matrix of random numbers was multiplied by the Choleski 
factorization matrix yielding correlated values from 0 to 1.
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R2 = 0.9766

R2 = 0.0017
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R2 = 0.619

R2 = 0.0011

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

-0.1 0.0 0.1 0.2 0.3 0.4 0.5

Geospatial generator
WGEN

Observed correlations

G
en

er
at

ed
 c

or
re

la
tio

ns

•

 

Observed spatial correlations of

 

rainfall events among weather 
stations were significantly 
correlated (α=0.05) to the spatial 
correlations produced by the 
generated rainfall events from the 
geospatial rainfall data generation.

•

 

Observed spatial correlations of

 

rainfall events among weather 
stations were non-significantly 
correlated (α=0.05) to the spatial 
correlations produced by the 
generated rainfall events from

 

the standard weather generator 
(WGEN).

•

 

Observed spatial correlations of

 

rainfall amounts among weather 
stations were significantly 
correlated (α=0.05) to the spatial 
correlations produced by the 
generated rainfall amounts from

 

the geospatial rainfall data 
generation.

•

 

Observed spatial correlations of

 

rainfall amounts among weather 
stations were non-significantly 
correlated (α=0.05) to the spatial 
correlations produced by the 
generated rainfall amounts from 
the standard weather generator 
(WGEN).

•

 

Correlations among daily geospatial generated rainfall events and 
amounts in the month of January were closer to the observed 
correlations than in those in the month of July.
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