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Abstract of Thesis Presented to the Graduate School
of the University of Florida in Partial Fulfillment of the

Requirements for the Degree of Master of Science

THREE-DIMENSIONAL TRAJECTORY GENERATION FOR FLIGHT WITHIN AN
OBSTACLE RICH ENVIRONMENT

By
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Chair: Richard C. Lind Jr.
Major: Aerospace Engineering

Autonomous flight through urban environments requires methods to generate

trajectories that traverse the region and its associated obstacles. This thesis introduces

the development of a 3-dimensional motion planning algorithm using a random dense

tree (RDT) based on a set of motion primitives in cooperation with a 3-dimensional

version of the Dubins car called the Dubins airplane. The motion primitives consist

of 3-dimensional maneuvers formulated as combinations of turn segments and straight

segments with an associated constant rate of climb. The resulting motion planner builds

the trajectory generating RDT by pruning nodes that intersect 3-dimensional obstacles

while connecting the remaining nodes with the motion primitives. Several examples of

the motion planner are presented for cases with no obstacles, building-style obstacles

arranged in an urban environment, and an urban environment that includes bridges.

These examples demonstrate that feasible paths are computed as sub-optimal solutions to

minimize the cost of flight time.
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CHAPTER 1
INTRODUCTION

1.1 Motivation

The maturation of micro air vehicles (MAVs) has introduced a class of aircraft with

sufficient agility to enable flight through urban environments. An example of one of these

MAVs is shown in Figure 1-1. Techniques for motion planning are required that can

compute trajectories for such flight that acknowledge the fully 3-dimensional (3-D) nature

of the mission and associated obstacles throughout the region. Also, tight tolerances on

the flight path require that the resulting path is entirely feasible and can be accurately

followed by the vehicle.

Figure 1-1. A micro air vehicle (MAV) from the University of Florida Flight Control
Laboratory.

Such close-proximity flight presents challenges for path planning. In particular, the

vehicle will need to aggressively maneuver among the dense obstacles to achieve the
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vantages that provide the required information as illustrated in Figure 1-2. Traditional

approaches that choose trajectories based on kinematic models are suspect due to their

reliance on an inner-loop controller to tightly track those trajectories. As such, the path

planning should be restricted to consideration of trajectories that are inherently feasible

according to the dynamic constraints of maneuvering.

Figure 1-2. Micro air vehicle traveling through an urban environment.

Inclusion of dynamically-feasible motions in a planned trajectory is typically treated

in either a direct or a decoupled fashion [1]. Direct planning methods, such as optimal

control, consider a representation of the vehicle dynamics in the formulation of the

planning problem and directly solve for optimal system inputs. Alternatively, indirect

methods use a simplified model of vehicle motion to plan a reference path and then

“smooth” the path to satisfy dynamics using methods such as feedback control. Direct

methods compute optimal trajectories but are often intractable for realistic problem

descriptions whereas indirect methods often exhibit tractable complexity properties that

come at the expense of optimality.

Researchers have found clever ways to manipulate this tradeoff through a variety

of techniques such that dynamics can be directly included in the planning process. For
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example, some researchers have recognized that systems which exhibit differential flatness

properties admit solutions that can be represented parametrically in terms of a set of flat

outputs and their derivatives [2–4]. Others have applied mixed-integer linear programming

(MILP) to model dynamic constraints as a set of switching bounds on system velocities

and accelerations [5–7]. Frazzoli et al introduced a planning technique that utilizes

a “sampled-dynamics” model which employs a set of dynamically-consistent motion

primitives [8, 9]. Additionally, recent advances in randomized planning allow the use of

any of these techniques as local trajectory generation methods for growing a probabilistic

tree of actions to explore the solution space [10–12].

The concept of motion primitives is a central theme for several of these investigations

into feasible-path motion planning. A critical foundation was established by Dubins for a

2-dimensional (2-D) car [13] and has since been expanded into 3-D versions. One approach

has been developed but does not deal with constraints in the climb rate or specific values

of these climb rates as is the case with motion primitives [14]. A complete analogue to the

Dubins car in 3-D is being developed to account for the shortest path between two points

with associated heading constraints which decomposes the problem into different cases of

which only some can be solved [15].

1.2 Problem Description

Given an initial location and heading in 3-dimensional space and the locations and

dimensions of all the 3-dimensional obstacles in an environment, the trajectory to a goal

location and heading is desired. The work presented in this thesis will address the problem

of motion planning in 3-dimensional space. Specifically, motion planning for missions

involving vehicles with 3-dimensional motion in close proximity to 3-dimensional obstacles

is developed. The trajectory must be dynamically constrained to the performance

attributes of the vehicle and must not intersect with any of the obstacles.
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1.3 Approach Overview

The topic of 3-dimensional motion primitives is discussed in Chapter 2. Both

2-dimensional and 3-dimensional versions of the 2-primitive and 3-primitive motion

sequences are discussed and developed respectively. The 3-primitive motion sequences

are referred to as Dubins paths and are used in the development of the motion planner.

Chapter 3 focuses on the subject of random dense trees (RDTs). These trees will be

utilized for trajectory generation through the obstacle rich environment. The theory

of randomized methods for path planning is discussed followed by the transition of

2-dimensional RDTs to 3-dimensional RDTs. In Chapter 4, the concept of 3-dimensional

motion primitives and 3-dimensional RDTs are fused together into the motion planning

algorithm. An explanation of how the algorithm functions is presented and discussed in

detail. Chapter 5 utilizes this motion planning algorithm in four different examples to

demonstrate the performance and characteristics of the algorithm.

1.4 Contribution

The implementation of the RDT as a trajectory generation tool in the motion

planning algorithm is the contribution beyond previous work in the area of 3-dimensional

motion planning [5, 14–17]. This produces a search that provides better optimality

through environments with obstacles densely placed throughout; specifically, a condition

to limit the branches between nodes is defined along with a terminal condition for tree

growth. The branch limitation actually seeks to place more branches within the region to

increase probability of finding a local minimum among the numerous solutions for paths

through obstacles. The terminal condition notes that the exploration can change from a

tree growth to a direct solution once an optimal path to the goal can be reached without

intersecting any obstacles. In this way, the initial computation burden may slightly

increase due to the extra nodes and additional terminal check; however, the resulting path

will have lower cost.
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CHAPTER 2
MOTION PRIMITIVES

2.1 Introduction

The concept of motion primitives leads to a useful framework for the simplification of

complicated dynamic models. This framework involves combining sequences of compatible

primitives to represent more complicated trajectories. A set of compatibility conditions

are detailed in the literature [8]. This research utilizes path combinations, or motion

primitives, consisting of straight paths, turning paths (both left and right), climbing

paths, and diving paths. Motion primitive model theory is defined and described in more

detail in the literature [18]. The progression of research from 2-dimensional (2-D) to

3-dimensional (3-D) motion primitive analysis is presented in the following sections.

2.2 Two-Dimensional Dubins Car

A standard model using motion primitives is known as the Dubins car [13, 19–23].

This simple 2-dimensional vehicle motion model operates in a configuration space, or

C-space, spanned by two Euclidean position variables, px and py, and an angle describing

heading, ψ. Vehicle movement is restricted to driving straight or turning to either the

left or right. The straight motion is constrained to a constant velocity while the turns are

constrained to a constant velocity and turn rate. As such, the motion of the Dubins car is

described by the differential system shown in Equation 2–1.













ṗx

ṗy

ψ̇













=













cosψ

sinψ

ω













(2–1)

The discrete set of values assumed by the turn rate ω is shown by Equation 2–2.

ω ∈ {−1, 0, +1} /sec (2–2)
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The Dubins car is an especially interesting model in that a closed-form solution

for optimal trajectories has been derived [13]. This solution notes the path from any

initial point (xo, yo) and heading (ψo) to any final point (xf , yf) and heading (ψf) can be

expressed using only the proper sequence of only 3 primitives. There are 6 combinations of

these 3 primitive sequences and are divided into Turn-Straight-Turn and Turn-Turn-Turn

categories, as detailed in Table 2-1. Such a result allows strategies using optimal control to

be directly compared with a global minimum for evaluating techniques of path planning.

Table 2-1. Dubins car primitive sequences.

Turn-Straight-Turn Turn-Turn-Turn
Left-Straight-Left Right-Left-Right

Right-Straight-Right Left-Right-Left
Right-Straight-Left
Left-Straight-Right

The transformations describing the left turn, right turn, and straight ahead motions

are shown as Equations 2–3, 2–4, and 2–5, respectively. The closed-form expressions for

the trim durations τ are presented in the literature [18, 24].

L(px, py,ψ, τ) = (px + sin(ψ + τ) − sinψ, py − cos(ψ + τ) + cosψ, ψ + τ) (2–3)

R(px, py,ψ, τ) = (px − sin(ψ − τ) + sinψ, py + cos(ψ − τ) − cosψ, ψ − τ) (2–4)

S(px, py,ψ, τ) = (px + τ cosψ, y + τ sinψ, ψ) (2–5)

Examples of solutions from an initial position and heading to a final position and

heading are shown in Figure 2-1 for a Dubins car. All six Dubins car combinations are

utilized and plotted. The optimal solution, which corresponds to the lowest travel time, is

highlighted.

In addition to the 3-primitive sequences listed above, there is also a family of

2-primitive sequences utilizing only the Turn-Straight methodology (Left-Straight and

Right-Straight). This combination will provide a path from any initial point (xo, yo) and

heading (ψo) to any final point (xf , yf) but the final heading (ψf) cannot be guaranteed

15
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Figure 2-1. Possible (—) and optimal ( ) 2-D Dubins path solutions.

using the 2-primitive sequence in view of the fact that a third primitive is necessary to

provide the desired heading. Examples of solutions from an initial position and heading to

a final position are shown in Figure 2-2 for a 2-primitive Turn-Straight solution sequence.

There are 3 examples of both the Left-Straight and Right-Straight paths, each with a

different turn rate ω.

0 5 10−4
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Figure 2-2. Turn-straight solution sequences.
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2.3 Three-Dimensional Dubins Airplane

Utilizing the theory of 2-dimensional motion primitives and the Dubins car, a

3-dimensional version of motion primitives is developed that creates an aircraft version

of the Dubins car. This model operates in a C-space spanned by three Euclidean position

variables, px, py, and pz, and an angle describing heading, ψ. Such a development adds a

constant rate of change in altitude to the constant rate of change of turn already used by

the 2-D Dubins car. The resulting dynamics are described in Equation 2–6.
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ṗz
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=



















cosψ

sinψ

γ

ω



















(2–6)

Discrete values of turn rate, ω, and climb rate, γ, are defined in Equations 2–7 and 2–8.

ω ∈ {−1, 0, +1} /sec (2–7)

γ ∈ {−1, 0, +1} ft/sec (2–8)

This solution notes the path from any initial point (xo, yo, zo) and heading (ψo) to any

final point (xf , yf , zf) and heading (ψf) can be expressed using only the proper sequence

of only 3 primitives. There are 18 combinations of these 3 primitive sequences organized

into 3 groups of 6 combinations. These are detailed in Tables 2-2, 2-3, and 2-4.

Table 2-2. Dubins airplane climbing primitive sequences.

Turn-Straight-Turn while Climbing Turn-Turn-Turn while Climbing
(Left-Straight-Left)Climb (Right-Left-Right)Climb

(Right-Straight-Right)Climb (Left-Right-Left)Climb
(Right-Straight-Left)Climb
(Left-Straight-Right)Climb

17



Table 2-3. Dubins airplane level primitive sequences.

Turn-Straight-Turn with Level Flight Turn-Turn-Turn with Level Flight
(Left-Straight-Left)Level (Right-Left-Right)Level

(Right-Straight-Right)Level (Left-Right-Left)Level
(Right-Straight-Left)Level
(Left-Straight-Right)Level

Table 2-4. Dubins airplane diving primitive sequences.

Turn-Straight-Turn while Diving Turn-Turn-Turn while Diving
(Left-Straight-Left)Dive (Right-Left-Right)Dive

(Right-Straight-Right)Dive (Left-Right-Left)Dive
(Right-Straight-Left)Dive
(Left-Straight-Right)Dive

An optimal path can be computed as a sequence of these motion primitives to

traverse from an initial position and heading to a final position and heading. An example

scenario is shown in Figure 2-3 that demonstrates all of the Turn-Straight-Turn primitive

sequences along with the optimal path for climbing, level flight, and diving cases.

It must be noted that there are scenarios where the plane cannot reach the goal

position. The vehicle model has a prescribed inability to travel directly vertical or

horizontal and thus cannot reach a set of final conditions due to limitations on climb rate

and turn rate. Pachikara has studied this problem in his research and implementation of

that work can be used to address this issue [25]. For all of the research presented here,

the initial point and goal point are sufficiently separated in the XY-plane such that the

vehicle’s turn rate and/or climb rate do not prevent the vehicle from attaining the goal

configuration.

In addition to the 3-primitive Dubins airplane sequences listed above, there is also a

family of 2-primitive sequences utilizing only the Turn-Straight methodology (Left-Straight

and Right-Straight) just as in the 2-dimensional case but including the constant rate of

change in altitude. This combination will provide a path from any initial point (xo, yo, zo)

and heading (ψo) to any final point (xf , yf , zf ) but the final heading (ψf ) cannot be

18
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Figure 2-3. Possible (—) and optimal ( ) 3-D Dubins airplane solutions.

guaranteed using the 2-primitive sequence owing to the fact that a third primitive is

necessary to provide the desired heading. These primitives are graphically shown in

Figure 2-4 as 9 possibilities. The horizontal motion has only 3 possibilities of going

left-straight, right-straight, and straight only (ψ = 0). These horizontal motions are

coupled with independent vertical motion that allows level flight and climb or dive.

2.4 Library

The motion primitives represent maneuvers that the vehicle can perform. Since

most vehicles can vary their rates of change, it is reasonable to define a set of parameters

such that Ω = {ω1, ...,ωn} represents the set of possible turn rates and Γ = {γ1, ...γm}

represents the set of possible climb rates.

A set of motion primitives can then be defined that represent all possible maneuvers.

Each element in this set is actually a trajectory defined by the time-varying values of
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Figure 2-4. Turn-straight solution sequences for 3-D.

position and orientation during the maneuver. As such, each element is parametrized by

the duration of the maneuver, τ , turn rate, ω, climb rate, γ, to result in set of X .

X =



































X(τ,ω, γ) : X =



















px(0 : τ)

py(0 : τ)

pz(0 : τ)

ψ(0 : τ)



















∈ Eq 2 − 6,ω ∈ Ω, γ ∈ Γ



































(2–9)

A critical feature of this set is the notion of feasibility. Essentially, any member,

X ∈ X , is constrained so the evolution of the trajectory must follow the dynamics of

Equation 2–6. The resulting set is a collection, or library, of feasible maneuvers that can

be achieved by the vehicle.

The configurations which may be reached by the vehicle after a single maneuver can

thus be expressed using this parameterized set. An initial configuration of position and

orientation can be defined as C(0) ∈ R4 and the ensuing configuration at any time, t ∈ R,

20



can be defined as C(t) ∈ R4 as a result of initiating some maneuver, X(t,ω, γ) as in

Equation 2–10.

C(t) = C(0) + X(t,ω, γ) (2–10)

21



CHAPTER 3
RANDOM DENSE TREES

3.1 Introduction

Randomized methods for path planning have been formulated to consider systems

with complicated dynamics. The fundamental feature of such methods is a localized

approach that considers sequentially expanding into a search space to rapidly and

efficiently find sub-optimal solutions. A variety of methods, including probabilistic

roadmaps and random dense trees (RDTs), have been developed; however, the use of

random dense trees will be adopted due to its ability to directly handle motion primitives

and generate feasible trajectories for models of realistic vehicles [26–31].

3.2 Two-Dimensional Random Dense Trees

The material in this section is taken directly from Section 3.3 of Trajectory Genera-

tion for Effective Sensing of a Close Proximity Environment by Kehoe [18].

Random dense tree (RDT) based planners provide an alternative to the basic

probabilistic roadmap method paradigm that enables efficient solutions to differentially

constrained problems. While the probabilistic roadmap method generates a roadmap that

describes the connectivity of many configurations to many other configurations, RDT

methods generate a tree that is rooted at a specific initial condition and which describes

connectivity of this initial condition to as many reachable configurations as possible.

Algorithmic details ensure efficient and rapid exploration of the space. A drawback of

RDT methods is that they are designed to solve a single planning problem at a time.

This limitation is in contrast to probabilistic roadmap method planning algorithms, which

establish a network that spans the configuration space, or C-space, and can be used many

times for many different planning tasks. A major benefit in this tradeoff is that RDT

methods can often handle problems involving dynamic systems. In general, RDT methods

incrementally build a search tree from an initial node in three main steps:
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1. Node Selection: A node from the existing tree is selected as a location to add a
branch. Selection of a particular node is usually based on probabilistic criteria that
may require use of a valid distance metric.

2. Node Expansion: A local planning method is used to extend a feasible trajectory
from the selected node. The local goal for this trajectory branch is determined
probabilistically.

3. Evaluation: The new branch is evaluated according to performance criteria and
often for connection to the goal configuration. Additionally, the new branch may be
subdivided into multiple segments, thus adding several new nodes to the existing tree.

A variety of RDT-based planners have been developed with numerous variations on

the main steps listed previously, often to optimize performance for a specific application

or to address a pathological case [26–31]. Two algorithms, the Rapidly-exploring Random

Tree (RRT) algorithm and the Expansive Spaces Tree (EST) algorithms, demonstrate

different core exploration philosophies through the manner in which nodes are selected and

expanded. These algorithms also serve as a basis for many of the existing variations on the

general method, and hence prove useful as demonstrative examples.

3.2.1 Rapidly-Exploring Random Trees (RRT)

The RRT algorithm was developed by Lavalle and Kuffner specifically to handle

problems that involve dynamics and differential constraints [12, 28]. The algorithm biases

tree growth toward unexplored areas of the space and hence focuses on rapid exploration.

The node selection step is initiated with a sampled configuration that is chosen from a

uniform distribution of the configuration space, or C-space. A distance metric is then used

to determine the closest point in the existing tree. During the expansion step, the selected

node is extended incrementally “toward” the sampled configuration using a local planning

method. This incremental extension is performed to varying degrees in different versions

of the algorithm and is ultimately a design parameter. Some versions use a fixed step size,

others use a step size proportional to the distance from the sample, while others attempt

to completely connect the sampled configuration to the existing tree.
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Figures 3-1A and 3-1B depict the RRT expansion process. Both images show a tree

grown from the root node, N0, in a two-dimensional C-space that contains obstacles.

Figure 3-1A depicts the sampling step, in which a random configuration, Nrand, is selected

and the nearest node in the existing tree, Nnear, is determined. Figure 3-1B shows the

expansion step, where a branch is incrementally extended from Nnear toward Nrand along

the trajectory connecting the two configurations. A new node, Nnew, is added at the

end of the new branch. The algorithm proceeds in this fashion until a branch of the tree

reaches the goal within some specified tolerance.

A B

Figure 3-1. RRT algorithm. A) Sampling step. B) Expansion step.

3.2.2 Expansive-Spaces Trees (EST)

The EST algorithm was developed by Hsu et al as a planning method to address

problems involving high-dimensional C-spaces and was later adopted to handle kinodynamic

planning problems [10, 32]. The EST algorithm explores space in a fundamentally different

way than the RRT algorithm. Specifically, node selection occurs through the random

selection of an existing node according to a probability distribution that is left as a design

choice. This node is expanded within a local neighborhood that is defined by a valid

distance metric. A configuration is sampled randomly from within this neighborhood and

a local planning method is used to connect the selected node to the sampled configuration.

Figures 3-2A and 3-2B depict the EST expansion process. Both images show a tree

grown from the root node, N0, in a two-dimensional C-space that contains obstacles.

Figure 3-2A depicts the node selection step, in which the expansion node, Nexp, is selected

from the existing nodes. The neighborhood of Nexp is defined here using a Euclidean
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distance metric and is shown as the area within the dashed circle in Figure 3-2A.

Figure 3-2B shows the expansion step, where a random configuration, Nrand is selected

from the neighborhood of Nexp and then a trajectory is planned from Nexp to Nrand. The

algorithm proceeds in this fashion until a branch of the tree reaches the goal within some

specified tolerance.

A B

Figure 3-2. EST algorithm. A) Node selection. B) Sampling and expansion.

3.2.3 Discussion

It is important to note the fundamental difference between the ways in which the

RRT and EST explore the space. Samples from empty space have a tendency to “pull”

branches off of the tree built in the RRT algorithm. Thus, the space is rapidly spanned

with coarse resolution. Continued sampling has the effect of improving the resolution

of this exploration without appreciably changing the form of the solution. This concept

is depicted in Figure 3-3A. Conversely, the EST selects a node randomly and tends to

“push” branches from the selected node toward empty space as shown in Figure 3-3B. A

benefit to this “pushing” tendency is that the shape of the tree is continually evolving

such that expansion is guided by the node sampling distribution. A wise choice of this

distribution can favorably affect solution performance qualities; however, care must be

taken to avoid biasing exploration toward previously explored areas.

3.3 Three-Dimensional Random Dense Trees

The concept of random trees is also useful for considering a 3-dimensional (3-D)

Dubins airplane. The basic tree structure actually allows exploration into any n-dimensional
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Figure 3-3. Differences in exploration strategy for the RRT algorithm vs. the EST algorithm. A) RRT expansion. B) EST
expansion.
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space so a 3-dimensional tree is a relatively straightforward extension of the 2-dimensional

(2-D) tree. As with the 2-dimensional case, both the RRT and EST approaches can be

modified to be implemented into 3-dimensions. For the remainder of this investigation, the

pull expansion philosophy exhibited by the RRT algorithm will be utilized. Subsequent to

experimentation with the two expansion philosophies, the RRT approach is selected rather

than the EST approach due to its superior efficiency, computation time, and robustness

attributes in finding feasible solutions.

The growth of the tree follows a standard algorithm using nodes and branches. A

set of nodes are randomly placed into the environment within some limit on range. An

example is shown in Figure 3-4 to demonstrate a 3-dimensional RRT at iteration counts of

100, 250, and 500.
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Figure 3-4. Growth of 3-D Tree after 100 Iterations (top left), 250 Iterations (top right)
and 500 Iterations (bottom)
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3.4 Three-Dimensional Random Dense Tree Trajectory Generation

The nature of the exploration and the associated termination conditions of the

3-dimensional RDT developed in Section 3.3 are issues that still need to be addressed.

The combination of this 3-D RDT and the dynamic motion primitives described in

Chapter 2 are the basis for the development of a trajectory generation algorithm.

To combine the ideas, the nodes for the tree growth are randomly placed into the

environment within some limit on range placed by probabilistic assessment of the vehicle

velocity. The validity of each node is then assessed by determining if a sequence of turn

maneuver, Xt, and straight maneuver, Xs, could reach that location, C(t + τ), from the

previous node location, C(t). In other words, the tree’s branches are created by a series of

Turn-Straight maneuvers like those detailed in Section 2.3. Several of these Turn-Straight

sequences may reach the required new node so the final path, or branch, is selected by

minimizing the time required for travel as shown in Equation 3–1.

min

Xt ∈ X

Xs ∈ X

τ1 + τ2 (3–1)

subject to

C(t + τ1 + τ2) = C(t) + Xt(τ1,ω, γ) + Xs(τ2, 0, γ)

A representative example is shown in Figure 3-5 to demonstrate a tree built upon the

motion primitives in X . Each branch consists of a turn motion followed by straight motion

with each motion obtained as a feasible maneuver from the library. The total length of

each maneuver is jointly determined by the minimization of Equation 3–1.

Path planning into 3-dimensional space using trees can be constrained to account

for obstacles. Obviously any resulting path must be feasible both in the sense that the
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Figure 3-5. Growth of 3-D dynamically constrained random dense tree into unoccupied
space.

vehicle can follow the trajectory and in the sense that the trajectory does not intersect any

obstacles.

A pruning method is used to ensure obstacle avoidance. This method does not

directly consider the location of the obstacles to optimize tree growth; rather, it simply

prunes nodes and branches that lie within an obstacle. The node selection thus remains

random with some of the nodes being eliminated by a check on the node location and the

obstacle locations.

A representative expansion into a 3-D space with obstacles is shown in Figure 3-6.

The tree grows and branches are formed along paths that do not intersect any obstacles

due to the pruning approach. The resulting path is thus able to avoid obstacles and reach

the goal configuration.
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Figure 3-6. Growth of 3-D dynamically constrained random dense tree into occupied
space.

This pruning notes that a set of locations, O, may be defined that encompasses

the obstacles. The definition in Equation 3–2 uses a simple orthogonal polyhedron

approximation such that each obstacle has limits on east range, [x1, x2], north range,

[y1, y2], and altitude range, [z1, z2], for k obstacles.
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The growth of the tree occurs such that a node, C(t + τ1 + τ2), as in Equation 3–1 is

valid if neither that node nor a path to that node intersect any obstacles as described in

Equation 3–3:

C(t + τ1 + τ2) ∈/ O

∃X ∈ X with X ∈/ O
(3–3)
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CHAPTER 4
MOTION PLANNING

4.1 Introduction

Motion planning describes the process of developing the transformation of a system

from an initial configuration to a terminal or goal configuration. System configurations are

defined as a vector, %xc, on the configuration space, or C-space. The C-space encompasses

the variables that describe the position and orientation of the body coordinate frame

including the terminal or goal configuration.

Motion planning problems for vehicle systems are typically classified according to

three main categories [33]: point-to-point motion, path following, and trajectory tracking.

In all of these cases, the vehicle is required to move from an initial configuration to a

goal configuration. The differences occur in how the function describing the vehicle’s

motion is constrained. In the case of point-to-point motion, there are no restrictions on

the transitional motions occurring between the beginning and final configurations but just

that final configuration is reached. Point-to-point motion planning is solved via a series

of waypoints. For the path-following case, the vehicle is instructed to obey a continuous

path in the C-space prescribed by system differential constraints and which has the initial

and goal configurations as endpoints. The plans for path following motion are developed

by way of a function defined on the C-space. The trajectory tracking case is identical

to the path-following case with the addition of a time requirement. Trajectory motion

plans are defined as either a system input function, %u, that is a function of time or as

time-parameterized functions defined on the C-space.

In this section, an algorithm for motion planning is formulated for generating

guidance trajectories for a vehicle system given a model of the vehicle motion and a

known environment. The environment in which the vehicle functions is occupied with

densely placed 3-dimensional (3-D) obstacles that force the vehicle to travel within close

proximity to the obstacles. The vehicle’s path is generated using 2 parts. The first portion
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combines the 3-D motion primitives with the 3-D rapidly-exploring random tree. This

segment of the path will travel amongst the obstacles. The second portion of the path

implements the 3-D Dubins path to travel from the end of a tree branch to the goal point.

This combination will produce approximate minimum-time trajectories for the constrained

system.

4.2 Model

The motion planner developed utilizes a motion primitive model that behaves

according to the dynamics described by Equation 4–1, which is an extension of the

Dubins airplane model examined in Section 2.3. The constant translational velocity, V , is

restricted differentially to act forward in the direction of the vehicle heading. The motion

of the of the vehicle is controlled via the inputs to the differential system: the turn rate,

ω, and the climb rate, γ. The system described by Equation 4–1 admits trim trajectories

that belong to three families: constant rate turns (left and right), constant rate climbs and

dives, and straight forward motion.
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Here, trim trajectories behave according to the kinematic conditions shown in

Equations 4–2, 4–3, and 4–4. A motion primitive model can be formed by selecting a set

of trim primitives that behave according to these conditions.

V = const. (4–2)

ṗz = γ = const. (4–3)

ψ̇ = ω = const. (4–4)
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There are a total of 3m(2n + 1) trim primitives selected. These trim primitives

consist of constant-rate turns and constant-rate climbs at n different turn rates and m

different climb rates in each direction. In addition, there is a straight-ahead primitive

that corresponds to ω = 0 and γ = 0, purely climbing and purely diving primitives

corresponding to ω = 0, and purely turning (both left and right) primitives corresponding

to γ = 0. This set is shown as Equations 4–5 and 4–6. The velocity, V , is held fixed over

the set of all primitives.

ψ̇ ∈ {0,±ω1,±ω2, · · · ,±ωn} |ωi| ≤ ψ̇max, i = 1, · · · , n (4–5)

ṗz ∈ {0,±γ1,±γ2, · · · ,±γm} |γi| ≤ ṗz, max, i = 1, · · · , m (4–6)

4.3 Overview

The path creation algorithm is executed using a series of primary steps. A detailed

explanation of these steps are located in the literature [18] but are summarized as follows:

4.3.1 Select a Node

A point is selected from the subspace of the feasibility space which is spanned by the

position variables. An approximate, obstacle-free distance metric is used to determine the

nearest node in the existing tree.

4.3.2 Extend a Branch

The set of 2n unique solutions on the position subspace are enumerated, evaluated,

and pruned. Selection criteria is used to choose a branch from the set for addition to the

solution tree.

4.3.3 Check for Solutions

The new branch is split into an intermediate set of nodes. At each node, a check is

presented for obstacle-free connection to the goal configuration on the full C-space using

the optimal-control solution. When a lower cost solution is found, the new solution is
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added to a solution list and the current upper bound is updated. This obstacle-free path

check notes if a direct solution from the current node, C(t), to the goal location, Cg, exists

for the standard 3-sequence Dubins solution. This check can be described as:

if ∃X1, X2, X3 such that

Cg = C(t) + X1(τ1,ω1, γ1) + X2(τ2,ω2, γ2) + X3(τ3,ω3, γ3)

then stop tree growth

else choose new C(t + τ1 + τ2) as in Equation 3–1

end

4.4 Discussion

It should be emphasized that the tree growth uses a sequence of two maneuvers while

the final direct solution uses a sequence of three maneuvers. This discrepancy notes that

a 3-sequence path is optimal for a Dubins vehicle but a 2-sequence path is preferable

for maneuvering through obstacles. Essentially, the 2-sequence path will limit the range

between nodes and thus force the nodes to lie closer together. Such close nodes will

add more nodes to the final solution and, while incurring a small computational cost,

will result in more sub-optimal solutions for the resulting path [16]. A local minimum

with lower cost is anticipated using this algorithm since more sub-optimal solutions are

computed. It is anticipated that fewer nodes will be more efficient for less-obstacle-dense

environments but more nodes will be more efficient for more-obstacle-dense environments.

Also, to clarify the recording function of the algorithm, the process above is modified

to improve upon the optimality of the solution. While the tree growth iterations are

completed, path solutions will be found. After a solution (path) is computed, the

solution’s associated cost function (in this case the overall travel time) is compared to

any previous solution costs. When a lower cost solution (smaller total travel time) is

identified, the solution is recorded as the “most favorable solution”. The tree is prescribed
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to continue to expand a fixed number of iterations and additional solutions will be found

and checked in the same fashion. After all the iterations are complete, the final “most

favorable solution” will be presented as the best sub-optimal solution.
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CHAPTER 5
EXAMPLES

5.1 Introduction

Several examples of motion planning for an aircraft through a variety of environments

are presented in this chapter. A set of initial conditions and final conditions are chosen

for each example to reflect a mission of traversing the regions. In the first case, an

obstacle-free environment is investigated and a path is created using only a 3-dimensional

(3-D) Dubins Airplane path. In the second and third examples, the full motion planning

algorithm is utilized for an urban environment with a modification to the random dense

tree (RDT) growth algorithm being presented in the latter example. In the fourth

and final example, the full motion planning algorithm is utilized once again but for

an urban environment that includes an elevated bridge and a covered walkway. The

dynamic properties for the formulation of the motion primitives are listed in Table 5-1

and are based on measurements from a class of micro air vehicles from the Flight Control

Laboratory at the University of Florida. These vehicle properties will be used for all of the

examples in this chapter.

Table 5-1. Vehicle properties for examples.

Property Value
forward velocity 40 ft/s

turn radius 76 ft
max climb rate 30 ft/s

5.2 Three-Dimensional Dubins Airplane Paths (No Obstacles)

In this example, an obstacle free environment is assumed. Since there are no

obstacles that need to be avoided, the tree portion of the motion planning algorithm

is not necessary and only the second portion of the motion planning algorithm, the

3-dimensional Dubins airplane sequence, is implemented.

The vehicle starts at a position of (0,0,0) and a heading of 90o (due East) while it

is required to end at a position of (400,400,100) and a heading of 90o. The results of
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the simulation are presented in Figure 5-1. There are 3 paths presented, each with a

lower cost function than the one previous. The cost function to be minimized is defined

to be purely the time to traverse the region. The first path created will be identified

as the first ”best” solution. As the simulation runs through all of the possible Dubins

airplane possibilities, the simulation defines a path as being the ”best” if it has a smaller

overall travel time than the ”best” path created before it. Recalling from Table 2-2

that there are six total combinations of Dubins airplane paths for climbing, only three

are produced here. The other three are not presented because as they were utilized

in the algorithm, their travel time was not smaller than the previously defined ”best”

path. The algorithm decided not to produce the path and instead move to the next

possible Dubins airplane motion primitive combination listed in the algorithm. In this

example, the (Right-Straight-Right)Climb sequence path is defined first as having a travel

time of 36.9 seconds. Proceeding through the simulation, the (Left-Straight-Left)Climb

sequence path is defined as having a shorter path travel time of 27.9 seconds. Finally,

the (Left-Straight-Right)Climb sequence path is defined as having the shortest path

travel time of all at 16.4 seconds. Inspection of the plots clearly shows that the climbing

Left-Straight-Right sequence has the lowest cost function of all as it is almost a straight

path from the initial configuration to the goal configuration.

5.3 Full Motion Planning in Urban Environment

In this example, the full motion planning algorithm is utilized for an urban

environment. The vehicle starts at a position of (0,0,0) and a heading of 30o while it is

required to end at a position of (500,500,200) and a heading of 90o. There are 4 obstacles,

or buildings, of various sizes that lie throughout the region and must be strictly avoided.

The details of the obstacles are presented in Table 5-2.

The tree portion of the motion planning algorithm is utilized for maneuvering through

the obstacle rich portion of the environment, followed by the 3-dimensional Dubins

airplane sequence for traveling from the end of the branches to the goal point and heading.
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Figure 5-1. 3-D Dubins airplane paths using RSR (top left), LSL (top right), and LSR
(bottom) motion primitive sequences. RDT portion of motion planning is not
needed because there are no obstacles.

Table 5-2. 3-D obstacle dimensions and locations for urban environment. All units in feet.

Obstacle Coordinates of Center dx dy dz
Cyan (200,100,50) 240-160=80 140-60=80 100-0=100
Red (100,200,25) 115-85=30 215-185=30 50-0=50

Green (100,300,25) 115-85=30 315-285=30 50-0=50
Pink (300,300,100) 340-260=80 340-260=80 200-0=200

The algorithm for this example is run three times to attempt to lower the cost of the

trajectories even more than what can be done with one run of the algorithm. When the

algorithm is run and the random dense tree (RDT) is grown, all the paths generated must

utilize this tree in their materialization. Since the tree is grown randomly in the space,

there is a chance that running the algorithm again will produce a RDT that will provide

even lower cost trajectories.
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The algorithm generates an initial sub-optimal solution as a combination of

tree-expanded path and direct-solution path. After the iteration count reaches fruition,

a total of 9 paths are created, each with a decreased cost as measured by total time to

traverse from the initial configuration to the goal configuration. The cost for the final

solution of the first run is 21.9s. The vehicle approaches the region but then turns to the

left to avoid the large central obstacle, climbs, and turns to the right where a clear path to

the goal location and heading can be made using the 3-D Dubins airplane. The final path

is produced after 15.8s of computing time and is shown along with the complete RDT

associated with it in Figure 5-2.

Figure 5-2. Fully grown RDT (left) and final sub-optimal path (right) of run #1 of motion
planning algorithm in urban environment with time-traveled cost of 21.9s.

The simulation is run again with a new RDT. After all of the iterations are complete,

10 more sub-optimal solutions are generated, each with a smaller total travel time than

the one prior. The tenth path is determined after 16.7s of computation. The final solution

results in a path shown in Figure 5-3 that includes a cost of 21.2s. This path also turns to

the left to avoid the center obstacle but climbs at a higher rate, then utilizes the Dubins

airplane to reach the goal configuration.

A third and final run of the simulation, with another new random dense tree,

generates only 5 sub-optimal solutions with decreasing total cost, the final being found

after only 9.6s of computation time. In this case, the final solution requires only 18.8s
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Figure 5-3. Fully grown RDT (left) and final sub-optimal path (right) of run #2 of motion
planning algorithm in urban environment with time-traveled cost of 21.2s.

to follow the path shown in Figure 5-4. This solution performs an almost straight path

toward the goal point, turning slightly to the left to avoid the central obstacle, all while

implementing a larger climb rate. Once past the obstacle, the optimal portion of the

solution is implemented.

Figure 5-4. Fully grown RDT (left) and final sub-optimal path (right) of run #3 of motion
planning algorithm in urban environment with time-traveled cost of 18.8s.

In the case of running these three simulations, the third run of the simulation

provides the solution with the lowest cost of 18.8s of travel time. It appears that this

is due to the utilization of the larger climb rate and the fact that the path is almost
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straight between the initial and goal points. It should be noted that the higher climb rate

implemented in this final run is still lower than the vehicles maximum climb rate.

5.4 Random Dense Tree Algorithm Modification

In this example, the full motion planning algorithm is utilized for the same circumstances

in Section 5.3 (initial configuration, desired goal configuration, obstacle locations, and

obstacle dimensions), but some of the attributes of the RDT development are altered.

This algorithm runs for twice as many iterations allowing for the RDT to grow larger

and with more branches. In addition, the randomized node placement is prescribed to be

influenced by the goal point to a greater degree. The algorithm for this example is also

run three times with the purpose of potentially producing a RDT that will yield lower cost

trajectories. The solutions to all the simulations are presented as follows.

Upon completion of the first run of the algorithm, a total of 4 paths are created, each

with a decreased cost. The final path is determined after 25.1s of computing time. The

cost for the final solution of the first run is 19.6s. The vehicle turns left immediately and

climbs along the western boundary of the C-space and then turns right between the two

smaller obstacles where the optimal portion of the algorithm is implemented to create the

second portion of the path. This final path and the complete RDT associated with it are

shown in Figure 5-5.

The simulation is run a second time with a new RDT and after all of the iterations

are completed, 11 more sub-optimal solutions are generated, each with a smaller total

travel time than the one prior. The eleventh and final path is determined after 24.0s of

computation and it is shown in Figure 5-6 with a travel time of 18.6s. This path resembles

the final path of the third run in Section 5.3 as it performs an almost straight path

toward the goal point, turning slightly to the left to avoid the central obstacle, all while

implementing an even larger climb rate. Once past the obstacle, the optimal portion of the

solution is implemented.
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Figure 5-5. Fully grown RDT (left) and final sub-optimal path (right) of run #1 of motion
planning algorithm with RDT formulation adjustment in urban environment
with time-traveled cost of 19.6s.

Figure 5-6. Fully grown RDT (left) and final sub-optimal path (right) of run #2 of motion
planning algorithm with RDT formulation adjustment in urban environment
with time-traveled cost of 18.6s.

The third and final run of the simulation, with another new RDT, also generates 11

sub-optimal solutions, each with decreasing total cost. 47.1s of computation time is needed

for this run of the algorithm to find the final solution. A cost of 19.0s is required to follow

the final path shown in Figure 5-7. The path generated in this solution starts climbing

to the north-northeast and travels over the first small obstacle, continues climbing while

turning to the east and then switches to the optimal portion of the solution.

In the case of running these three simulations, the second run of the simulation

provides the solution with the lowest cost of 18.6s of travel time. Similar to the final run
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Figure 5-7. Fully grown RDT (left) and final sub-optimal path (right) of run #3 of motion
planning algorithm with RDT formulation adjustment in urban environment
with time-traveled cost of 19.0s.

of the algorithm in Section 5.3, the even larger climb rate and general heading of the path

provides the favorable performance.

In comparison, there are some similarities and differences in the performance of these

two versions of the algorithm. These are presented in Table 5-3. The altered algorithm

attains the shortest overall path travel time of 18.6s and a shorter average path travel

time of 19.07s. The average computing time more than doubles when using the altered

algorithm verses the original algorithm while the performance only improves slightly.

Table 5-3. Motion planning algorithm results comparison.

Shortest Overall Average Overall Average
Algorithm Travel Time Travel Time Computation Time

Original 18.8s 20.63s 14.03s
Altered 18.6s 19.07s 32.07s

5.5 Full Motion Planning in Urban Environment With Bridges

In this example, the original full motion planning algorithm is utilized for an urban

environment that includes a covered walkway and an elevated bridge. The vehicle starts

at a position of (0,0,0) and a heading of 60o while it is required to end at a position of

(500,500,200) and a heading of 90o. The environment consists of 2 large towers, 1 small
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Table 5-4. Tower, walkway, and bridge dimensions and locations. All units in feet.

Obstacle Coordinates of Center dx dy dz
North Tower (50,250,100) 100-0=100 300-200=100 200-0=200

Covered Walkway (175,275,25) 250-100=150 300-250=50 50-0=50
Northeast Tower (275,275,100) 300-250=50 300-250=50 200-0=200
Elevated Bridge (275,175,175) 300-250=50 250-100=150 200-150=50

East Tower (250,50,100) 300-200=100 100-0=100 200-0=200

tower, a covered walkway, and an elevated bridge. These obstacles must be strictly avoided

just as in the other examples. The details of the obstacles are presented in Table 5-4.

Just as in the examples in Sections 5.3 and 5.4, the tree portion of the motion

planning algorithm is utilized for maneuvering around the obstacles and the 3-dimensional

Dubins airplane sequence is utilized for traveling from the end of the branches to the goal

point and heading. The difference with this case is that the path is encouraged to fly over

the covered walkway and/or under the elevated bridge. This demonstrates that the motion

planner treats the obstacles as 3-dimensional objects rather than 2-dimensional regions.

The algorithm for this example is only run once as the intention is to demonstrate the

motion planning capabilities of the algorithm, not the performance as in Sections 5.3 and

5.4. Two of the paths created in this simulation, along with the final RDT, are presented

in Figure 5-8. Notice that the trajectory paths generated indeed have the ability to fly

over obstacles, as in the case of the covered walkway, and under obstacles, as in the case of

the elevated bridge.
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Figure 5-8. The motion planning algorithm treats the obstacles as 3-dimensional objects
rather than 2-dimensional regions. Generated paths can go over the covered
walkway (top left) and under the elevated bridge (top right). The final RDT
(bottom) is also shown growing over, under, and around the obstacles.
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CHAPTER 6
CONCLUSION

The work presented in this thesis has addressed the problem of motion planning in

3-dimensional space. Specifically, motion planning for missions involving vehicles with

3-dimensional motion in close proximity to 3-dimensional obstacles was developed. The

topic of 3-dimensional motion primitives was addressed in Chapter 2 with a development

of a 3-dimensional version of the Dubins car called the Dubins airplane. This Dubins

airplane implemented a constant climb rate in the motion primitive definitions to expand

into the third dimension. In addition, the 2-primitive turn-straight path segments were

discussed and developed for 3-dimension space. Chapter 3 focuses on the subject of

random dense trees (RDTs). The theory of randomized methods for path planning

was touched upon briefly, followed by the concept of 2-dimensional RDTs presented

by Kehoe [18]. The general idea of how RDTs grow was presented and then both

rapidly-exploring random tree theory and expansive-spaces tree theory were described

and discussed. Following the introduction of 2-dimensional RDT theory, 3-dimensional

RDT theory was introduced utilizing the rapidly-exploring random tree theory but altered

for 3-dimensional growth. Finally the topic of 3-dimensional RDT trajectory generation

was discussed in full.

In Chapter 4, the ideas of 3-dimensional motion primitives, both the 2-primitive

turn-straight combinations and 3-primitive Dubins airplane, and the 3-dimensional RDT

concepts were brought together into the motion planning algorithm that was developed for

this thesis. An explanation of how the algorithm functions was presented and discussed in

detail. This motion planning algorithm was then put through 4 examples in Chapter 5.

The first example was for an obstacle-free environment and only the second portion

of the motion planning algorithm was implemented. In the second example, the full

motion planning algorithm was put to use for a vehicle traveling through an obstacle-rich

environment. The third example was conducted to exhibit the difference in performance
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of the original RDT growth algorithm and an altered RDT growth algorithm that grew

for twice as long and was more influenced by the goal configuration. Lastly, an example

was presented that showcased the motion planning algorithm’s ability to not only plan

trajectories around obstacles, but over and under them as well in the case of a series of

bridges.

There are several directions that can be considered for future work using this research.

Implementation of the path parameterization work completed by Pachikara [25] into the

motion planning algorithm presented in this thesis is being employed for progression of

this research. The extension of this investigation for use in a sensor-based motion planning

scheme is a logical one and will also be investigated. The cooperation of the field of flight

controls with this motion planning algorithm is also a potential area of interest for future

work.
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