11

A performance comparison of Hypertransport vs. PCI in a workstation environment
Eric Donnelly and Scott Owen

University of Florida

Dept. of Electrical and Computer Engineering
Gainesville, Florida 32601
Abstract

The focus of this paper is to explore the deficiencies of the current implementation of the PCI standard as an I/O bus—specifically in the areas of bandwidth, latency, and scalability, and explore the solutions provided by the HyperTransport protocol.  These solutions are needed to satisfy the need to provide I/O for advanced devices, such as high speed network adapters, display adapters, and storage devices.  These devices often require interconnects with high bandwidths, and low latency to perform to their capability and the capability of the processor and system logic.  This creates a bottleneck, which must be solved, in order for the high performance devices to be able to perform to capacity.

1. Introduction

With frontside busses running at speeds of up to 33.6Gb/s, memory busses running at 25.6Gb/s, and I/O devices such as 10Gig Ethernet, and storage devices running at 1.2Gb/s, it is obvious that PCI and even PCI-X running at 1.06Gb/s and 8.5Gb/s respectively cause a bottleneck hindering the performance of a system.  


Another problem that is present in the PCI bus is latency.  Many multimedia applications require low latency interconnects to provide real time data in the form of video or audio.  The shared bus topology of PCI presents a major problem in the area of latency, as contention for the bus can become a problem when many devices are trying to access the bus at one time.  This leads us to the third problem, of scalability.  PCI is limited in its scalability, since all devices share the same resources.  When many devices are added they slow down the bus by creating contention, and possible congestion, depending on the throughput requirements of each device.


As time progresses, human-dependency on computers continues to increase. Thus larger applications requiring increases in computing power continue to emerge. The computing industry continues to do everything it can to increase performance of its machines, and since “the chain is only as strong as its weakest link”, bottlenecks need to be eliminated.  Nearly all of the I/O in the standard computer today passes over the PCI bus at some point in time. With computer interaction increasing, this bus can no longer keep up with the speeds of the processor and the peripherals connected to it. This problem needs to be addressed in order for these machines to operate at their full potential.


Latency is key factor in the performance of components requiring real-time operations. Applications such as streaming video provided by graphics cards need low-latency for proper operation. Current graphics cards require over 1GB/s bus bandwidth and this number is always increasing. This function was moved off of the PCI bus due to its performance needs and onto the Accelerated Graphics Port (AGP), which was added specifically for the graphics card. By replacing PCI with HyperTransport, the graphics card could be moved to this interconnect, and the AGP bus could be removed. This would simplify the motherboard and unify the machines I/O, which in turn would reduce overall costs involved in design and manufacture of products. 


Increasing performance of LANs, with technologies like Gigabit and 10-Gigabit Ethernet puts a huge burden on the PCI bus. This alone has a bandwidth of over 1 GB/s. With other PCI peripherals such as FireWire, IDE storage devices, and Fibre Channel, the PCI bus can easily become overloaded. Replacing the PCI bus with a packet-switched structure, specifically HyperTransport, will eliminate a huge bottleneck and allow for the next-generation machines to operate at optimum performance. 

2. PCI

This section describes the concepts behind the operation of the PCI bus, along with the shortcomings, and specific areas that need improvement.

2.1. Introduction to PCI

The Peripheral Component Interface (PCI) Bus is the standard peripheral bus in computers today. The PCI Local Bus specification is controlled by the PCI Special Interest Group (PCI SIG). It was first created in 1992 to provide a standardized way of interfacing add-in components, with a high-speed design to scale with increasing CPU speeds. The original specification was a 32-bit bus operating at 33 Mhz, for an aggregate bandwidth of 132 MB/s. This was a tremendous improvement over the ISA (Industry Standard Architecture) bus formally being used, whose aggregate bandwidth was a blazing 8 MB/s. Current specifications offer a 64-bit 66 MHz bus for a total bandwidth of 528 MB/s. PCI is currently at Rev. 2.3, and even though PCI is an open specification, you must be a member of PCI-SIG to download the specification. Therefore, this discussion is based off Rev. 2.2. It should also be noted that PCI-SIG has developed two other specifications, PCI-X and PCI Express as the next steps in the evolution of PCI, which offer performance gains over the original standard.
2.2. PCI Operation  


This section provides an overview of the PCI system architecture and its principles of operation.

2.2.1. PCI Architecture


The typical PCI system architecture is shown in Figure 1 below.

[image: image16.png]Host Bridge

Host Bridge

Tree

Chain




Figure 1. Courtesy of [1]
The PCI bus is connected to the main memory bus (front-side bus) through a PCI bridge. This is where data is transferred from PCI to main memory or the CPU for processing. The specification also contains mechanical specs for add-in peripheral cards, most commonly known as PCI cards. 
There is a limit to the number of devices on the bus. No more than 21 devices (including the host bridge) can reside on the bus. In actuality, the physical limit is about 10 devices, with each add-in card device counting as two. Devices on the bus can be categorized as either a master (initiator) or a slave (target). However, devices aren’t limited to one of these categories. A device can act as both a master and a target (though not simultaneously), or only as a target. 

Each master contains specific pins which are used for arbitration of the bus, hence clock cycles aren’t wasted on deciding who gets control next. Arbitration is controlled by a separate device (an arbitrator), who grants control of the bus. 

The actual data bus is used to carry both address and data signals. The bus is divided into “byte lanes”, so in 32-bit mode, there are 4 byte lanes available and in 64-bit mode there are 8. During a transfer any (or all) of these lanes can be used. 

2.2.2. Signal Definition

A 32-bit PCI device requires a minimum of 47 pins for a target-only device and 49 pins for a master. A 64-bit device requires a minimum 86 pins for a target device and 88 pins for a master. These pins are broken down into functional groups and shown in Figure 2.
[image: image2.png]Required Pins

adress
s baa sent
Exonsion
Pl
netae couPLANT ; e
Contl DEVICE Cont
%anemwls
Emor
Reportng 1
ot §
oot
o
oy

sytem §




Figure 2. Courtesy of [1]
· System pins—clock (CLK) and reset (RST). Used for device timing (can vary from 0 to 66 Mhz), and for resetting all devices to a known state, respectively.


· Address and Data—these signals are mutiplexed over the same bus pins (AD). During an address phase, the 4 Command/Byte Enable (C/BE) pins are used to define the bus command (read, write, etc.), and during the data phase, define which lanes of bytes carry data. The Parity pin maintains even parity across the AD and C/BE pins.
· Control—The Frame pin is driven by the master to show a transaction is taking place. The Initiator Ready (IRDY) pin indicates the master is ready to send/receive more data. The Target Ready (TRDY) pin does the same for the slave. The Stop pin indicates the target is requesting to stop the transaction. The Lock pin is used for atomic operations. Init Device Select (IDSEL) is a chip select used in configuration. Device Select (DEVSEL) is driven by a target when it decodes its address from the bus.
· Arbitration pins—These pins do not reside on the bus and are unique to each device. Also, they are only on device masters. The request (REQ) pin tells the arbiter that the device is requesting control of the bus. The grant (GNT) pin indicates to the device that it now has control the bus.
· Error Reporting pins—The Parity Error (PERR) pin indicates a data parity error has occurred. The System Error (SERR) pin indicates an address parity error or other catastrophic system error has occurred.
 

2.2.3. Bus Operation


There are basically three different types of transactions in the PCI specification—Memory Read/Write, I/O Read/Write, and Configuration Read/Write. Memory commands are used to read/write data from memory-mapped address spaces. I/O commands read/write data to I/O address spaces. Configuration commands read/write data to the configuration registers of each device. 

The basic mechanism for transfer on the PCI bus is a burst. This refers to an address phase followed by multiple data phases. This type of transfer can be used for both I/O and memory-mapped address spaces. Figure 3 shows the signal levels for a standard write transaction from a master to target.

[image: image3.png]. 1} o

ey —— {BUs couny aere Y erer ), =) -
I e SN T Vo o e W W

e
v TN [T
>

Fome o> <o € R
pAe PHASE  prAse prnsE
LS TRANSACTION:





Figure 3. Courtesy of [1]

Notice that the third data phase takes multiple clocks to complete because the target has inserted “wait” states by setting the TRDY pin “HIGH”. This could be due to a full data buffer on the device or some sort of processing is taking place. Also notice that on clock 9 nothing is taking place. This is a one clock cycle idle time required after a bus transaction to allow for turnaround time (before the next device can control the bus). 


A basic read burst transaction is shown in figure 4. Notice that after the address phase is completed a turnaround time is required (clock 3) similar to clock 9 of the write transaction in figure 3. This is because the master sends the address and read command to the target, and since it is a read command, the target then controls the bus and sends data to the master. Since control of the bus changes hands, a clock cycle of idle time is required. This means that write commands are faster than read commands. Also notice that in clock 7 the master inserts a “wait” state by setting the IRDY pin “HIGH”. The target does the same on clocks 3 (which didn’t matter anyways because of the wait state) and 5. This could occur if the target cannot retrieve the data fast enough—if for example it runs slower than the PCI bus speed.
[image: image4.png]Exa] Az Es)

=D

J
i

TROY#.

OATATRANGFER.
wair-

DEVSEL#

AR
PrAsE PASE
SUS TRANSACTION-





Figure 4. Courtesy of [1]

2.2.4 Bus Arbitration

Arbitration is done separately “off the bus”, so it does not require any clock cycles. Each master device has its GNT and REQ pins connected to a bus arbiter, who controls access to the bus. Although not required, this arbiter is usually built-in to the PCI host bridge. There is also no arbitration algorithm defined in the standard, so a system designer can design a specialized algorithm to meet bandwidth and latency requirements of the various devices on the system. For instance, if two devices request the bus at the same time, the arbiter can grant access to a specific device based on a priority scheme. In most cases, however, a simple round-robin scheme is used, where each device gets a fair share of the bus.

2.2.4.1 Bus Access Time

When a device needs control of the bus, he asserts his REQ pin to inform the arbiter. The arbiter will then decide when this device gets access to the bus. To grant a requesting devices turn, it asserts the specific devices GNT pin. This device begins then begins its transaction. The maximum length of the transaction is decided by the value in the device’s latency timer. This timer, measured in clocks ticks, is the maximum amount of time its device can control the bus. Once the timer expires, it must release the bus. A device can always end its transaction earlier by setting the appropriate control pins (figures 3 and 4). If the timer expires and no other device is requesting the bus (its GNT pin is still asserted), it can immediately begin another transaction. If other devices are requesting the bus, they will be granted access and the device must request the bus again. 

The latency timer can be set accordingly to allow for latency guarantees for devices. For instance, if four devices reside on the bus and a device cannot have more than 40 clocks of latency, then the sum of the other three devices latency timers cannot exceed 40 clocks. This value allows the bus a trade-off between latency and bandwidth. Since each transaction requires a one clock address phase, lower latency timers mean more transactions and more clocks wasted on address phases, and vise-versa. Even though a system could be optimized by understanding the bandwidth and latency requirements of each device on the bus and adjusting the timers accordingly, this is usually not the case. In most cases, the latency timer for all devices is just set to an arbitrary value.
3.  HyperTransport

This section describes the concepts and principles behind the operation of the HyperTransport protocol.  It also examines how it has specifically targeted weak spots in legacy busses—specifically PCI.
3.1. Introduction to HyperTransport

The HyperTransport protocol was designed and is maintained by the HyperTransport Consortium.  This non-profit special-interest group is headed by AMD along with industry partners such as Cisco, NVIDIA, and Apple.  The protocol was designed to provide a high-bandwidth, low latency interconnect to be used in “in the box” applications. 

HyperTransport is currently at Rev. 1.05.  The next revision of the protocol will include provisions for networking extensions, and cache coherency in its list of new features.  The protocol operates at clock speeds of up to 800MHz DDR (1600MHz effective), and link widths of up to 32 bits, giving a maximum bandwidth of 6.4GB/s in each direction, for a total of 12.8GB/s aggregate bandwidth available for a dual-simplex link.  

3.2. HT Operation

This section provides an overview of the HT architecture.    

3.2.1. Physical Layer

The physical layer of HT is composed of a variable width data link.  This link can be 2, 4, 8, 16, or 32 bits wide.  These links can also run at speeds of 200, 300, 400, 500, 600 or 800MHz DDR, and soon a 1GHz speed will be included in the specification.  These two properties allow the link to be tailored to individual device characteristics, which can reduce costs in design and production.


The primary topology that HT currently employs is a chain, where each device has an upstream and downstream connection.  The devices that make up the chain are bridges, tunnels and caves.  The bridge is found on one end of the chain and connects the HT fabric to a host.  The tunnel connects exactly one device to the HT fabric, and a cave terminates the chain, without connecting any devices.

[image: image5]
Figure 5.  Courtesy of [7]

Another topology, available is the tree topology.  This implementation requires that HT switches be used, but can reduce latencies associated with the daisy chain topologies, by introduction only one switching delay to packets from each device.

HT uses two groups of signals to communicate.  The first group is the link signals.  This includes:
· CAD – The command, address, and data (CAD) signal is scalable from 2 to 32 bits, and is used to carry multiplexed command, address, and data packets on all on the same bus.

· CLK – A clock signal is required for each byte width of the CAD bus, so this signal can vary in the number of wires it runs over.

· CTL – This signal is used to indicate whether a control or data packet is currently being delivered over the CAD bus.

The second group of signals are the link support signals.  This includes:

· VDLT & GND – The power (1.2V) and ground for drivers and receivers.

· PWROK – Used to indicate to devices that power and clock are stable.

· RESET# - used to reset the HT interface.

· LDTSTOP, LDTREQ – Power management signals that are used to request enabling and disabling of links.

3.2.2. Packet Protocol

HT Packets are organized in multiples of 4-byte blocks.  If the width of the link is less than 4-bytes (32 bits), then bit times are added to pad the packet transfer on a 4-byte aligned boundary.  


The first type of packet is the control packet.  These packets are used to set up and respond to transactions, as well as manage various functions of HT.  Control packets may be 4 or 8 bytes depending on their specific function.  There are many types of control packets grouped into three categories:

· Information packets – These include NOP and Sync/Error packets, and are 4 bytes long
· Request Packets – These packets can request various transactions, such as Sized Write, Broadcast, Flush, etc.  They may be sized 4 or 8 bytes.
· Response Packets – Response packets confirm a non-posted operation has completed.

The second classification of packets is the data packet.  Data packets have no other information in them other than data.  They can be sized 4-64 bytes, in multiples of 4 bytes.


To help with data ordering the concept of Virtual Channels was introduced to HT.  Virtual Channels allow HT to prevent deadlock by ensuring that nodes may not:

· Make accepting a request dependent on the ability of a node to issue an outgoing request
· Make accepting a request dependent on the receipt of a response due to a previous request issued by that node
· Make issuing a response dependent on the ability to issue a request.
· Make issuing a response dependent upon receipt of a response due to a previous request.

There are three Virtual Channels:  posted request, non-posted requests and responses.  Each device is responsible to maintain buffers for each of the three Virtual Channels.  In addition to Virtual Channels HT implements I/O streams.  I/O streams consist of the requests, data and responses associated with a Device ID and HT link.  When used properly I/O streams can create the effect of a dedicated connection between two devices—much like a shared bus such as PCI.

Flow control is done on a link to link basis, using a coupon or sliding window based system.  The sender keeps track of the status of each of the receiver’s buffers and knows when it can and can not successfully transmit a packet to the receiver.  The status of a device’s buffers are transmitted back to the sender using NOP packets, which contain the number of spaces in the buffer that have recently become free.

3.2.3. Transaction Layer

HyperTransport allows for many different types of transactions.  These include sized read and write transactions, posted and non-posted write transactions, flush, fence, atomic and broadcast transactions.  


The non-posted sized write is used when a response is desired by the host, and a posted write is used when the host does not wish to receive a response.  This difference also changes the way the transaction is ended.  For a non-posted write the transaction ends when the response packet is received, and for a posted write, the transaction ends when the data is sent from the host after the request.

A flush transaction is used to push all posted requests ahead of it into memory.  A fence operation is designed to provide a barrier between posted writes, which applies to all I/O streams and virtual channels.  A fence is only issued by a device to the host bridge.  The atomic read-write-modify transaction is used to read evaluate, and then conditionally write a value back to memory without the risk of a race-condition caused by another device trying to access the memory at the same time.  The last type of transaction is a broadcast.  This is sent by the host only to all devices downstream.
4. Performance Comparison

To compare the performance of the PCI bus vs. HyperTransport, we used a system with potential of over-utilization of the PCI bandwidth. This included three high-performance devices: Gigabit Ethernet, Fiber Channel, and a graphics card. A host bridge adapter also resided on the system, to pass data from the I/O devices to the main memory bus/processor bus. The simulation was performed in MLDesigner, because of its competency in the area of system simulation, and its availability.
4.1. Performance Metrics

Various assumptions about the system, devices, and traffic were made in order to perform the simulations.

4.1.1. Gigabit Ethernet

Gigabit Ethernet has a maximum datarate of 1 Gbps, in each direction. In the simulations data is arriving to the NIC at this rate. The NIC was assumed to have a buffer large enough to account for the latency of the PCI bus, so data loss does not occur. This is common in NIC design. This also means that the speed a GigE device is transferring data on the PCI bus may be greater than its maximum 1.25 MB/s for a short period of time, do to latent data residing in its buffer. We also assumed all GigE traffic is to be passed to the host bridge.
4.1.2. Fiber Channel

The Fiber Channel device modeled in our simulation has a 1 Gbps bandwidth in each direction, identical to the GigE device. The same type of buffering in the GigE device was used here also. All traffic was also sent to the host bridge.
4.1.3. Graphics card

The data rate for the graphics card was more difficult to model. Data rates of old graphics cards were easy to calculate: equal to the number of pixels on the screen times the number of bits/pixel, times the refresh rate. Current graphics cards contain dedicated processors to draw 3D graphics on the screen. So instead of the CPU sending each pixel to the card, it sends it a command. For example, the CPU would tell the card, “draw a triangle”, and the processor on the graphics card will figure out how to do this. However, the bandwidth of the AGP slots these cards are placed is known. Currently, AGP 8x offers 2.133 GB/s, and AGP 4x offers 1.066 GB/s bandwidth. Therefore, it can be assumed that a top-of-the-line graphics card can sink >1 GB/s for a small period of time. This is the assumption made in our simulation.
4.1.4. Host Bridge

The host bridge is responsible for passing data between the front-side bus and the I/O bus. All data received by the bridge was assumed to be processed immediately. This assumption was made because of the nature of the simulation. We want to estimate the performance of PCI vs. Hypertransport, to address the issue of the I/O bottleneck into the system. Therefore, we also need to assume the system itself is not acting as a bottleneck. 

Traffic sent from the bridge was assumed to have the following characteristics: ten times more traffic is to be sent to the graphics card opposed to the GigE or Fiber Channel devices. This decision is based on a uniform distribution, with ten weights linked to the graphics card, and one weight each for the GigE and FC devices. The reasoning behind this is that graphics card can sink ~ 1GB of data per second, roughly ten times as much as the other devices. 

4.1.5. PCI Signaling

The write command was the only type of command used for data transfer on the bus. The write command is one clock cycle faster per transaction opposed to the read command, due to the turnaround time discussed in section 2.2.3. 

Arbitration was done in a round-robin fashion, with all devices having the same priority. This means at most three devices could request the bus at once, since the graphics card is assumed to only sink data. 

Latency timer values were set equally for all devices. The timer’s were set to 96 clocks, which converts to 1.45 us. This is the maximum amount of time a device can control the bus. 
4.2. PCI Simulation

For the simulation on the PCI bus, traffic was run for 1ms. For the first 150 us, only the Fiber Channel device operated on the bus. This device was sending maximum traffic to the host bridge. At 150 us, the GigE device began sending data to the host bridge. Finally, at 300 us, the host bridge began transmitting data to the graphics, GigE, and Fiber Channel cards. Figure 6 shows the throughput of each device on the bus. The Fiber Channel and GigE devices are both able to send and there nominal rates, but the bridge could only send its share of the bandwidth, which is way less than what was needed (528 MB/s compared to  >1 GB/s required).
[image: image6.emf]Peripheral Transmit Rates

0

50

100

150

200

250

300

0 200 400 600 800 1000

time(us)

Data Rate(MBytes/s)

FC Tx GigE Tx Bridge Tx


Figure 6
Figure 7 shows the receive rates of the peripherals during simulation. During the first 150us, it is receiving data only from the Fiber Channel device. After this it begins receiving data from the GigE device. [image: image7.emf]Peripheral Recieve Rates

0

50

100

150

200

250

300

0 200 400 600 800 1000

time(us)

Data 

Rate(MBytes/s)

Fiber Rx GigE Rx

Video Rx Bridge RX

 
Figure 7

Notice when the bridge begins to contend for the bus at 300us its receive data rate does not change. Also notice that the graphics card is not receiving the 1 GB/s it requires, and the GigE and Fiber Channel devices aren’t receiving near their maximum data rate of 125 MB/s. This is because the bandwidth required just isn’t available on the PCI bus.

Figure 8 shows the latencies for the graphics, GigE, and Fiber Channel cards. Latency was calculated per byte, as the time from when it first arrives at the device to the time it reaches its destination. The latencies were averaged together every ~6us to obtain each value. The GigE and Fiber Channel latencies are to the host bridge, while the graphics card is from the host bridge. Notice that the latencies increase every time a new device begins contending for the bus. 

[image: image8.emf]Peripheral Latencies

0

1000

2000

3000

4000

5000

6000

0 200 400 600 800 1000

time(us)

Latency(ns)

FC Latency GigE Latency Video Latency


Figure 8

Figure 9 shows the total throughput on the PCI device. Notice that with a full-load, the throughput on the PCI bus is near the maximum bandwidth available. Only one address clock and wait state take from the throughput per transaction.  
[image: image9.emf]PCI Bus Throughput

0

100

200

300

400

500

0 200 400 600 800 1000

time(us)

Data Rate(MBytes/s)

Bus Throughput


Figure 9

Bus utilization is shown in figure 10. Notice that when all devices are running, the PCI bus is near 100% utilization. There just isn’t much more bandwidth that can be squeezed out of the bus, even with just four total devices. 
[image: image10.emf]Bus Utilization

0.967542

0

0.2

0.4

0.6

0.8

1

070140210280350420490560630700770840910980

time(us)

Utilization(%)

Bus Utilization


Figure 10
4.3 HyperTransport Simulation

The modeled HyperTransport system was simulated for a 1ms duration.  During that duration, the storage device transmits to the bridge, then at 300us the network adapter begins transmitting to the bridge, and finally at 500 us the bridge begins transmitting back to all devices at their maximum throughput.  Figure 11 shows a graph detailing the throughput of each device as it transmits data during the simulation.
[image: image11.emf]Throughput Rates

0

200

400

600

800

1000

1200

0 80 160 240 320 400 480 560 640 720 800 880 960

Time (us)

Throughput (MB/s)

GigE Tx FC Tx Bridge Tx


Figure 11


From the graph it can be seen that both the storage device (FC) and the network adapter (GigE) throughputs (approx. 125MB/s) are not affected by the start of the bridge transmission (approx 1GB/s)—conversely the bridge is also able to transmit at full throughput despite the other devices also transmitting.

Figure 12 demonstrates the receive rates for each of the devices from the bridge.
[image: image12.emf]Device Rx Throughput

0

100

200

300

400

500

600

700

800

900

1000

480 560 640 720 800 880 960

Time (us)

Throughput (MB/s)

FC Rx GigE Rx Vid Rx


Figure 12

It can be seen from this graph as well that each device is able to hold a constant throughput with no contention from other devices.  The video device has a constant throughput of about 850MB/s, while the storage and network devices have a constant throughput of about 100MB/s.


The latency for the system was calculated per packet, and is show for the system in Figure 13.  The graph shows that the latency for each device has a constant average base value, with other values occasionally becoming higher because of congestion at certain nodes.  The value of the latency to a device is directly related to how many tunnels it has to pass through to get to the bridge.  Each tunnel seems to add approximately 10ns of latency.  The average latency value of the storage device  was about 30ns, follwed by the network adapter and the video adapter at ~42ns and ~53ns respectively.  The order of latency follows the order of placement in the chain, further demonstrating the effects of each tunnel on the latency.
[image: image13.emf]Bridge to Device Latency

0

10

20

30

40

50

60

70

80

90

501522546566587613629650676689714746771801823848878909934959985

Time (us)

Latency (ns)

FC Latency GigE Latency Video Latency


Figure 13

If the latency value is critical for each device, then it is possible to use a HyperTransport switch to connect them all with a 1-hop delay to the host bridge.  This was ratified in a recent revision of the specifications, and HT switches and hubs have begun production and are available6.  

The total throughput of the most stressed link of the HT fabric is shown in Figure 14.  This is the link leaving the host bridge, which begins transmitting halfway through the simulation, to all three of the devices at their maximum capacity.  From the graph it is seen that in this simulation the maximum throughput is about 1.1GB/s, which is far short of HyperTransport’s 6.4GB/s link maximum.

[image: image14.emf]HT Throughput

0

200

400

600

800

1000

1200

0 80 160 240 320 400 480 560 640 720 800 880 960

Time (us)

Throughput (MB/s)


Figure 14


In Figure 15 the utilization in percent is shown for the same HT link.  Notice that the peak utilization of the link is only around 18%.  

[image: image15.emf]HT Utilization

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0 80 160 240 320 400 480 560 640 720 800 880 960

Time (us)

Utilization (%)


Figure 15
5. Concluding Remarks


The PCI bus just doesn’t have the throughput required for the high-speed devices of today, even though it uses its bandwidth efficiently. The fact that it has mechanical specs and a form factor for add-in cards make it very useful for system upgrades, and system customization.  The fact that HT does not have mechanical specs is a weakness. However, system motherboards are always increasing the number of integrated components, so HT would still be a considerable solution considering thins. In fact, HT has just recently been implemented on the PowerMac G5, as an I/O interconnect, with a bridge to PCI so legacy add-ins are still an option. 
References
1. “PCI Local Bus Specification”, Revision 2.2, PCI Special Interest Group, December 1998.

2. “Technology Overview, AGP Technology”, Intel Corp., 2003, http://www.intel.com/technology/agp/toverview.htm.
3. Seppanen E., “PCI Latency Timer Howto”, May 2001, http://www.reric.net/linux/pci_latency.html.
4. “HyperTransport Specification Rev. 1.05”, HyperTransport Consortium January 2003.
5. “HyperTransport System Architecure”, Jay Trodden and Don Anderson, Mindshare Inc., 2003

6.  “API Networks Launches Switch; HyperTransport Moves Closer”, John Stokes, http://www.arstechnica.com, November 2002.

7. Advanced Micro Devices, Inc, HyperTransport Technology I/O Link: A High-Bandwidth I/O Architecture.  Document #25012A.  July 20, 2001.





































HyperTransport v. PCI
  
 Aug 2003                                  Donnelly & Owen


[image: image1.png]Processor

Bridgel
Memory
Controller

Wotion
Video




