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ABSTRACT 

Inspired by work on allocating risk between the different components of a system for 

a minimal cost, we explore the optimal allocation of uncertainty in a single component. 

The tradeoffs of uncertainty reduction measures on the weight of structures designed for 

reliability are explored. The uncertainties in the problem are broadly classified as error 

and variability. Probabilistic design is carried out to analyze the effect of reducing error 

and variability on the weight. As a demonstration problem, the design of composite 

laminates at cryogenic temperatures is chosen because the design is sensitive to 

uncertainties. For illustration, variability reduction takes the form of quality control, 

while error is reduced by including the effect of chemical shrinkage in the analysis. 

Tradeoff plots of uncertainty reduction measures, probability of failure and weight are 

generated that could allow choice of optimal uncertainty control measure combination to 
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reach a target probability of failure with minimum cost. In addition, the paper also 

compares response surface approximations to direct approximation of a probability 

distribution for efficient estimation of reliability. 

 

NOMENCLATURE 

α1, α2   = coefficient of thermal expansion along and transverse to fiber direction  

be   = bound of error 

∆h   = weight saving (i.e., thickness reduction) 

ε1, ε2, γ12  = strains in the fiber direction, transverse to the fiber direction, and shear 

strain of a composite ply 

E1, E2, G12  = elastic modulus along and transverse to fiber direction and shear 

modulus of a composite ply, respectively. 

h   = total laminate thickness 

ν12   = major Poisson’s ratio of a composite ply 

Nx and Ny  = mechanical loading in x and y directions, respectively 

Pf and PSF  = probability of failure and probability sufficiency factor, respectively 

R
2
adj   = adjusted coefficient of multiple determination 

RMSE   = root mean square error 

SF   = safety factor 

θ, θ1, θ2  = ply orientation angles 

t1, t2   = thickness of plies with angles θ1 and θ2, respectively 

Tzero   = stress free temperature 

Tserv   = service temperature 
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Superscripts 

U   = upper limit 

L   = lower limit 

 

1. INTRODUCTION 

For systems composed of multiple components, system failure probability depends on 

the failure probabilities of the components, and the cost of changing the failure 

probability may vary from one component to another. The risk or reliability allocation 

problem can be defined [1-3] as determining the optimal component reliabilities such that 

the system objective function (e.g., cost) is optimized and all design constraints (e.g., 

system reliability level) are met. Several researchers applied risk and reliability allocation 

methods to optimize of the total cost of nuclear power plants by allocating the risk and 

reliability of individual subsystems such that a specified reliability goal is met [4-7]. 

Ivanovic [8] applied reliability allocation to design of a motor vehicle. The vehicle 

reliability is allocated to its elements for the minimum vehicle cost while keeping the 

reliability of the vehicle at a specified level. Acar and Haftka [9] investigated risk 

allocation between the wing and tail of a transport aircraft. The concept of risk allocation 

is also used in finance applications, where risk allocation is defined as the process of 

apportioning individual risks relating to projects and service delivery to the party best 

placed to manage each risk. Risks are allocated across the supply chain – that is, between 

the department, its customers, its suppliers and their subcontractors. Refs. 10-12 are some 

examples of numerous publications on risk allocation in finance applications. 
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Instead of considering a system of multiple components, we may also consider 

multiple sources of uncertainty for a single component. Again, the probability of failure 

can be reduced by reducing the uncertainty from each source, with different cost 

associated with each. That is, the probability constraints can be satisfied by reducing 

different types of uncertainties. The objective of this paper is to demonstrate this 

approach for reliability based design optimization (RBDO) of structures. 

Over the years, researchers have proposed different classifications for uncertainty. 

Oberkampf et al. [13, 14] provided an analysis of uncertainty in engineering modeling 

and simulations. Here as in our previous work (Acar et al. [15, 16]), we use a simplified 

uncertainty classification. Uncertainty is divided into error and variability, to distinguish 

between uncertainties that apply equally to an entire fleet of a structural model (error) and 

the uncertainties that vary for an individual structure (variability).  

In aircraft structural design there are different players engaged in uncertainty 

reduction. Researchers reduce errors by developing better models of failure prediction 

and this leads to safer structures (Acar et al. [17]). Aircraft companies constantly improve 

finite element models, thus reducing errors in structural response. The Federal Aviation 

Administration (FAA) leads to further reduction in error (Ref. 15) through the process of 

certification testing. Aircraft makers also constantly improve manufacturing techniques 

and quality control procedure to reduce variability between airplanes. Airlines reduce 

variability in structural failure due to operating conditions by conducting inspections, and 

the FAA contributes to reduced variability by licensing pilots, thereby reducing the risk 

that incompetent pilots may subject airplanes to excessively high loads. 
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These uncertainty reduction mechanisms are costly, and their cost can be traded 

against the cost of making the structure safer by increasing its weight. Kale et al. [18] 

investigated the tradeoff of inspection cost against the cost of structural weight, and 

found that inspections are quite cost effective. Qu et al. [19] analyzed the effect of 

variability reduction on the weight savings from composite laminates under cryogenic 

conditions. They found that employing quality control to -2sigma for the transverse 

failure strain may reduce the weight of composite laminates operating at cryogenic 

temperatures by 25% marking such laminates as a structure where weight is sensitive to 

the magnitude of uncertainties. 

In this paper, we use the example of this composite laminate to explore tradeoffs 

between the variability reduction considered by Qu et al. [19] and error reduction in the 

form of improved accuracy of structural analysis.  

The paper is structured as follows. Section 2 discusses the design of composite 

laminates for cryogenic temperatures. Probability of failure estimation of the laminates is 

described in Section 3. The probabilistic design optimization problem is discussed in 

Section 4. Weight savings using error and variability reduction mechanisms are given in 

Section 5. The optimum use of uncertainty control reduction mechanisms are discussed in 

Section 6, followed by concluding remarks in Section 7.  

 

2. DESIGN OF COMPOSITE LAMINATES FOR CRYOGENIC 

TEMPERATURES 

We consider the design of a composite panel at cryogenic temperatures as 

demonstration for trading off uncertainty reduction mechanisms. The definition of the 
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problem is taken directly from Qu et al. [19]. The laminate (Fig. 1) is subject to 

mechanical loading (Nx is 4,800 lb/inch and Ny is 2,400 lb/inch) and thermal loading due 

to the operating temperature -423°F, where the stress-free temperature is 300°F. 

The objective is to optimize the weight of laminates with two ply angles [ ]s21 / θθ ±± . 

The design variables are the ply angles θ1, θ2 and ply thicknesses t1, t2. The material used 

in the laminates is IM600/133 graphite-epoxy of ply thickness 0.005 inch. The minimum 

thickness necessary to prevent hydrogen leakage is assumed to be 0.04 inch. The 

geometry and loading conditions are shown in Fig. 1. Temperature-dependent material 

properties are given in Appendix A. 

The deterministic design optimization of the problem was solved by Qu et al. [19]. 

They used continuous design variables and rounded the thicknesses to integer multiples 

of the basic ply thickness 0.005 inches. In the deterministic optimization, they multiplied 

the strains by a safety factor of SF=1.4.  

The deterministic optimization problem is formulated as 

min    h = 4(t1+t2) 

 s.t.     ε1L ≤ SF ε1 ≤ ε1U, ε2L ≤ SF ε2 ≤ ε2U, SF |γ12| ≤ γ12 (1) 

t1, t2 ≥ 0.005 

where the allowable strains are given in Table 1. 

 

Table 1. Allowable strains for IM600/133 

ε1L ε1U ε2L ε2U γ12
U
 

-0.0109 0.0103 -0.013 0.0154 0.0138 
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Figure 1. Geometry and loading of the laminate with two ply angles [ ]s21 / θθ ±±  

(x-is the hoop direction and y is the axial direction) 

 

Since designs must be feasible for the entire range of temperatures, strain constraints 

were applied at twenty-one different temperatures, which were uniformly distributed 

from 77°F to –423°F. Qu et al. [19] found the optimum design given in Table 2.  

 

Table 2. Deterministic optimum design by Qu et al. [19]. The numbers in parentheses 

denote the unrounded design thicknesses. 

θ1 (deg) θ2 (deg) t1 (in) t2 (in) h (in) 

27.04 27.04 0.010 0.015 0.100 (0.095) 

 

 

3. CALCULATION OF THE PROBABILITY OF FAILURE 

The failure of the laminates is assessed based on the first ply failure according to the 

maximum strain failure criterion. The strain allowables listed in Table 1 are the mean 

values of the failure strains according to Qu et al. [19].  

The first step in the calculation of the probability of failure is to quantify uncertainties 

included in the problem. As we discussed earlier, we use a simple classification for 

uncertainty that we used in our previous work (Acar et al. [15, 16]). Uncertainty is 
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divided into two parts, error and variability, to distinguish between the uncertainties that 

apply equally to the entire fleet of a structural model (error) and the uncertainties that 

vary for an individual structure (variability). Since errors are epistemic, they are often 

modeled using fuzzy numbers or possibility analysis. We model the errors 

probabilistically by using uniform distributions to maximize the entropy. 

Variability refers to the departure of a quantity in individual laminates that have the 

same design. Here, the elastic properties (E1, E2, G12, and ν12), coefficients of thermal 

expansion (α1 and α2), failure strains (ε1L, ε1U, ε2L, ε2U, and γ12U) and the stress-free 

temperature (Tzero) have variability. These random variables are all assumed to follow 

uncorrelated normal distributions, with coefficients of variations listed in Table 3. 

 

Table 3. Coefficients of variation of the random variables (assumed uncorrelated 

normal distributions) 

E1, E2, G12, and ν12 α1 and α2 Tzero ε1L and ε1U ε2L, ε2U, and γ12U 

0.035 0.035 0.030 0.06 0.09 

 

We also use a simple error model, assuming that calculated values of failure strains 

differ from actual values due to experimental or measurement errors. Using standard 

classical lamination theory (CLT) for ply strain calculation leads to errors in part, because 

standard CLT does not take chemical shrinkage into account. We relate the actual values 

of the strains to the calculated values 

 

 ( ) truecalc e εε += 1  (2) 
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where e is the representative error factor that includes the effect of all error sources on the 

values of strains and failure strains. For example, if the estimated failure strain is 10% too 

high, this is approximately equivalent to the strain being calculated 10% too low. For the 

error factor e, we use a uniform distribution with bounds of ±be. This error bound can be 

reduced by using more accurate failure models. For example, the cure reference method 

[20] may be used to account for the shrinkage due to a chemical process. In Sections 4 

and 5, we will investigate the effect of reducing be on the probability of failure and the 

weight. 

To calculate the probability of failure, we use Monte Carlo Simulation (MCS). For 

acceptable accuracy, sufficient strain analyses (simulations) must be obtained through 

standard CLT analysis. However, this is computationally expensive and needs to be 

repeated many times during the optimization. In order to reduce the computational cost, 

Qu et al. [19] used response surface approximations for strains (ε1 in θ1, ε1 in θ2, ε2 in θ1, 

ε2 in θ2, γ12 in θ1, and γ12 in θ2). They fitted quadratic response surface approximations to 

strains in terms of four design variables (t1, t2, θ1, and θ2), material parameters (E1, E2, 

G12, ν12, α1, and α2) and service temperature Tserv. These response surfaces were called the 

analysis response surfaces (ARS), because they replace the CLT analysis. A quadratic 

response surface approximation in terms of 12 variables includes 91 coefficients, so they 

used 182 realizations from Latin hypercube sampling (LHS) design. As seen from Table 

4 the root mean square error predictions are less than 2% of the mean responses, so the 

accuracies of the ARS is good. 

 

Table 4. Evaluation of the accuracy of the analysis response surface (ARS) used by 

Qu et al. [19]. Note that the strains are in millistrains. 
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 ε1 in θ1 ε1 in θ2 ε2 in θ1 ε2 in θ2 γ12 in θ1 γ12 in θ2 

R
2
adj

* 0.9977 0.9978 0.9956 0.9961 0.9991 0.9990 

RMSE  

Predictor** 
0.017 0.017 0.060 0.055 0.055 0.060 

Mean of 

response 
1.114 1.108 8.322 8.328 -3.13 -3.14 

* adjusted coefficient of multiple determination 
** root mean square error predictor 

 

We found, however, that even small errors in strain values may lead to large errors in 

probability of failure calculations, so we considered approximate cumulative distribution 

functions (CDF) of strains instead of ARS. We assume normal distributions for strains 

and estimate the mean and the standard deviation of strains conservatively by MCS. That 

is, the mean and standard deviation of the assumed distribution are found so that the CDF 

of the approximated distribution is smaller than or equal to (i.e., more conservative) the 

CDF calculated via MCS, except for strain values very near the tail of the distribution. 

We use 1,000 MCS simulations, which are accurate to a few percent of the standard 

deviation for estimating the mean and standard deviation. Cumulative distribution 

function obtained through 1,000 MCS, the approximate normal distribution and the 

conservative approximate normal distributions for ε2 corresponding to one of the 

deterministic optimum are compared in Figures 2(a) and 2(b).  

Next, we compare the accuracy of the analysis response surface and approximate 

CDF approaches by using 1,000,000 MCS in Table 5. We can see that the use of 

approximate CDFs for strains leads to more accurate probability of failure estimations 
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than the use of ARS. Furthermore, the case of conservative fit to CDF leads to 

overestimation of the probability of failure. However, the approximate CDFs were 

obtained by performing 1,000 MCS, while the ARS were constrained by using only 182 

MCS. In addition, the approximate CDF needs to be repeatedly calculated for each 

design. It is possible that some combination of ARS with approximate CDF may be more 

efficient and accurate than either using ARS or approximate CDF alone, and this will be 

explored in future work. 

 

(a) CDF versus strain 
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(b) Actual CDF versus fitted CDF 

 

Figure 2. Comparison of CDF obtained via 1,000 MCS, the approximate normal 

distribution and conservative approximate normal distributions for εεεε2 on θ1 

corresponding to the deterministic optimum. 
 

 

Table 5. Comparison of probability of failure estimations for the deterministic 

optimum of Qu et al. [19]. Samples size of MCS is 1,000,000. 

Approach followed 
Probability of 

Failure, Pf  (×10
-4) 

Standard error in Pf due to 

limited sampling (×10-4) 

MCS with CLT (exact analysis) 10.21 0.320 

MCS with ARS* of strains 16.83 0.410 

MCS with approximation to 

CDF of strains 
11.55 0.340 

*
 ARS: Analysis response surface approximation 
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4. PROBABILISTIC DESIGN OPTIMIZATION 

The laminates are designed for a target failure probability of 10-4. The optimization 

problem can be formulated as given in Eq. (3). The design variables are the ply 

thicknesses and angles.  

 

min    h = 4(t1+t2) 

 s.t.     Pf  ≤  (Pf)target (3) 

t1, t2 ≥ 0.005 

 

For this optimization, we need to fit a design response surface (DRS)∗∗ to the 

probability of failure in terms of the design variables. The accuracy of the DRS may be 

improved by using an inverse safety measure. We use the probabilistic sufficiency factor 

(PSF) developed by Qu and Haftka [21].  

 

4.1. Probabilistic sufficiency factor (PSF) 

The safety factor S is defined as the ratio of the capacity GC of the structure to the 

structural response GR. The PSF is the probabilistic interpretation of the safety factor S 

with its CDF defined as 

 

 ( ) 







≤= s

G

G
sF

R

C
S Prob  (4) 

 

                                                 
∗∗ The term design response surface (DRS) follows Qu et al. [19] and indicates approximations to the 
probability of failure or other measures of safety as a function of design variables. 
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Given a target probability of failure, Pf( )
target

, PSF is defined as the solution to 

 

 ( ) ( ) ( )
arg

Prob ProbC
S f t et

R

G
F s PSF S PSF P

G

 
= ≤ = ≤ = 

 
 (5) 

 

That is, the PSF is the safety factor obtained by equating the CDF of the safety factor 

to the target failure probability. The PSF takes values such that 
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 (6) 

 

When MCS are used, the PSF can be estimated as the nth smallest safety factor over 

all MCS, where n = N×(Pf)target. Using the PSF, the optimization problem can be 

formulated as 

 

min    h = 4(t1+t2) 

 s.t.     PSF ≥ 1 (7) 

t1, t2 ≥ 0.005 

The optimization problem given in Eq. (7) is solved by using Sequential Quadratic 

Programming (SQP) in MATLAB. 

 

4.2. Design response surface (DRS) 
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We have three components of strain for each angle: ε1, ε2 and γ12. The strain ε2 and γ12 

are more critical than ε1. The mean and standard deviation of four strains (ε2 in θ1, ε2 in 

θ2, γ12 in θ1 and γ12 in θ2) are computed by using MCS of sample size 1,000 and fitted 

with conservative normal distributions as shown in Figure 2. These distributions are used 

in MCS using 1,000,000 simulations at each design point to compute PSF. In order to 

perform the optimization, we need to approximate the PSF in terms of the design 

variables by a design response surface (DRS). We fit three DRS of the PSF as function of 

the four design variables (t1, t2, θ1, and θ2) for three different error bound (be) values of 0, 

10%, and 20%. As shown in Appendix B, the use of the PSF leads to much more accurate 

estimate of the safety margin than fitting a DRS to the probability of failure. 

 

5. WEIGHT SAVINGS BY REDUCING ERROR and QUALITY CONTROL 

As noted earlier, the probabilistic design optimizations of the composite laminates 

were performed for three different values of the error bound, be, namely 0, 10%, and 

20%. Schultz et al. [22] have shown that neglecting chemical shrinkage leads to 

substantial errors in strain calculations. Based on [24], we assume that the use of standard 

CLT without chemical shrinkage leads to 20% errors in strain calculations, while use of 

the modified CLT (i.e., CLT that takes chemical shrinkage into account) leads to the 

reduction of error bounds from 20% to 10%. As noted earlier, the errors are assumed to 

have uniform distribution, which corresponds to maximum entropy. 

For the error bounds discussed, we solve the optimization problem given in Eq. (7). 

The results of the optimization are presented in Table 6 and the weight (proportional to 

thickness) savings due to error reduction are shown in Fig. 3. We see that reducing the 
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error bounds from 20% to 10% leads to 12.4% weight saving. In addition, reducing error 

from 20% to 0 (clearly only a hypothetical case) leads to weight saving of 23.1%. 

 

Table 6. Probabilistic optimum designs for different error bounds when only error 

reduction is applied. The PSF and Pf given in the last two columns are calculated via 

Monte Carlo simulations (sample size of 10,000,000) where the strains are directly 

computed via standard CLT analysis. The numbers in parentheses under PSF and Pf 

show the standard errors due to limited Monte Carlo sampling. 

Error 

bound 

θ1 

θ2 

(deg) 

t1  

t2  

(in) 

h (in) 

[∆h* (%)] 
PSF 

Pf
 

(1×10-4) 

0 
25.47 

26.06 

0.0156 

0.0137 

0.1169 

[23.1] 

0.9986 

(0.0030) 

1.017 

(0.032) 

10% 
25.59 

25.53 

0.0167 

0.0167 

0.1332 

[12.4] 

1.018 

(0.0035) 

0.598 

(0.024) 

20% 
23.71 

23.36 

0.0189 

0.0191 

0.1520 

[0.0] 

0.9962 

(0.0035) 

1.111 

(0.105) 

*The optimum laminate thickness for 20% error bound is taken as the basis for ∆h 
computations 
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Figure 3. Reducing laminate thickness (hence weight) by error reduction (no 

variability reduction) 

 

We have shown that it is possible to reduce the laminate thickness by 12.4% through 

reducing the error from 20% to 10%. Now, we combine the error reduction with 

variability reduction and analyze the overall benefit of both uncertainty reduction 

mechanisms. An example of the variability reduction is the testing of the set of composite 

laminates and rejecting the laminates having lower failure strains as a form of quality 

control. The test can involve a destructive evaluation of a small coupon cut out from 

laminate used to build the structure. Alternatively, it can involve a non-destructive scan 

of the laminate to detect flaws known to be associated with lowered strength. We study 

the case where specimens that have transverse failure strains lower than two standard 

deviations below the mean are rejected (2.3% rejection rate). We construct three new 

DRS for PSF corresponding to error bounds of 0, 10% and 20%.  

The probabilistic design optimizations of the composite laminates for three different 

values of error bound (be) are performed and the results are presented in Table 7 and in 

Fig. 4. We note that when this form of variability reduction is applied, the laminate 

thickness can be reduced by 19.5%. If the error bound is reduced from 20% to 10% 

together with the variability reduction, the laminate thickness can be reduced by 36.2%.  

 

Table 7. Probabilistic optimum designs for different error bounds when both 

error and variability reduction are applied. PSF and Pf given in the last two columns 

are calculated via MCS (sample size of 10,000,000) where the strains are directly 

computed via the standard CLT analysis. The numbers in parentheses under PSF and Pf 

show the standard errors due to limited sample size of MCS. 

Error θ1 t1 h (in) PSF Pf
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bound θ2 

(deg) 

t2 

(in) 

[∆h(a)
 (%)] (×10-4) 

0 
28.52 

28.71 

0.0089 

0.0114 

0.0813 

[-46.6] 

0.9965 

(0.0014) 

1.255 

(0.035) 

10% 
27.34 

27.37 

0.0129 

0.0114 

0.0970 

[-36.2] 

1.0016 

(0.0015) 

0.906 

(0.030) 

20% 
25.57 

25.66 

0.0168 

0.0138 

0.1224 

[-19.5] 

0.9968 

(0.0015) 

1.190 

(0.109) 

(a)
The optimum laminate thickness for the 20% error bound given in Table 6 (i.e. 

h=0.1520 in) is taken as the basis for ∆h computations 
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Figure 4. Reducing laminate thickness by error reduction (ER) and quality control 

(QC). 
 

The numbers in the last two columns of Table 7 show the PSF and Pf calculated by 

using the 10,000,000 MCS where strains are directly calculated through the standard CLT 

analysis. The design values for PSF and Pf of the optimum designs are expected to be 1.0 

and 10-4. Discrepancies can be the result of the following. 
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a) Error due to the use of normal distributions for strains which may not exactly follow 

normal distributions.  

b) Error due to limited sample size of MCS while calculating the mean and standard 

distribution of strains.  

c) Error due to limited sample size of MCS while computing the probabilistic 

sufficiency factor PSF.  

d) Error associated with the use of response surface approximations for PSF. 

 

Next, a plot for the probability of failure (calculated via 1,000,000 MCS), weight and 

error reduction measures is shown in Figure 5. The optimum ply angles for the case with 

20% error bound and no variability reduction are 25.59º and 25.53º. Here we take both 

ply angles at 25º. We note from Figure 5 that for our problem, the error reduction is a 

more effective way of reducing weight compared to the specified variability reduction 

when the target probability of failure of the laminates is higher than 2×10-4 and quality 

control is more effective for lower probabilities. 
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Figure 5. Trade-off plot for the probability of failure, design thickness and 

uncertainty reduction measures. ER: error reduction (reducing from 20% to 10%), 

QC: quality control to -2 sigma 

 

6. CHOOSING OPTIMAL UNCERTAINTY REDUCTION COMBINATION 

Obviously, when it comes to a decision of what uncertainty reduction mechanisms to 

use, the choice depends on the cost of the uncertainty reduction measures. For a 

company, the costs of small error reduction may be moderate, since they may involve 

only a search of the literature for the best models available. Substantial error reduction 

may entail the high cost of doing additional research. Similarly, small improvements in 

variability, such as improved quality control may entail using readily available non-

destructive testing methods, while large improvements may entail developing new 

methods, or acquiring expensive new equipment. To illustrate this, we assume a 

hypothetical cost function in quadratic form  

 Cost = A(ER)2 + B(QC+3)2 (8) 

where A and B are cost parameters, ER represents the error reduction and QC stands for 

the number of standard deviations that are the threshold achieved by quality control. We 

generated hypothetical cost contours by using Eq. (8) as shown in Fig. 6. The nominal 

value of error is taken as 20% and we assume that the quality control to -3sigma is 

associated with no cost. For example, if error is reduced from 20% to 15%, ER=0.20-

0.15=0.05. Similarly, if quality control to -2.5sigma is employed, then QC+3 takes the 

value of 0.5. As an example we take A=$20 million and B=$100,000. 

Next, we generated trade-off plot for probability of failure and uncertainty reduction 

measures for laminates of thickness t1=0.010 in and t2=0.015 in as shown in Fig. 6. The 

optimum ply angles are calculated such that they minimize the probability of failure. The 
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probabilities of failure are calculated via MCS (sample size of 106). The hypothetical cost 

contours for the uncertainty reduction measures given in Fig.6 enable a designer to 

identify the optimal uncertainty control selection. We see in Fig. 6 that for high 

probabilities quality control is not cost effective, while for low failure probabilities 

quality control becomes more effective and a proper combination of error reduction and 

quality control leads to a minimum cost.  

 

Figure 6. Tradeoff of probability of failure and uncertainty reduction. Probabilities 

of failure are calculated via MCS (sample size of 1,000,000). The crosses in the figure 

indicate the optimal uncertainty control combination that minimizes the cost of 

uncertainty control for a specified probability of failure. 

 

7. CONCLUDING REMARKS 

The tradeoffs of uncertainty reduction measures for minimizing structural weight 

were investigated. Inspired by the allocation of the risk between the components of a 

system for minimal cost, the optimal allocation of uncertainty as error and variability was 

analyzed. As a demonstration problem, the design of composite laminates at cryogenic 
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temperatures is chosen because the design is very sensitive to uncertainties. Quality 

control was used as a way to reduce variability, and its effect was compared to the effect 

of reducing error in the analysis. Tradeoff plots of uncertainty reduction measures, 

probability of failure and weight were generated that would enable a designer to choose 

the optimal uncertainty control measure combination to reach a target probability of 

failure with minimum cost.  

For this specific example problem we observed the following 

1. Reducing errors from 20% to 10% led to 12% weight reduction 

2. Quality control to -2 sigma led to 20% weight reduction 

3. The use combined of error reduction and quality control mechanisms reduced the 

weight by 36%. 

4. Quality control was more effective at low required failure probabilities, while the 

opposite applied for higher required probabilities of failure. 

In addition, a computational procedure for estimating the probability of failure based 

on approximating the cumulative distribution functions for strains in a conservative 

manner was developed. We found that this approach led to more accurate probability of 

failure estimates than response surface approximations of the response. 
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Appendix A. Temperature dependent material properties 

Since we analyze the problem that was addressed by Qu et al [19], the geometry, 

material parameters and the loading conditions are taken from that paper. Qu et al [19] 

obtained the temperature dependent properties by using the material properties of 

IM600/133 given in Aoki et al. [23] and fitted with smooth polynomials in order to be 

used in calculations. The reader is referred to Appendix 1 of Qu et al [19] for the details. 

The temperature dependent material properties are shown in Figures A1 and A2. 

 

 

Figure A1. Material properties E1, E2, G12 and ν12 as a function of temperature. 
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Figure A2. Material properties α1 and α2 as a function of temperature. 

 

Appendix B. Details of Design Response Surface Fitting 

Qu et al. [19] showed that using the combination of face centered central composite 

design (FCCCD) and Latin hypercube sampling (LHS) designs gives accurate results, so 

we follow the same procedure.  

The ranges for design variables for design response surface (DRS) are decided as 

follows. The initial estimates of the ranges for design variables were taken from Qu et al. 

[19]. When we used these ranges, we found that the prediction variances at the optimum 

designs were unacceptably large. The ranges for DRS were then reduced by zooming 

around the optimum designs obtained from the wider ranges. After zooming, the 

prediction variances at the optimum designs were found to be smaller than the RMSE 

predictors. The final ranges for response surfaces are given in Table B1. 
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Table B1. The ranges of variables for the three DRS constructed for Pf calculation  

 t1 and t2 (in) θ1 and θ2 (deg) 

be=0 0.012-0.017 24-27 

be=10% 0.013-0.018 24-26 

be=20% 0.015-0.022 22-25 

 

Qu et al. [19] used a fifth-order DRS for the probability of failure, and found it to be 

quite accurate. We also use a fifth-order DRS. A fifth-order response surface in terms of 

four variables has 126 coefficients. Following Qu et al. [19], we used 277 design points, 

25 correspond to FCCCD and 252 are generated by LHS. In addition to response surfaces 

for probability sufficiency factor, three more DRS were also fitted to the probability of 

failure for comparison purpose. The comparison of the accuracies of DRS for PSF and 

DRS for Pf are shown in Table B2. For instance, for error bound of 20%, the root mean 

square error predictions of DRS for PSF and DRS for Pf are 3.610×10
-3 and 7.664×10-4, 

respectively. Since PSF and Pf are not of the same order of magnitude, we cannot 

compare these errors directly. One possibility is to compare the ratios of RMSE and mean 

of the response. When we compare the ratios for error bound of 20%, we see that the 

ratio of RMSE and mean of the response DRS for Pf is 0.1868, while the same ratio of 

DRS for PSF is 0.0042. It is an indication that DRS for PSF is more accurate than DRS 

for Pf.  

Another way of comparing the accuracies is to calculate equivalent errors of DRS for 

PSF to those of DRS for Pf. That is, the equivalent error in Pf due to error in DRS for 

PSF can be compared to the equivalent error in PSF due to error in DRS for Pf.  
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The standard errors in calculation of PSF and Pf due to limited MCS sample size are 

given in the last two columns of Table 6. The standard error for Pf is calculated from 

 
( )
N

PP ff
P

−
=

1
σ  (B1) 

The standard error in PSF is calculated as illustrated in the following example. 

Assume that for calculating a probability of failure of 1×10-4, we use sample size of 106 

in MCS. Then, the number of simulations failed is 100 and the standard error for Pf 

calculation from Eq. (B1) is 1×10-5. Thus, 10 simulations out of 100 represent the 

standard error. The standard error in PSF can be approximated as the difference between 

the 105th smallest safety factor and 95th smallest safety factor. A better estimation for PSF 

can be obtained by utilizing the CDF of the safety factor S. 

The equivalent error in Pf due to the error in DRS for PSF, for error bound of 20% for 

instance, can be approximated as follows. The mean of response and RMSE prediction of 

DRS for PSF are µ=0.8621 and σ=3.610×10-3, respectively. We calculate the Pf values 

corresponding to PSF values of µ-σ/2 and µ-σ/2 as 4.605×10-4 and 3.974×10-4, 

respectively. The difference between these two Pf values, 6.31×10
-5, gives an 

approximation for the equivalent error in Pf. We see that this equivalent error in Pf is 

smaller than the error in DRS for Pf, 7.664×10
-4, indicating that the DRS for PSF has 

better accuracy than DRS for Pf. The equivalent error in PSF due to errors in DRS for Pf 

can be computed in a similar manner. The equivalent error in PSF (1.013×10-2) due to 

error in DRS for Pf is larger than the error in DRS for PSF (3.610×10-3) indicating that 

the DRS for Pf does not have good accuracy. The errors in DRS for Pf are clearly 

unacceptable in view that the required probability of failure is 1×10-4.  
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Table B2. Accuracies of DRS fitted to PSF and Pf in terms of four design variables 

(t1,t2,θθθθ1 and θθθθ2) for error bounds, be, of 0, 10%, and 20% 

  
Mean of 

response 

RMSE 

predictor* 

Ratio of 

RMSE to the 

mean of 

response 

Equivalent 

error in Pf 

Equivalent 

error in PSF 

PSF 1.077 4.655×10-3 4.332×10-3 
5.397×10-7 

( < 9.447×10
-4
) 

--- 

be=0% 

Pf 8.081×10-4 9.447×10-4 1.196 --- 
4.205×10-2 

( > 4.655×10
-3
) 

PSF 0.9694 4.645×10-3 4.792×10-3 
4.615×10-6 

( < 8.281×10
-4
) 

--- 

be=10% 

Pf 1.340×10-3 8.281×10-4 0.6180 --- 
1.862×10-2 

( > 4.645×10
-3
) 

PSF 0.8621 3.610×10-3 4.187×10-3 
6.308×10-5 

( < 7.664×10
-4
) 

--- 

be=20% 

Pf 4.103×10-3 7.664×10-4 0.1868 --- 
1.013×10-2  

( > 3.610×10
-3
) 

 

DRS for error and quality control case 

Table B1 showed the ranges of design variables for DRS when only error reduction 

was of interest. When quality control is also considered, we changed the ranges of the 

design variables. All properties such as the design of experiments and the degree of 

polynomial were kept the same for the new response surfaces; the only change made was 

the ranges of design variables. The new ranges of design variables used while 
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constructing the new response surfaces are given in Table B3. Notice that the ranges for 

laminates thicknesses are reduced and ranges for ply angles are increased, the safety of 

the laminates are further improved by addition of quality control. 

 

Table B3. Ranges of design variables for the three DRS constructed for probability of 

failure estimation for the error and variability reduction case 

 t1 and t2 (in) θ1 and θ2 (deg) 

be=0 0.008-0.012 27-30 

be=10% 0.009-0.014 26-29 

be=20% 0.013-0.018 24-27 

 


