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ABSTRACT 

The effect of uncertainty reduction measures on the weight 

of laminates for cryogenic temperatures is investigated. The 

uncertainties in the problem are classified as error and variabil-

ity. Probabilistic design is carried out to analyze the effect of 

reducing the uncertainty on the weight. For demonstration, 

variability reduction takes the form of quality control, while 

error is reduced by including the effect of chemical shrinkage 

in the analysis. It is found that the use of only error control 

leads to 12% weight reduction, the use of only quality control 

leads to 20% weight savings and the use of error and variability 

control measures together reduces the weight by 37%. In addi-

tion, the paper also investigates how to improve the accuracy 

and efficiency of probability of failure calculations (performed 

using Monte Carlo simulation technique). Approximating the 

cumulative distribution functions for strains is shown to lead to 

more accurate probability of failure estimations than the use of 

response surface approximations for strains.  

 
NOMENCLATURE 
E1, E2, G12 = elastic modulus along and transverse to fiber 

                     direction and shear modulus of a composite ply 

ν12 = major Poisson’s ratio of a composite ply 

Tzero = stress free temperature 

Tserv = service temperature 

α1, α2 = coefficient of thermal expansion along and transverse 

             to fiber direction 

θ, θ1, θ2 = ply orientation angles 

t1, t2 = thickness of plies with angles θ1 and θ2, respectively 

h = total laminate thickness 

be = bound of error 

ε1, ε2, γ12 = strains along and transverse to fiber direction and  

                  shear strain of a composite ply 
Nx and Ny = mechanical loading in x and y directions 

Pf and PSF = Probability of failure and probability sufficiency 

                      factor, respectively 

Superscripts: U = upper limit; L = lower limit 

 
1. INTRODUCTION 

The design of composite laminates for liquid hydrogen 

tanks that operate at cryogenic temperatures involves several 

challenges. Large residual thermal strains develop because the 

thermal expansion coefficients are different in the fiber and the 

transverse directions. The residual strains lead to matrix crack-

ing that may initiate delamination or cause hydrogen leakage. 

Park and McManus [1] proposed a micro-mechanical model 

based on fracture mechanics principles and verified their model 

by experiments in order to model the matrix cracking for com-

posite laminates, and Kwon and Berner [2] analyzed the matrix 

damage of cross-ply laminates by combining a simplified mi-

cromechanics model with finite element analysis and show an 

increase in accuracy by taking the residual stress into account. 

Aoki et al. [3] used the micromechanics model of Park and 

McManus [1] to model matrix cracking of composite laminates 

under cryogenic temperatures. Aoki et al. [3] determined that 

the matrix cracking of the laminates was initiated by the trans-

verse strains. 

Using data from Aoki et al. [3], Qu et al. [4] performed de-

terministic and probabilistic design optimizations of composite 

laminates under cryogenic temperatures. They showed that 

small reductions in the variability of the transverse failure 

strains can lead to substantial savings in structural weight. They 

used response surface approximations for strains and probabil-

ity of failure calculations. However, even small errors in strain 

values lead to large differences in probability of failure estima-

tions. In this paper we propose the use of approximate probabil-
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ity density functions for strains and compare the probability of 

failure predictions with the ones obtained through the use of 

response surface approximations. The probabilities of failure 

are then obtained by Monte Carlo simulations (MCS). Re-

sponse surface approximations are still used as functions of 

design variables for the probabilistic constraint, probabilistic 

sufficiency factor, PSF (Qu and Haftka [5]). 

Researchers proposed different classifications for uncer-

tainty over the years. Oberkampf et al. [6, 7] provided a good 

analysis of uncertainty in engineering modeling and simula-

tions. In an attempt to explore the effects of reducing uncer-

tainty, we use a simplified uncertainty classification that di-

vides the uncertainty into two: a) error (mostly epistemic), and 

b) variability (aleatory part). Qu et al. [4] analyzed the effect of 

variability control on the weight saving from composite lami-

nates under cryogenic conditions. Qu et al. [4] determined that 

quality control on the transverse failure strain is the most effec-

tive way of reducing the probability of failure, which in turn 

leads to reducing the weight of the laminates. In this paper, we 

consider also the effect of improved accuracy on the weight. 

Specifically, chemical shrinkage can be very important in the 

determination of transverse strains, but it is usually neglected 

due to paucity of data. Ifju et al. [10] developed the cure refer-

ence method (CRM) for measuring chemical shrinkage. In this 

paper, we explore the effect of this accuracy improvement on 

the weight along with the effect of reduced variability. 

The next section of the paper presents the definition of the 

design problem. The methodology of probability of failure cal-

culation is described in the Section 3. The solution method for 

the probabilistic design optimization problem is discussed in 

Section 4. Weight savings using error and variability control 

are presented in Section 5.  

 

2. PROBLEM DEFINITION 
We consider the design of a composite panel. The defini-

tion of the problem is taken directly from Qu et al. [4]. The 

laminate is subject to mechanical loading (Nx is 4,800 lb/inch 

and Ny is 2,400 lb/inch) and thermal loading due to operating 

temperature -423°F where the stress-free temperature is 300°F. 

The objective is to optimize the weight of laminates with 

two ply angles [ ]s21 / θθ ±± . The design variables are the ply 

angles θ1, θ2 and ply thicknesses t1, t2. The material used in the 

laminates is IM600/133 graphite-epoxy of ply thickness 0.005 

inch. The minimum thickness necessary to prevent hydrogen 

leakage is assumed to be 0.04 inch. The geometry and loading 

condition are shown in Figure 1. 

The deterministic design optimization of the problem was 

solved by Qu et al. [4]. Qu et al. used continuous design vari-

ables and rounded the thicknesses to integer multiples of the 

basic ply thickness 0.005 inches. In the deterministic optimiza-

tion, Qu et al. multiplied the strains by the safety factor of 

SF=1.4.  

The deterministic optimization problem is formulated as 

min    h = 4(t1+t2) 

s.t.     ε1
L
 ≤ SF ε1 ≤ ε1

U
, ε2

L
 ≤ SF ε2 ≤ ε2

U
, SF |γ12| ≤ γ12          (1) 

          t1, t2 ≥ 0.005 

where the strain allowables are given in Table 1. 
 

 

Figure 1. Geometry and loading.  
(x-is the hoop direction and y is the axial direction) 

 

Table 1. Strain allowables for IM600/133 

ε1
L
 ε1

U
 ε2

L
 ε2

U
 γ12

U
 

-0.0109 0.0103 -0.013 0.0154 0.0138 

 

Since designs must be feasible for the entire range of tem-

peratures, strain constraints were applied at twenty-one differ-

ent temperatures, which were uniformly distributed from 77°F 

to –423°F. Qu et al. [4] found the three optima given in Table 

2.  

 

Table 2. Deterministic optimum designs by Qu et al. 
[4]. The numbers inside the parentheses give the un-
rounded design thicknesses. 

θ1 

(deg) 

θ2 

(deg) 

t1  

(in) 

t2  

(in) 

h  

(in) 

0.00 28.16 0.005 0.020 0.100 (0.103) 

27.04 27.04 0.010 0.015 0.100 (0.095) 

25.16 27.31 0.005 0.020 0.100 (0.094) 

We analyze the problem that was addressed by Qu et al 

[4]; hence, the geometry, material parameters and the loading 

conditions are taken from that paper. The temperature depend-

ent material properties as a function of temperature are shown 

in Figures 2-3.  

 

3. CALCULATION OF PROBABILITY OF FAILURE 
In this section, we calculate the probability of failure of the 

optimum designs listed in Table 1. The failure is defined as the 

first ply failure according to the maximum strain failure crite-

rion. The strain allowables are from Qu et al. [4] and listed in 

Table 2. We assume that the strain allowables are the mean 

values of the failure strains. They are more likely to be A-basis 

or B-basis values. A-basis value is the value exceeded by 99% 

of the population with 95% confidence, while B-basis value is 

the value exceeded by 90% of the population with 95% confi-

dence. Note that when there is redundancy, B-basis values are 

used. 
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Figure 2. Material properties E1, E2, G12 and ν12 as a 
function of temperature.  

 

 

Figure 3. Material properties α1 and α2 as a function 
of temperature.  

 

The first step in the calculation of probability of failure is 

to quantify uncertainties included in the problem. Here, we use 

a simple classification for uncertainty that we used in our per-

vious work (Kale et al. [8], Acar et al. [9]). Uncertainty is di-

vided into two as error and variability to distinguish between 

the uncertainties that apply equally to the entire fleet of a struc-

tural model (error) and the uncertainties that vary for an indi-

vidual structure (variability). Furthermore, this classification 

reduces the difficulty in analysis of the effects of uncertainty 

control. 

The variability refers to the departure of a quantity in indi-

vidual laminates that has the same design. Here, the elastic 

properties (E1, E2, G12 and ν12), coefficients of thermal expan-

sion (α1 and α2), failure strains (ε1
L
, ε1

U
, ε2

L
, ε2

U
 and γ12

U
) and 

stress-free temperature (Tzero) have variability. These random 

variables are all assumed to follow uncorrelated normal distri-

butions. The coefficients of variation of the random variables 

are listed in Table 4. 

 

 

 

 

 

Table 3. Uncertainty Classification 

Type Spread Cause Remedies 

Error 

(mostly 

epis-

temic) 

Departure of the 

average fleet of 

an aerospace 

structure model 

(e.g. Boeing 737-

400 from an 

ideal) 

Errors in pre-

dicting struc-

tural failure, 

construction 

errors, deliber-

ate changes 

Testing and 

simulation 

to improve 

math model 

and the solu-

tion. 

Vari-

ability 

(alea-

tory) 

Departure of an 

individual struc-

ture from fleet 

level average 

Variability in 

tooling, manu-

facturing proc-

ess, and flying 

environment  

Improve 

tooling and 

construction.  

Quality con-

trol. 

 

Table 4. Coefficients of variation of the random vari-
ables (normal distribution) having variability.  

E1, E2, G12 

and ν12 

α1 and 

α2 

Tzero ε1
L
 and 

ε1
U
 

ε2
L
, ε2

U
 and 

γ12
U
 

0.035 0.035 0.030 0.06 0.09 

In addition to variability, we also use a simple model of the 

errors in the problem. The calculated values of failure strains 

differ from the actual values due to experimental or measure-

ment errors. The use of the standard classical lamination theory 

(CLT) for the ply strain calculation leads to errors, because the 

standard CLT does not take chemical shrinkage into account 

and has other approximations. Other sources of error may also 

be present. We use a simple error model to relate the actual 

values of the strains to the calculated values 

( ) truecalc e εε += 1  (2) 

where e is the representative error factor that includes the effect 

of all error sources on the values of strains and failure strains. 

For example, if the estimated failure strain is 10% too high, this 

is approximately equivalent to the strain being calculated as 

10% too low. For the error factor e, we use a uniform distribu-

tion with bounds of ± be. In the subsequent sections, we will 

investigate the effect of reducing be on the probability of failure 

and weight savings. 

The error in failure strains can be reduced by using more 

accurate failure models. Here we analyze the effect of a more 

accurate calculation of strains based on the cure reference 

method [10] to account for the shrinkage due to chemical proc-

ess. In Section 4, we analyze the effect of error reduction on 

probability of failure and the weight saving when errors are 

reduced for fixed probability of failure.  

To calculate probability of failure, we use Monte Carlo 

simulations. For acceptable accuracy, a sufficient number of 

MCS needs to be performed, and for each simulation the strain 

values obtained through the standard CLT analysis must be 

used. However, this is computationally very expensive and 

need to be repeated many times during the optimization. In 

order to reduce the computational cost associated with the cal-

culation of probability of failure, Qu et al. [4] used response 

surface approximations for strains (ε1 in θ1, ε1 in θ2, ε2 in θ1, ε2 
in θ2, γ12 in θ1, γ12 in θ2) obtained via the standard CLT analysis. 
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Qu et al. fitted quadratic response surface approximations to 

strains in terms of four design variables (t1, t2, θ1, θ2), material 

parameters (E1, E2, G12, ν12, α1 and α2) and service temperature 

Tserv. The range for ply thicknesses was taken between 0.0125 

and 0.03 inches, and the range for ply angles were taken as be-

tween 20º and 30º while constructing the response surfaces. A 

quadratic response surface approximation in terms of 12 vari-

ables includes 91 coefficients; so, they used 182 samples ob-

tained through Latin Hypercube Sampling (LHS) design. The 

evaluation of accuracy of response surface approximations of 

Qu et al. is given in Table 5. We see that the accuracy of re-

sponse surfaces is quite good. 

 

Table 5. Evaluation of accuracy of ARS used by Qu et 
al. [4]. Note that the strains are millistrains. 

 ε1 in 

θ1 

ε1 in 

θ2 

ε2 in 

θ1 

ε2 in 

θ2 

γ12 in 

θ1 

γ12 in 

θ2 

R
2
adj 0.9977 0.9978 0.9956 0.9961 0.9991 0.9990 

RMSE  

Predic-

tor* 

0.017 0.017 0.060 0.055 0.055 0.060 

Mean 

of re-

sponse 

1.114 1.108 8.322 8.328 -3.13 -3.14 

* standard error 

 

The approach followed by Qu et al. [4] helps to reduce the 

computational cost, but even small errors in strain values may 

lead to large errors in probability of failure calculations. In-

stead, we propose the use of approximated cumulative distribu-

tion functions (CDF) of strains. We assume “conservative” 

normal distributions for strains and estimate the mean and the 

standard deviation of strains by MCS. The term conservative is 

used to denote that the mean and standard deviation of the as-

sumed distribution is found in such a way that the CDF of the 

approximated distribution is smaller or equal to the CDF values 

calculated via MCS except for the strain values very near to the 

tail of the distribution. We use 1000 simulations, which are 

accurate to a few percent of the standard deviation for estimat-

ing the mean and standard deviation. CDF obtained through 

1,000 MCS, the approximate normal distribution and the con-

servative approximate normal distributions for ε2 corresponding 

to one of the deterministic optima (second design in Table 2) 

are compared in Figures 4(a) and 4(b).  

Next, we compare the accuracy of the analysis response 

surface and approximate CDF approaches in Table 6. In Table 

6, three approaches are listed for calculation of probability of 

failure of the second design in Table 2. The number of samples 

in MCS is 1,000,000 and the error bound be is taken as zero in 

Table 6. First, the strain values computed directly from the 

standard CLT analysis are compared with the failure strains, 

and the number of failures is recorded. Second, the analysis 

response surfaces (ARS) for the strains are generated, and the 
 

strains obtained from the ARS are used in the MCS
*
. Third, the 

strains obtained from fitted normal distribution of strains are 

used in MCS. We see in Table 6 that use of approximate CDF’s 

for strains leads to more accurate probability of failure estima-

tions compared to the use of response surface approximations 

for strains. However, we should note that the approximate 

CDF’s were obtained by performing 1,000 MCS while the ARS 

were constrained by using only 277 MCS. In addition, while 

calculating Pf the approximate CDF’s needs to be calculated for 

each design of experiments of the design response surface 

(DRS, the response surface approximation for probabilistic 

constraint, about which more detail is given in Section 4). It is 

possible that some combination of ARS with approximate 

CDF’s may be more efficient and accurate than either, and this 

will be explored in future work. 

 
  (a) CDF versus strain 

 
  (b) Actual CDF versus fitted CDF 

 
Figure 4. Comparison of the CDF obtained via 1,000 

MCS, the approximate normal distribution and 
“conservative” approximate normal distributions 

for εεεε2 on θ1 corresponding to one of the determinis-
tic optima (second design in Table 2). 
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*
 The term analysis response surface (ARS) is used following 

Qu et al. [4]. It designates the response surface approximations 

for the strains that replace the CLT analysis in the MCS. 



 
 

Table 6. Comparison of probability of failure estima-
tions for deterministic optimum of Qu et al. [4].  

Approach followed 

Probability 

of Failure 

(x10
-4
) 

Standard error 

in Pf due to 

limited sam-

pling (x10
-4
) 

MCS with the 

standard CLT 
10.21 0.320 

MCS with RSA
*
 to 

strains 
16.83 0.410 

MCS with ap-

proximation to 

CDF of strains 

11.55 0.340 

*
 RSA: Response surface approximation 
 
4. PROBABILISTIC DESIGN OPTIMIZATION 

The laminates are designed for a target failure probability 

of 10
-4
. The optimization problem can be formulated as given in 

Eq. (3). The design variables are the ply thicknesses and angles.  

 

min    h = 4(t1+t2) 

s.t.     Pf  ≤  (Pf)target (3) 

          t1, t2 ≥ 0.005 

 

For this optimization, we need to fit a design response sur-

face (DRS)
†
 to the probability of failure as a function of the 

design variables. The accuracy of the DRS may be improved by 

using an inverse safety measure. We use the probabilistic suffi-

ciency factor (PSF) developed by Qu and Haftka [5]. They 

showed that a DRS fitted to PSF is more accurate than a DRS 

fitted to probability of failure. For a detailed review on inverse 

safety measures, the reader is referred to Ramu et al. [11]. 

 

4.1. Probabilistic sufficiency factor (PSF) 
The safety factor S is defined as the ratio of the capacity 

GC of the structure to the structural response GR. The PSF is the 

probabilistic interpretation of the safety factor with the CDF 

defined as 

 

( ) 







≤= s

G

G
sF

R

C
S Prob  (4) 

 

Given a target probability of failure, ( )
ettfP arg

, PSF can be 

found from 

 

( ) ( ) ( )
ettf

R

C
S PPSFSPSF

G

G
sF

arg
ProbProb =≤=








≤= (5) 

 

 

                                                 
†
 The term design response surface (DRS) follows Qu et al. [4] 

and indicates approximations to the probability of failure or 

other measures of safety as a function of design variables. 
That is, the PSF is found by equating the CDF of the safety 

factor to the target failure probability. The PSF takes values 

such that 

 

( )
( )
( )









<>

==

><

=

ettff

ettff

ettff

PPif

PPif

PPif

PSF

arg

arg

arg

1

1

1

 (6) 

 

When MCS are used, the PSF can be estimated as the n
th
 

smallest safety factor over all MCS, where n = N×(Pf)target. Us-

ing the PSF, the optimization problem can be formulated as 

 

min    h = 4(t1+t2) 

s.t.     PSF ≥ 1 (7) 

          t1, t2 ≥ 0.005 

The optimization problem given in Eq. (7) is solved by using 

Sequential Quadratic Programming (SQP) in MATLAB. 

 

4.2. Design response surface (DRS) 

We have three strain values of interest for each angle: ε1, ε2 
and γ12. The strain ε2 and γ12 are more critical than ε1. The mean 

and standard deviation of four strains (ε2 in θ1, ε2 in θ2, γ12 in θ1 

and γ12 in θ2) are computed by using 1,000 MCS samples and 

fitted with normal distributions as shown in Figure 4. These 

distributions are used in MCS using 1,000,000 simulations at 

any design point to compute PSF. In order to perform the opti-

mization, we need to approximate the PSF as a function of the 

design variables by a design response surface (DRS). Qu et al. 

[4] showed that using the combination of Face centered central 

composite design (FCCCD) and Latin hypercube sampling 

(LHS) designs gives accurate results; so, we follow the same 

procedure. We fit three DRS of the PSF as function of the four 

design variables (t1, t2, θ1, θ2) for three different error bound 

(be) values 0, 10% and 20%, respectively. The zero error bound 

case corresponds to a hypothetical condition that the strain cal-

culation has no error. The error bound of 10% corresponds to 

the use of the cure reference method (CRM) that takes chemical 

shrinkage in the laminates into account while calculating the 

strains and the error bound of 20% corresponds to the use of the 

standard CLT that ignores chemical shrinkage while calculating 

the strains. A more detailed explanation regarding with the er-

ror bounds corresponding to the use of the standard CLT and 

the modified CLT is given in the next section of the paper. The 

ranges for design variables for DRS are decided as follows. The 

initial estimates of the ranges for design variables were taken 

from Qu et al. [4]. When we use the ranges from Qu et al. [4], 

we found that the prediction variances at the optimum points 

were larger than the root mean square error (RMSE) predictor 

of the response surfaces. The ranges for DRS were then re-

duced by zooming around the optimum values obtained from 

the wider ranges. After zooming, the prediction variances at the 

optimum designs were found to be smaller than the RMSE pre-

dictors. The ranges for response surfaces are given in Table 7. 
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Table 7. The ranges of variables for the three DRS 

 t1 and t2 (in) θ1 and θ2 (deg) 

be=0 0.012-0.017 24-27 

be=10% 0.013-0.018 24-26 

be=20% 0.015-0.022 22-25 

 

Qu et al. [4] used a fifth-order DRS for probability of fail-

ure, and found that a fifth-order DRS is quite accurate. Thus, 

we also use a fifth-order DRS. A fifth-order response surface in 

terms of four variables has 126 coefficients. As noted earlier, 

Qu et al. [4] showed that using the combination of FCCCD and 

LHS designs gives accurate results; so, we follow the same 

procedure. We use 277 design points, 25 correspond to FCCCD 

and 252 are generated by LHS. The accuracy of response is 

evaluated with RMSE predictor and R
2
adj. In addition, three 

more DRS are also fitted to probability of failure for compari-

son purpose and the results are presented in Table 8. We see 

that the use of PSF response surface leads to more accurate fit 

compared to Pf response surface, and the ratio of mean square 

error to mean of response is smaller and also R
2
adj is larger. The 

errors in the probability of failure DRS are clearly unacceptable 

in view that the required probability of failure is 10
-4
. The ef-

fect of the PSF error on error in probability of failure will be 

discussed in Section 5. 

 

Table 8. Accuracies of DRS fitted to PSF and Pf in 

terms of four design variables (t1,t2,θθθθ1 and θθθθ2) for er-
ror bound be of 0, 10% and 20% 

  R
2
adj 

RMSE pre-

dictor* 

Mean of 

response 

PSF 0.9978 4.655 x10
-3
 1.077 

be=0% 
Pf 0.9839 9.447 x10

-4
 8.081 x10

-4
 

PSF 0.9973 4.645 x10
-3
 0.9694 

be=10% 
Pf 0.9935 8.281 x10

-4
 1.340 x10

-3
 

PSF 0.9979 3.610 x10
-3
 0.8621 

be=20% 
Pf 0.9984 7.664 x10

-4
 4.103 x10

-3
 

* standard error 

 

5. WEIGHT SAVING FROM THE LAMINATES BY RE-
DUCING ERROR 

As we noted earlier, the probabilistic design optimizations 

of the composite laminates are performed for three different 

values of error bound (be), namely 0, 10% and 20%. Schultz et 

al. [12] have shown that neglecting chemical shrinkage leads to 

substantial errors in strain calculations. We assume that the use 

of standard CLT without chemical shrinkage leads to 20% er-

rors in strain calculations, while use of the modified CLT leads 

to the reduction of error bounds from 20% to 10%. The prob-

ability distribution function for the errors assumed to be uni-

formly distributed, which corresponds to maximum entropy (or 

randomness). 
After assessing the error bounds for the strain calculations, 

we solve the optimization problem given in Eq. (7). The results 
 

of the optimization are presented in Table 9 and in Figure 6. 

Since there is a one-to-one correspondence between the thick-

ness h and the weight of the laminate, the reduction in the 

laminates thickness gives the weight saving. We see that reduc-

ing the error bound from 20% to 10% leads to 12.4% weight 

saving. In addition, reducing error from 20% to 0 (clearly only 

a hypothetical case) leads to weight saving of 23.1%. 

 

Table 9. Probabilistic optimum designs for different 
error bounds when only error control is applied. 
The PSF and Pf given in the last two columns are cal-
culated via Monte Carlo simulations of 10,000,000 
samples where the strains are directly computed via the 
standard CLT analysis. The numbers in parentheses 
under PSF and Pf show the standard errors due to lim-
ited Monte Carlo sampling. 

Error 

bound 

θ1 
θ2 

(deg) 

t1  

t2  

(in) 

h (in) 

[∆h* (%)] 
PSF fP

 

(x10
-4
) 

0 
25.47 

26.06 

0.0156 

0.0137 

0.1169 

[23.1] 

0.9986 

(0.0030) 

1.017 

(0.032) 

10% 
25.59 

25.53 

0.0167 

0.0167 

0.1332 

[12.4] 

1.018 

(0.0035) 

0.598 

(0.024) 

20% 
23.71 

23.36 

0.0189 

0.0191 

0.1520 

[0.0] 

0.9962 

(0.0035) 

1.111 

(0.105) 

*The optimum laminate thickness for 20% error bound is 

taken as the basis for ∆h computations 
 

0

5

10

15

20

25

0 5 10 15 20

Error bound (%)

W
e
ig

h
t 
s
a
v
in

g
s

 
Figure 6. Reducing laminate thickness by error con-
trol (no variability control) 

 

The standard errors in calculation of PSF and Pf due to 

limited MCS sample size are given in the last two columns of 

Table 9. The standard error for Pf is calculated from 

( )
N

PP −
=

1
σ  (8) 

The standard error in PSF is calculated as follows. Assume 

that for calculating a probability of failure of 10
-4
, we use 10

6
 

MCS samples. Then, the number of samples failed is 100 and 

the standard error for Pf calculation is 10
-5
. Thus, 10 samples 

out of 100 represent the standard error. The standard error in 

PSF can be approximated as the difference between the 105
th
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smallest safety factor and 95

th
 smallest safety factor. A better 

estimation for PSF can be done by utilizing the CDF of the 

safety factor S. 

We have shown that it is possible to reduce the laminate 

thickness up to 12.4% by reducing the error from 20% to 10%. 

Now, we combine the error control with variability control and 

analyze the overall benefit of uncertainty control mechanisms. 

An example of the variability control is the testing of set of 

composite laminates and rejecting the laminates having lower 

failure strains as a form of quality control. We consider the case 

where the specimens that have transverse failure strain lower 

than two standard deviations below from the mean values are 

rejected (97%). We construct two new DRS of PSF correspond-

ing to error bound of 0, 10% and 20%. All the properties such 

as the design of experiments, degree of polynomial are kept the 

same for the new response surfaces; the only change made is 

the ranges of design variables. The new ranges of design vari-

ables used while constructing the new response surfaces are 

given in Table 10. 

 

Table 10. The new ranges of variables for the new 
three DRS 

 t1 and t2 (in) θ1 and θ2 (deg) 

be=0 0.008-0.012 27-30 

be=10% 0.009-0.014 26-29 

be=20% 0.013-0.018 24-27 

 

The probabilistic design optimizations of the composite 

laminates for three different values of error bound (be) are per-

formed and the results are presented in Table 11 and in Figure 

7. We note that when this form of variability control is applied, 

the laminate thickness can be reduced by 19.5%. If error con-

trol is also applied along with the variability control such that 

the error bound is reduced from 20% to 10%, the laminate 

thickness can be reduced by 36.2%. Note that the PSF and Pf 

given in the last two columns of Table 11 are calculated via 

MCS of 10,000,000 samples where the strains are directly 

computed via the standard CLT analysis. The numbers in pa-

rentheses under PSF and Pf show the standard errors due to 

limited sample size of MCS. 

 

Table 11. Probabilistic optimum designs for different 
error bounds when both error and variability con-
trol is applied.  

Error 

bound 

θ1 
θ1 

(deg) 

t1 

t2 

(in) 

h (in) 

[∆h* (%)] 
PSF fP

 

(x10
-4
) 

0 
28.52 

28.71 

0.0089 

0.0114 

0.0813 

[-46.6] 

0.9965 

(0.0014) 

1.255 

(0.035) 

10% 
27.34 

27.37 

0.0129 

0.0114 

0.0970 

[-36.2] 

1.0016 

(0.0015) 

0.906 

(0.030) 

20% 
25.57 

25.66 

0.0168 

0.0138 

0.1224 

[-19.5] 

0.9968 

(0.0015) 

1.190 

(0.109) 

*The optimum laminate thickness for 20% error bound 
given in Table 9 (i.e. h=0.1520) is taken as the basis for 

∆h computations 
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Figure 7. Reducing laminate thickness by error con-
trol (EC) and quality control (QC).  

 

The numbers in the last two columns of Tables 9 and 11 

show the PSF and Pf calculated by using the 10,000,000 MCS 

where strains are directly calculated through the standard CLT 

analysis. The actual values for PSF and Pf of the optimum de-

signs are expected to be 1.0 and 10
-4
. Discrepancies can be re-

sults of the following. 

a) Error due to the use of normal distributions for strains 

which may not exactly follow normal distributions.  

b) Error due to limited sample size of MCS while calculating 

the mean and standard distribution of strains.  

c) Error due to limited sample size of MCS while computing 

the probabilistic sufficiency factor PSF.  

d) Error associated with the use of response surface approxi-

mations for PSF. 

 

We notice in Tables 9 and 10 that for the optimum designs, 

the two ply angles are similar in value. This is an indication 

that the problem may be simplified by setting the two ply an-

gles equal and having a single thickness variable. Hence, the 

number of design variables can be reduced from four to two, 

which reduces the number of coefficients of the PSF response 

surface. Design of experiments required to construct PSF re-

sponse surface also decreases. 

 

Finally, the tradeoff plot for probability of failure (calcu-

lated via 10,000,000 MCS), weight and error control measures 

is shown in Figure 8. The optimum ply angles for the case with 

20% error bound and no variability control are 25.59º and 

25.53º degrees. Here we take both ply angles at 25º. We notice 

in Figure 8 that for our problem the specified error control is a 

more effective way of reducing weight compared to the speci-

fied variability control when the target probability of failure of 

the laminates is higher than 2x10
-4
. However, since the lami-

nates are designed for lower probabilities of failure variability 

control is more effective in reducing weight. 
7 Copyright © 2005 by ASME 
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Figure 8. Trade-off plot for probability of failure, de-
sign thickness and uncertainty control measures.  

 

6. CONCLUDING REMARKS 
In this paper, the effects of uncertainty control measures on 

the weight saving from the laminates were investigated. The 

uncertainties in the problem are classified into error and vari-

ability, and the efficiencies of error and variability control 

measures for weight reduction are compared. For this problem, 

it is observed that a single measure of variability control (qual-

ity control below -2 sigma on failure strain) is superior to a 

form of error control (the use of modified CLT by taking 

chemical shrinkage into account instead of using standard CLT 

in calculating strains, which we assume reduces error bound 

from 20% to 10%) in reducing the weight. Error control leads 

to 12% weight reduction, the quality control leads to 20% 

weight savings and the use of error and variability control 

measures together reduces the weight by 37%. 

In addition, the design optimization of composite laminates 

at cryogenic temperatures previously addressed by Qu et al. [4] 

is explored in more detail, and the accuracy and efficiency of 

probability of failure calculations are improved. To reduce the 

computational expense associated with the use of the standard 

CLT in each MCS, Qu et al. [4] used response surface ap-

proximations for strains. In this paper we approximated the 

cumulative distribution functions for strains in a conservative 

manner and found that this approach led to more accurate prob-

ability of failure estimates.  
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