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In this paper we analyze tradeoffs of design load, weight and safety of structures via 

probabilistic design methodology. We first perform the probabilistic analysis of a sandwich 

panel used in aerospace structures. We explore the effect of using a more accurate pre-

diction technique for interfacial fracture toughness that combines interfacial fracture 

toughness with mode-mixity instead of using the traditional model that disregards mode-

mixity. We find that the use of this more accurate model allows on average 12% increase in 

design load. Next, we consider structural failure due to point stress without damage propa-

gation in a representative aircraft structure. We find that reducing errors from 50% to 10% 

provides up to 24% weight savings. 

Nomenclature 

C and R = Capacity and response of the structure, respectively. 

eC and eR = Error factors for C and R, respectively 

e
A
 and e

MM
 = Errors in fracture toughness assessment corresponding to the traditional (averaging) 

method and the method with mode-mixity, respectively 

G = Strain energy release rate 

Gc = Interfacial fracture toughness of the sandwich structure 

KI and KII = Mode I and mode II stress intensity factors, respectively 

Pdesign, Wdesign 

and tdesign 

= Design load, weight and thickness of the structure, respectively 

SF = Safety factor of 1.5 

VARC and VARR = Variabilities of C and R, respectively 

w and σa = Width and allowable stress for the representative structure 

ψ = Mode-mixity angle 

I. Introduction 

TRUCTURAL design of aerospace structures is still performed with deterministic design philosophy. Research-

ers are constantly improving the accuracy of structural analysis and failure prediction. This improvement in ac-

curacy reduces uncertainty in aircraft design and can therefore be used to enhance safety. However, since the record 
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of structural safety in civilian transport aircraft is very good, it makes sense to ask how much the design load can be 

increased or the weight can be reduced if safety is to be maintained at a specified level. Currently, there is no ac-

cepted way to translate the improvement in accuracy to weight savings or increased design loads. The objective of 

this paper is to take a first step in this direction by utilizing probabilistic design methodology. Haftka (2005) de-

scribes how Starnes' work (e.g., Li et al.,1997, Arbocz and Starnes, 2002) to reduce variability in predicting buck-

ling of circular cylinder inspired work in his research group on the effect of variability control on reducing the 

weight of composite liquid hydrogen tanks. Qu et al. (2003) showed that for fixed probability of failure small reduc-

tions in variability can be translated to substantial weight savings. Here we seek to investigate the potential of reduc-

tion in errors. 

Sandwich structures are used in aerospace vehicles due to their low areal density and high stiffness. However, 

debonding of core from the face sheet is a common failure mode in sandwich construction, and the interfacial frac-

ture is traditionally characterized by a single fracture toughness parameter. However, in reality the fracture tough-

ness is a function of the relative amount of mode II to mode I (mode-mixity) acting on the interface (Suo, 1999). 

Stiffness of sandwich structures depends very much on the integrity of the face sheet/core bonding. Even a small 

disbond can significantly reduce the load carrying capacity, especially when the structure is under compressive loads 

(Avery and Sankar, 2000; Sankar and Narayanan, 2001). Grau et al. (2005) measured the interfacial fracture tough-

ness as a function of mode-mixity to characterize the propagation of the disbond between the face sheet and the 

core. They performed asymmetric double cantilever beam fracture tests to determine the interfacial fracture tough-

ness of the sandwich composite, and then demonstrated its application in predicting the performance of a sandwich 

structure containing a disbond. The use of mode-mixity dependent fracture toughness led to improvement in the 

accuracy of failure prediction of debonded structures. In this paper we perform probabilistic analysis of the 

debonded sandwich structure analyzed by deterministic approach by Grau et al. (2005) to explore a possible increase 

in the design load of the structure. 

Next, with the question of trading weight for accuracy improvement in mind, we analyze structural failure of a 

representative aircraft structure due to point stress failure. Here we do not model damage propagation in the struc-

ture, for example, due to fatigue, corrosion, impact damage, etc. We make use of our previous work (Kale et al., 

2004, Acar et al., 2004), which explored the effects of errors, variability and safety measures on the probability of 

failure of aircraft structural components. We utilize probabilistic design methodology to translate reductions in error 

bounds to weight reduction for fixed probability of structural failure. 

The following section discusses the structural design of a sandwich structure and a representative aircraft struc-

ture. Section 3 presents the analysis of structural uncertainties with the main perspective of how to control uncer-

tainty. Section 4 gives the general form of probability of failure in terms of loading, weight and uncertainty. Section 

5 discusses the tradeoffs of accuracy against increasing design load or reducing weight of structures. Section 6 pre-

sents the quantification of errors and variability for the sandwich structure and the representative aircraft structure. 

Section 7 shows the results of increase in the design load of the sandwich structure and the weight savings from the 

representative aerospace structure by reducing errors. Finally, concluding remarks are given in the last section. 

II. Structural Analyses of a Sandwich Structure and a Representative Aircraft Structure 

In this section, we introduce the structural design analysis of the two structures that we analyzed in this paper. 

First, we introduce the structural design analysis of a sandwich structure, for which we explore the effects of error 

reduction on increasing the design load of the structure in the following sections. Next, we introduce a representative 

aircraft structure designed for point stress failure. For this representative structure we investigate the effects of error 

reduction on the weight savings from the structure in the following sections. 

A. Structural Analysis of a Sandwich Structure 

Sandwich panels are susceptible to debonding of the face sheet from the core. This is similar to the phenomenon 

of delamination in laminated composites. Disbonds could develop due to poor manufacturing or during service, e.g., 

foreign object impact damage. Evaluation of damage and prediction of residual strength and stiffness of debonded 

sandwich panels is critical because the disbonds can grow in an unstable manner and can lead to catastrophic failure. 

Stiffness of sandwich structures depends very much on the integrity of the face sheet/core bonding. Even a small 

disbond can significantly reduce the load carrying capacity, especially when the structure is under compressive loads 

(Avery and Sankar, 2000; Sankar and Narayanan, 2001). Under compressive loads the debonded face sheet can 

buckle and create conditions at the crack tip that are conducive for unstable propagation of the disbond. 

Fracture at the interface between dissimilar materials is a critical phenomenon in many multi-material systems 

including sandwich construction. Traditionally, in engineering practice, the interfacial fracture was characterized by 
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a single fracture toughness parameter obtained by averaging the interfacial fracture toughness, hereinafter termed as 

“average Gc” or cG , obtained for some number of KI and KII combinations, where KI and KII are the mode I and 

mode II stress intensity factors, respectively. Later, studies have indicated, e.g., Suo (1990), that for these multi-

material systems, the interfacial fracture is a strong function of the relative amount of mode II to mode I acting on 

the interface, hereinafter termed as “Gc with mode-mixity” or simply Gc. The criterion for initiation of crack ad-

vance in the interface can be stated as 

 )/(tan),( 1
IIIcc KKGG −== ψψ  (2.1) 

where G is the strain energy release rate and Gc is the interfacial fracture toughness that depends on the mode-mixity 

angle ψ. In bimaterial fracture, KI and KII are the real and imaginary parts of the complex stress intensity factor K. 

The toughness of interface ( )ψcG  can be thought of as an effective surface energy that depends on the mode of 

loading. 

Grau et al. (2005) analyzed a debonded sandwich panel, and determined the maximum internal gas pressure in 

the core before the disbond could propagate. They used interfacial fracture mechanics concepts to analyze this prob-

lem. The main premise here is that the crack will propagate when the energy release rate equals the fracture tough-

ness for the core/face-sheet interface. This problem has become very significant after the historic failure of X-33 

vehicle fuel tank made of a sandwich design of PMC face sheets and honeycomb core. The load and boundary con-

ditions for the model problem are depicted in Figure 1. 

The maximum allowable pressure for a given disbond length is calculated from the energy release rate for a unit 

applied pressure p. The energy release rate G is proportional to the square of the applied load or 

 2
0 pGG =  (2.2) 

where G0 is the energy release rate due to unit pressure for a given sandwich panel and disbond configuration and p 

is the applied pressure. The critical pressure pmax can be obtained using 

 
0

max
G

G
p c=  (2.3) 

where Gc is the interfacial fracture toughness of the sandwich material system obtained from testing and G0 is the 

energy release rate corresponding to the unit pressure obtained from Eq. (2.3). 

Grau (2003) conducted asymmetric Double Cantilever Beam (DCB) tests to determine the interfacial fracture 

toughness of the sandwich composite (The face sheet material was A50TF266 S6 Class E, Fiber designation 

T800HB-12K-40B, matrix 3631 and the core sheet material was Euro-Composites aramid (ECA) fiber type honey-

comb.). Grau et al. (2005) performed finite element analyses to compute the mode-mixity angle corresponding to 

 
Figure 1. The model of face-sheet/core debonding in a one-dimensional sandwich panel with pressure 

load. Note that half of the structure is modeled. 
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designs tested in experiments. The average interfa-

cial fracture toughness prediction and the fracture 

toughness in terms of mode-mixity angle are pre-

sented in Fig. 2.  

As shown in Fig.2, a simple way of determining 

the interfacial fracture toughness parameter is to 

perform tests over a range of mode-mixity values 

and to take the average. However, as seen from Fig. 

2 that the critical energy release rate is assessed bet-

ter as a function of mode-mixity. Grau et al. (2005) 

represent the critical energy release rate as a linear 

function of the mode-mixity that improves the accu-

racy of estimate of Gc. In the following sections, we 

explore the effect of improvement in accuracy of Gc 

estimation on the design load of a sandwich struc-

ture. 

B. Structural Analysis of a Representative Air-

craft Structure 

As noted earlier, aircraft structural design is still done by using code-based design rather than probabilistic ap-

proaches. Safety is improved through conservative design practices that include use of safety factors and conserva-

tive material properties. FAA regulation FAR-25.303 states that aircraft structures need to be designed with a safety 

factor to withstand 1.5 times the limit-load without failure. For use of conservative material properties, FAR-25.618 

states that A-basis
**
 or B-basis

**
 material properties should be used in the design. If there is redundancy, B-basis 

value is used, otherwise A-basis value is used. In this work, we do not include redundancy in the analysis. The A-

basis property is determined by calculating the value of a material property exceeded by 99% of the population with 

95% confidence. Besides safety factor and conservative material properties, the safety of structures is also improved 

by tests of components and certification tests that can reveal inadequacies in analysis or construction. Certification 

tests improve the safety mainly by updating the distribution of errors in a conservative way. The effect of certifica-

tion tests on the probability of failure of aircraft structures and the details of probability of failure calculations can be 

found in our previous papers (Kale et. al. 2004, Acar et al, 2004). 

We consider a representative element (with representative length w and thickness t) in an aircraft structural com-

ponent such as an element of wing skin, fuselage or engine blades such that the design variable for the element is the 

thickness. For this element, the stress is calculated from 

 
tw

P
=σ  (2.4) 

where P is the applied on the small element. The design thickness is determined so that the calculated stress in the 

element is equal to material allowable stress for a design load Pd multiplied by a safety factor SF, hence the design 

thickness of the representative element is calculated from Eq. (2.4) as 

 
a

dF
design

w

PS
t

σ
=  (2.5) 

σa is the allowable stress, i.e., A-basis value for the failure stress. 

After the element has been designed by Eq. (2.5), we assume that for certification the element is loaded with the 

design axial force of (SF times Pd). If this stress exceeds the failure stress then the design is rejected, otherwise it is 

certified for use. That is, the element is certified if the following inequality is satisfied 

                                                           
**
 A-basis value is the value exceeded by the 99% of the population with 95% confidence. B-basis value is the value 

exceeded by 90% of the population with 95% confidence. If there is redundancy, B-basis value is used, otherwise A-

basis value is used. 

 
Figure 2. Critical energy release rate as a function 

of mode mixity. Continuous line denotes average Gc 

( cG ) and the dashed line denotes a linear least square 

to fit to Gc as a function of mode-mixity angle. 
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 0≤=−
tw

PS dF
fσσ  (2.6) 

III. Analysis of Structural Uncertainties 

A good review of different sources of uncertainty in engineering modeling and simulations is provided by Ober-

kampf et al. (1999, 2000). We simplify the classification as shown in Table 1 to distinguish between uncertainties 

that apply equally to the entire fleet of a structural component and uncertainties that vary for an individual structure. 

In addition, this simple classification makes it easy to analyze the effects uncertainty control. The uncertainties that 

affect the entire fleet are called 

here errors. They reflect inaccu-

rate modeling of physical phe-

nomena, errors in structural 

analysis, errors in load calcula-

tions, or use of materials and 

tooling in construction that are 

different from those specified 

by the designer. The aleatory 

uncertainty reflects variability 

in material properties, geome-

try, or loading between different 

copies of the same structure. 

IV. Assessment of Probability of Failure 

Probability of failure of a structural component can be expressed in terms of its structural response R (e.g., 

stress) and its capacity C corresponding to that response (e.g., failure stress) by 

 ( )RCPf ≤= Pr  (4.1) 

The structural response R is usually a function of several parameters such as the applied load P and the geomet-

ric parameters (and hence weight W). The capacity C is generally a material property, for instance failure strength. 

Both the response R and the capacity C have variability that needs to be included in the calculation of the probability 

of failure. Therefore, the response R and the capacity C can be represented in compact form as 

 R = R (VARR, P, W),      C = C (C0, VARC) (4.2) 

where C0 is the nominal value of the capacity C, VARR and VARC represent the variability (i.e. randomness) in struc-

tural response and capacity, respectively. Due to errors in assessing R and C (e.g., errors in load, stress and material 

property calculations), the calculated values of R and C are different from their actual values. The calculated values 

of the response R and capacity C can be expressed in terms of the actual values by introducing error parameters eR 

and eC 

 ( ) actRcalc ReR += 1 ,     ( ) actCcalc CeC −= 1  (4.3) 

The error parameter eR stands for all errors related to the calculation of structural response such as errors in 

stress calculation, load calculation and geometry parameters. For the details of combining different sources of errors 

into a single error parameter, the reader is referred to Acar et al (2004). Similarly, eC represents the error in predict-

ing the capacity of the structure. Note that Eqs. (4.3) are formulated in such a way that a positive error leads to a 

conservative design.  

The general equation for probability of failure given in Eq. (4.1) can be expressed as 

Table 1. Uncertainty Classification 

Type  Spread Cause Remedies 

Error 

(mostly 

epistemic) 

Departure of the av-

erage fleet of an 

aerospace structure 

model (e.g. Boeing 

737-400 from an 

ideal) 

Errors in predicting 

structural failure, 

construction errors, 

deliberate changes 

Testing and 

simulation to 

improve math 

model and the 

solution. 

Variability 

(aleatory) 

Departure of an indi-

vidual structure from 

fleet level average 

Variability in tool-

ing, manufacturing 

process, and flying 

environment 

Improve tooling 

and construc-

tion. 

Quality control. 
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 ( ) ( ) 







≤

+
−

−
= 0,,

1

1
,

1

1
Prob 0 WPVARR

e
VARCC

e
P Rcalc

R
Ccalc

C
f  (4.4) 

Then, the probability of failure can be written in compact form as 

 ( )WPVAReVARCePP RRCCff ,,,,,, 0=  (4.5) 

V. Tradeoffs of accuracy and design load and weight 

We propose in this paper that the improvements in accuracy can be traded for increasing the design load of the 

structure or alternatively the weight of the structure can be reduced as discussed in the following two sub-sections. 

A. Tradeoff of accuracy and design load 

As seen from Eq. (4.5) that the probability of failure depends on the nominal value of capacity C0, error parame-

ters eR and eC, the variabilities VARC and VARR, the weight W and the applied load P. This indicates four distinct 

ways to increase the design load of a structure 

(a) Use different material to increase C0. 

(b) Develop new techniques yielding more accurate solutions that reduce the error parameters eR and eC. 

(c) Improve quality control and manufacturing processes to reduce variability between nominally identical struc-

tural components. 

(d) Use a higher safety factor (SF) leading to more conservative and heavier design. 

 

We see from Eq. (4.5) that it is possible to use (b) or (c) to increase the design load of the structure while still 

keeping the weight unchanged. The FAA specifies the use of A-basis or B-basis properties that add a safety factor 

on material allowables that depends on variability. For example, a standard deviation of 10% in failure stress trans-

lates to more than 20% reduction in the allowable design stress using A-basis properties. Similarly, Qu et al. (2001) 

found that the application of quality controls to detect and reject material with low failure stress reduces the prob-

ability of failure significantly. Here we propose that we can similarly increase the design load of structures by im-

proving accuracy. 

For a target probability of failure ( )
targetfP , the design load can be calculated from 

 ( ) ( ) ( )
target0 0,,

1

1
,

1

1
Prob fRdesigncalc

R
Ccalc

C

PVARWPR
e

VARCC
e

=







≤

+
−

−
 (5.1) 

We will illustrate this with sandwich structure design problem, for which the structural response is R=G0 p
2
, and 

the capacity is C=Gc. Here, we consider only the error in the capacity Gc of the structure. In addition, the variability 

in both the structural capacity and response is taken into account. We consider the use of a more accurate model (the 

method that uses mode-mixity) for the interfacial fracture toughness prediction of sandwich structures that will re-

duce eC. Thus, given the target probability of failure, the design loads corresponding to different error factors can be 

calculated from Eq. (5.2).  

 ( ) ( ) ( )
target2211

,, fdesignCfdesignCf PPePPeP ==  (5.2) 

The design load Pdesign of the sandwich structure can be also assessed using deterministic design philosophy. In 

that case, the safety factor of 1.4 (commonly used for space applications) for loads and conservative material proper-

ties (B-basis values) are used. For the sandwich structure, we approximate the probability of failure by considering 

the system failure of two parallel connected structures to simulate redundancy with normally distributed limit-state 

functions. The sandwich panels do not have normally distributed limit-state function, so that the use of Eq (5.3) pro-

vides only an approximation.  

 
( )11 −+

=
n

n
CS ρ

ββ  (5.3) 
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In Eq. (5.3), βS is the reliability index for the system made of n components, βC is the reliability index for the com-

ponents (here n=2) and ρ is the correlation coefficients (here it is assumed to be 0.5) of the limit states of the com-
ponents. The details of calculation of component probability of failure by analytical means are given in Appendix I. 

Recall that the relationship between the reliability index β and the probability of failure is given as 

 ( )β−Φ=fP  (5.4) 

where Φ is the cumulative distribution function f the standard normal distribution. 

B. Tradeoff of accuracy and weight 

Alternatively, for a given probability of failure, it is possible to reduce the safety factor, i.e., reduce the weight 

by either reducing the error or reducing the variability. We propose that we can trade changes in the safety factor 

(hence the weight) against changes in accuracy, while still maintaining the same probability of failure level. The 

changes in the safety factors may require changes to FAA mandated safety factors that will allow flexible safety 

factors based on accuracy, or they may require changes in company practices that enforce additional conservative 

design practices above the formal requirements.  

The calculation of weight savings is similar to the calculation of the increase in design load. For weight savings, 

we consider the design of a representative aircraft structure that we discussed earlier. For this problem, the structural 

response is R=P/wt and the capacity is C=σf. In the composite structure example, we consider the error in the capac-

ity of the structure, eC. However, for this problem we consider the error in the structural response, eR. The variability 

in both the structural capacity and response are also taken into account. We calculate the weight savings from the 

structure corresponding to different error factors from Eq. (5.5). The details of calculation of probability of failure 

for this problem are given in Appendix II. 

 ( ) ( ) ( )
target2211

,, fRfRf PWePWeP ==  (5.5) 

VI. Analysis of Error and Variability 

A. Quantification of Variability and Errors for the Sandwich Structure 

As noted earlier, one way of controlling errors is improving the accuracy of analysis by using more sophisticated 

analysis techniques. Grau et al. (2005) consider the problem of a pressure vessel similar to the liquid hydrogen tank 

of the X-33 reusable flight demonstration vehicle to demonstrate the usefulness of fracture mechanics approach for 

debonded sandwich structures. They explored the effect of mode mixity on the interfacial fracture toughness of 

sandwich composites, and study the effects on the residual strength of a debonded structure. In the present work we 

analyze the same problem by probabilistic approach and investigate the effect of improved accuracy associated with 

using mode-mixity on the design load. 

1. Variability 

We consider that the mode-mixity dependent Gc accurately represents the physical phenomenon. However, we 

notice in Fig. 2 that the Gc values obtained from experiments (performed by Grau et al., 2005) are different than 

mode-mixity dependent Gc. We assume that this deviation represents the variability. It is given in the third column 

of Table 2. Each row of Table 2 corresponds to a different design having a different mode-mixity angle, which is 

calculated through finite element analysis. Approximate probability density function for this variability is obtained 

by using ARENA software, which is a product of Systems Modeling company. The distribution parameters and 

goodness of fit statistic are given in Fig. 3. The corresponding p-value given in Fig. 3 is a measure for goodness of 

the fit. The p-values fall between 0 and 1 and larger p-values indicate better fits (Kelton et al., 1998). The p-values 

less than about 0.05 indicate that the distribution is not a good fit. In our case, the p-values are larger than 0.15, so 

we have good fits for probability density functions. 

In addition to variability in Gc predictions, there is also variability in P. We assume that the maximum lifetime 

loading P follows lognormal distribution with mean value of Pdesign and coefficient of variation (c.o.v.) of 10%. 

2. Errors 

The fourth column of Table 2 presents the deviations of Gc values obtained through experiments from their aver-

age values. These deviations combine variability and error. Errors are due to neglecting the effect of mode-mixity in 
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Gc. Here, we do not perform a separate quantification for 

error and variability. Instead, we concentrate on total uncer-

tainty. The distribution of uncertainty for this case is given 

in Figure 4. 

 
Expression: Normal (0, 113.8) 

Square Error: 0.020705 
Kolmogorov-Smirnov Test Statistic: 0.16 

p-value > 0.15 

 
Figure 3. Comparison of actual and fitted cumulative 

distribution functions of variability of Gc (fitting is per-

formed by using ARENA). 

 
Expression: Normal (0, 162.2) 

Square Error: 0.01993 
Kolmogorov-Smirnov Test Statistic: 0.149 

p-value > 0.15 

 
Figure 4. Comparison of actual and fitted cumulative distribution functions of total uncertainty (error and 

variability) of Gc (fitting is performed by using ARENA). 

 

Comparing the standard deviation of error & variability (u
A
) to that variability only (u

MM
) given in the last row 

of Table 2, we see that the improvements in the accuracy of Gc prediction (that is, reducing errors) leads to reduction 

of the total uncertainty by 30%. In the next section, we analyze the effect of this reduction on the design load. 

B. Quantification of Errors and Variability for Representative Structural Element 

 

1. Variability 

Here we have variability in loading, material properties and geometric parameters. As we noted earlier, variabil-

ity reflects departure the properties between different copies of the same structure. A summary of the distributions 

for these random variables listed in Table 3, which is taken from Kale et al. (2004). 

 

Table 2. Quantification of Uncertainty in the 

“average Gc” and “Gc with mode mixity” for 

different designs. The superscript ‘A’ denotes 

the use of average fracture toughness and ‘MM’ 

indicates the use of mode-mixity dependent frac-

ture toughness and ‘u’ represents the uncer-

tainty. 

Design ψ (deg) % u
A
 % u

MM
 

1 16.52 -137.1 -3.7 

2 17.53 -303.5 6.3 

3 18.05 -168.7 1.2 

4 18.50 -117.9 13.1 

5 22.39 -180.9 -14.9 

6 23.89 -35.6 13.3 

7 24.50 116.8 -5.5 

8 24.89 209.6 -22.5 

9 23.48 -67.1 8.8 

10 24.98 -39.1 -0.7 

11 25.55 20.5 -10.3 

12 25.90 71.3 -25.1 

13 22.65 -44.3 -11.0 

14 23.69 157.1 2.5 

15 24.15 218.4 -18.3 

16 24.54 300.7 -16.6 

 Std. Dev. 162.2 113.8 
* Table 3 of Grau et al. (2005) is used to calculate 

the errors 
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2. Errors 

For the representative structural element, we condense errors in load calculation, stress calculation, material 

properties and geometry parameters into a representative single error parameter eR. So, the calculated stress is ex-

pressed as 

 ( ) ( )
tw

P
ee RtrueRcalc +=+= 11 σσ  (6.1) 

where P is the applied load on the small element. Because of the error eR, the design thickness formulated in Eq. 

(2.5) is replaced by  

 
a

dF
Rdesign
w

PS
et

σ
)1( +=  (6.2) 

Certification testing described earlier updates the probability distribution of error, which is initially assumed to 

be uniform distribution. The simplicity of the error distribution helps us o perform a detailed analysis by utilizing 

the derivatives of probability of failure with respect to error bound, safety factor and the design thickness as illus-

trated in Appendix III. 

 

Table 3. Variability and Error for the representative aircraft structure 

Variables Distribution Mean Scatter 

Length (w) Uniform 1.0 (1%) bounds 

Thickness (t) Uniform tdesign (3%) bounds 

Failure stress (σf) Lognormal 150.0 10 % c.o.v. 

Service Load (P) Lognormal 100.0 10 % c.o.v. 

Error factor (eR) Uniform 0.0 0% to 50% 

VII. Results 

The percent increase in design load of the sandwich structure and weight savings from the representative air-

craft structure as a result of error reduction are presented in the following sub-sections. 

A. Increase in Design Load of the Sandwich Structure 

We first compute the design load Pdesign by deterministic design philosophy. As noted earlier, the safety factor of 

1.4 for loads and conservative material properties (B-basis values) are used. For the sandwich structure, we calculate 

the probability of failure by considering the system failure of two parallel connected structures. Since we impose 

redundancy, B-basis value for Gc, is used. The correlation coefficient between the two components is taken as 0.5. 

The design load and the probability of failure values are presented in Table 4. 

 

Table 4. Design load and corresponding probabilities of failure of the sandwich panels designed via de-

terministic approach. The superscript ‘A’ denotes the use of average fracture toughness of experiments and 

‘MM’ indicates the use of mode-mixity dependent fracture toughness. 

Design Load Probability of Failure 

Design 
(Pdesign)

A
 

(kPa) 

(Pdesign)
MM

 

(kPa) 
% ∆p 

(Pf)
A
 

(10
-4
) 

(Pf)
MM

 

(10
-4
) 

1 65.6 58.0 -11.7 54.73 26.18 

2 342.2 311.4 -9.0 54.74 16.72 

3 203.3 195.3 -3.9 54.74 6.88 

4 98.8 100.5 1.7 54.74 2.47 

5 58.0 60.7 4.8 54.74 1.43 

6 316.8 298.8 -5.7 54.74 9.38 

7 197.5 196.3 -0.6 54.74 3.79 

8 93.7 98.2 4.8 54.73 1.43 

9 54.8 59.0 7.6 54.74 0.86 
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10 316.8 298.5 -5.8 54.74 9.56 

11 187.4 184.7 -1.5 54.73 4.42 

12 89.9 92.6 3.0 54.74 1.97 

13 52.3 55.1 5.3 54.74 1.30 

 Average -0.8 54.74 6.65 

 

The second and third columns of the Table 4 show the design loads of the panels designed by using average Gc 

and by using Gc with mode-mixity, respectively. The fourth column shows the percent change of the design load if 

the use of Gc with mode-mixity is preferred over the use of average Gc. We see that the average over 13 designs is 

only -0.8%. That is the design load of the structure remains nearly the same. However, when we compare the prob-

abilities of failure of the structures, we see that the average probability of failure reduced by more than a factor of 

eight. 

Because the deterministic design is performed with fixed safety factors, improvements in accuracy reduce the 

probability of failure. Probabilistic analysis permits increasing instead the design load. Table 5 shows the compari-

son of design load for the average Gc and mode-mixity dependent Gc approaches. 

We see in Table 5 that the design load for the 

sandwich panels designed using ‘Gc with mode-

mixity’ are larger on average than loads obtained by 

using ‘average Gc’ by about 12%. 

 

 

B. Weight Savings from the Representative Ele-

ment 

Similar to the sandwich structure problem, we use 

probabilistic design methodology to calculate weight 

savings from the representative aircraft structure. The 

saving from the weight (i.e. the thickness) is calcu-

lated from Eq. (5.4) and plotted with respect to error 

bound is plotted in Figure 5. It is seen that reducing 

the error bound from 50% to 10%, provides about 

24% savings in weight. 
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Figure 5. Weight savings from the representative element by error reduction 

 

VIII. Concluding Remarks 

The effect of error control on tradeoffs of design load, weight and safety of structures are analyzed by using 

probabilistic design methodology. We first analyzed the effect of error control on design load of structural compo-

nents. The example is a sandwich structure analyzed by Grau et al. (2005). The error control mechanism here is the 

use of a more sophisticated failure (the use of mode-mixity dependent fracture toughness) over the simpler failure 

Table 5. Design loads of the sandwich panels calcu-

lated via probabilistic approach. The superscript ‘A’ 

denotes the use of average fracture toughness of ex-

periments and ‘MM’ indicates the use of mode-mixity 

dependent fracture toughness. 

Pf = 5.47×10
-3

 

Design 
(Pdesign)

A
 

(kPa) 

(Pdesign)
MM

 

(kPa) 
% ∆p 

1 65.7 61.1 -7.0 

2 342.0 335.7 -1.9 

3 203.3 217.9 7.2 

4 98.7 115.3 16.8 

5 58.0 70.6 21.7 

6 316.7 329.8 4.2 

7 197.6 223.0 12.8 

8 93.7 114.0 21.6 

9 54.8 69.1 26.1 

10 316.7 329.4 4.0 

11 187.4 208.9 11.5 

12 89.8 106.7 18.8 

13 52.3 64.1 22.6 

 Average 12.2 
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model (average fracture toughness). It is found that the design load of the structure can be increased by 12% by us-

ing Gc with mode-mixity instead of average Gc. 

Next, we consider structural failure due to point stress without damage propagation, and illustrate by using a rep-

resentative aircraft structure that improving the accuracy of structural analysis can allow weight reduction. The ef-

fects of the use of safety factor, conservative material properties and certification testing are taken into account in 

the analysis. The sensitivities of probability of failure and design thickness with respect to safety factor and error 

bound are calculated. It is found that reducing errors from 50% to 10% provides up to 24% savings in weight of the 

representative structure. 

Appendix I 

Calculation of FG and Pf for the sandwich structure 

The distribution of a function Z of two random variables X and Y, Z=h(X, Y) can be calculated as (Ang and 

Tang, 1975, p.170) 

 ( ) dy
z

x
yxfzf YXZ ∫

∞

∞−
∂
∂

= ,)( ,  (A1.1) 

where fX,Y(x,y) is joint probability distribution function of x = h
-1
(z,y) and Y and. 

We can write the limit-state function for the sandwich panel problem as 

 ( ) 2
0 pGGg calcc −=  (A1.2) 

We calculate probability density function (PDF) of the limit state function g from PDF’s of (Gc)calc. Therefore, in 

Eq. (A1.1) we replace Z with g, X with (Gc)calc, Y with p, and also we have 
2

0)( pGgG calcc += . After performing 

these changes, we get from Eq. (A1.1) that 

 ( ) dpppGgfgf pcGG ∫
∞

+=

0

2
0, ,)(  (A1.3) 

Here we assume that GC and p are statistically independent, hence the joint distribution in Eq.(A1.3) is calculated as 

 ( ) ( ) ( )pfpGgfpGf pcGcpcG
2

0, , +=  (A1.4) 

and also we have 1=
∂

∂
=

∂
∂

g

G

z

x c  

Then, the cumulative distribution function (CDF) of g is calculated as 

 ∫
∞−

=
g

GG dggfgF )()(  (A1.5) 

which yields us to compute the probability of failure simply as Pf = FG(0). 

 

Appendix II 
Probability of failure calculation for the representative element 

Failure is predicted to occur when the structural response R is greater than carrying capacity of the structure C. 

Then, the probability of failure is given as 

 ( )RCPf ≤= Pr  (A2.1) 

where  
)(etw

P
R =  and fC σ=  (A2.2) 
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Since the coefficient of variations of t and w is small compared to the coefficient of variation of P(see Table 3 in 

the main text), R can be approximated as lognormal to take advantage of the properties of lognormal distribution for 

calculating the distribution parameters. Hence, both C and R are lognormally distributed random variables with dis-

tribution parameters λC, ζC, λR and ζR.  Then, from Eqs. (A2.2) the distribution parameters can be obtained as 

 wtPR ee λλλλ −−= )()(  and 2222
wtPR ζζζζ ++=  (A2.3) 

where  22 5.0)1(ln5.0))(ln()( t
a

dF
tdesignt

w

PS
eete ζ

σ
ζλ −








+=−=  (A2.4) 

and λR and ζR are the distribution parameters of the failure stress. 
 

Then, Pf can be calculated as 

 ( ) ∫
−

∞−












−=−Φ=















+

−
Φ=≤=

)( 2

22 2
exp

2

1
)(

)(
)(

e

CR

CR
f dx

x
e

e
RCPP

β

π
β

ζζ

λλ
 (A2.5) 

 

Appendix III 
Sensitivity Analysis for Probability of Failure of the Representative Structural Element and Analytical Calcu-

lation of Partial Derivatives of Probability of Failure 

 

For the case of a uniformly distributed errors between (-be, be) we can use the following simple derivation to ob-

tain the effect of error reduction on the design thickness of the representative structural element for fixed probability 

of failure. To attain the probability of failure at a specified level, we equate the total derivative of probability of fail-

ure to zero. Recall that probability of failure is expressed in compact form as 

 ( )WPVAReVARCePP RRCCff ,,,,,, 0=  (4.5) 

For the representative structure, we keep variables except eR and W unchanged. The weight W is a function of 

safety factor SF used in the design and the probability distribution of error eR is only dependent on the error bound 

be. So, probability of failure is a function of error bound be and safety factor SF. Thus, the total derivative of prob-

ability of failure can be expressed as we have 

 0=
∂

∂
+

∂

∂
= F

F

f
e

e

f
f dS

S

P
db

b

P
Pd  (A3.1) 

So, given the change in error bound and safety factor, the change in failure probability can be calculated. Similarly, 

the total derivative of design thickness is 

 F
F

design
e

e

design
design dS

S

t
db

b

t
dt

∂

∂
+

∂

∂
=  (A3.2) 

Imposing the condition that the failure probability to be attained at the same value (i.e. Eq. (A3.1)) we obtain the 

thickness change depending on the bound of error 

 e
Ff

ef

F

design

e

design
design db

SP

bP

S

t

b

t
dt















∂∂

∂∂

∂

∂
−

∂

∂
=  (A3.3) 

which gives the saving from the structural weight of the aircraft component. Since we choose a representative com-

ponent and a simple failure mode, the derivatives are calculated by analytical means, which is given in the next sub-
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section of this appendix. For a more complex geometry and complex failure model, numerical differentiation can be 

employed. 

We calculate the partial derivatives of probability of failure with respect to the error bound be and with respect 

to the safety factor. Hence, given the change in error bound and safety factor, the change in failure probability can 

be calculated. These derivatives are shown as function of the error bound in Figure A3.1. 

-0.0021
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% error bound
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P
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P
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 (a) (b) 

Figure A3.1. Variation of Partial Derivatives of fP  with error bound be (for SF =1.5) 

(a) derivative with respect to error bound be (b) derivative with respect to SF 

 

Next, we calculate the partial derivatives of design thickness with respect to the error bound be and with respect 

to the safety factor. The derivatives as function of the error bound are presented in Figure A3.2. 
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Figure A3.2. Variation of Partial Derivatives of design thickness with error bound be 

(a) derivative with respect to error bound be (b) derivative with respect to SF 

 

Finally, we use Eq. (A3.3) to calculate the total derivative designdt  by using the partial derivatives that we cal-

culated before. The variation of this total derivative with error bound is shown in Fig. A3.3(a). Integration of this 

expression over bound of error gives the reduction of thickness by error reduction. The saving from the thickness 

(i.e. the weight) with respect to error bound is plotted in Fig. A3.3(b). It is seen that reducing the error bound from 

50% to 10%, provides about 24% savings in weight. 
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Figure A3.3. Effect of error bound on weight saving  

(a) the effect on total derivative of thickness (b) the effect on the thickness 

Analytical calculation of partial derivatives of probability of failure 

For the representative structural element, the capacity of the structure is C=σf while the response of the structure 

is R=P/wt. Since we assume that w and t are also lognormally distributed, then R also has lognormal distribution. 

Since capacity C and resistance R both have lognormal distributions, then the probability of failure is easily calcu-

lated by analytical means as 

 
















+

−
−Φ=

22
RC

RC
fP

ζζ

λλ
 (A3.4) 

where  

 twPR λλλλ −−=  (A3.5) 

and 

 2222
twPR ζζζζ ++=  (A3.6) 

The terms involved in Eqs. (A3.5) and (A3.6) are all constant except tλ . Given the mean and standard deviation of 

the distributions, these distribution parameters are calculated from 

 ( )2
2

2

1ln1ln δ
µ

σ
ζ +=














+=  (A3.7) 

where δ is the coefficient of variation and 

 ( ) 2

2

1
ln ζµλ −=  (A3.8) 

However, since design thickness tdesign is a function of error eR, tdesign is itself a random variable. Since we do not take 

the error in capacity eC into account, we represent eR simply as e. Recall from Eq. (6.2) that tdesign is defined as 

 ( )
a

dF
design

w

PS
et

σ
+= 1  (A3.9) 

Therefore, the term tλ  is not constant but a function of tdesign as given below. 

 ( ) 2

2

1
ln tdesignt ζλ −=  (A3.10) 

The probability of failure can be re-written as 



15 

American Institute of Aeronautics and Astronautics 

 

15 

 ( )[ ]{ }btaP designf +−Φ= ln  (A3.11) 

where a and b are positive constants defined in terms of distribution parameters of w, t, σf and P given by 

 ( ) ( ) ( ) ( )22222222 1ln1ln1ln1ln

11

PtwfPtwf

a

δδδδζζζζ σσ +++++++
=

+++
=  (A3.12) 

 ( ) ( ) ( ) ( ) ( ) ( )





++−+−+−+






 +−=





−−+= 22222 1ln

2

1
ln1ln

2

1
1ln

2

1
ln1ln

2

1
ln

2

1
PPtwwffPtwf

aab δµδδµδµλζλλ σσσ  (A3.13) 

Inserting Eq. (A3.9) into (A3.11) yields 

 ( )























+








+−Φ= b

w

PS
eaP

ad

dF
f σ

1ln  (A3.14) 

Since error factor e is a random variable, probability of failure Pf  is also random. An estimator for Pf is defined as 

 ∫=
uppe

lowe

eff defPP  (A3.15) 

where fe is the probability density function of error factor e, elow and eupp are lower and upper bounds for e, respec-

tively. To maintain the same fP value, the total derivative of fP should be zero. 
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fff
upp

upp
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∂
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+

∂
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+

∂

∂
=  (A3.16) 

and for finite changes Eq.(A3.13) can be written as 
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As a starting point, we assume eupp = -elow= be and also assume no change in variability (∆a = ∆b = 0) which yields 
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where  
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and 
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The updated distribution of error factor is obtained through Bayes’ theorem as 
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where f
I
(e) is the initial distribution of the error factor e, and  
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is the probability that the structure passes the certification testing. In Eq. (A3.23), the term hc is similar to h defined 

earlier in (A3.20) and is expressed as 
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where the subscript ‘c’ stands for certification. Similarly, the terms ac and bc are expressed as 
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Then, we can re-write the updated distribution of the error factor as 

 

( )[ ]

( )[ ]

( )[ ]

( )[ ]∫∫
−−

Φ

Φ
=

Φ

Φ

=
eb

eb

Fc

Fc

eb

eb
e

Fc

e
Fc

Fe
U

deSeh

Seh

de
b

Seh

b
Seh

Sbef

,

,

2

1
,

2

1
,

),,(  (A3.27) 

Thus we can write probability of failure as 
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Partial derivative with respect to error bound be 

To calculate 
e

f

b

P

∂

∂
 we use Leibniz rule given in Eq. (A3.30)  
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Then, the partial derivative 
e

f

b

P

∂

∂
 is calculated from 
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and the last term of Eq.( A3.32) can be re-written as 
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where the numerator is evaluated by using the second fundamental theorem of calculus given in Eq. (A3.34) 
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Hence, the numerator in Eq. (A3.33) reduces to  
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Then, Eq. (A3.32) becomes 
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Finally, the desired partial derivative 
e

f

b

P

∂

∂
 is then obtained as 
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Partial derivative with respect to safety factor SF 

Partial derivative 
F

f

S

P

∂

∂
 for updated probability of failure is calculated as follows. 
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where u(e,be,SF) is defined earlier in Eq. (A3.28). The derivative of u with respect to SF can be written as 
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The first partial derivative in Eq. (A3.39) is calculated as follows. 
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Now, utilizing the chain rule and the second fundamental theorem of calculus given in Eq. (A3.34) we obtain 
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where 
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Then, Eq. (A3.40) reduces to 
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The first partial derivative in Eq. (A3.39) is calculated as follows. The first term is easily obtained by noticing the 

similarity to Eq. (A3.42) as 
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and also Eq. (A3.26) reveals that 
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Then, we have 
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That leads to 
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And thus we also get 
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Then, Eq. (A3.38) becomes 
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And finally we have 
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