
Lab 9
Dean Morrison

Page: 14/14
Data and Branch Hazards in MIPS2000
4/15/2004

Lab 9: Data and Branch Hazards in MIPS2000
Dean Morrison
UF ID: 8989-4870

EEL 4713 Section 2485

Monday – Periods E1-E3

TA: Grzegorz Cieslewski

15 April 2004
I have performed this assignment myself. I have performed this work in accordance with the Lab Rules specified in 4713 Lab No. 9 and the University of Florida’s Academic Honesty manual. On my honor, I have neither given nor received unauthorized aid in doing this assignment.

X___

Introduction
The purpose of this lab is to use the VHDL version of the MIPS2000 pipelined architecture as constructed in Lab 8 to study data and branch hazards. The MIPS2000 pipelined architecture will then be adapted to support forwarding, stalling, and a minimal form of branch prediction to counter these hazards.
Design
A. Data Forwarding
A data hazard is caused by data not being available at a particular stage in the pipeline when it is needed. If the data is in the register array, it may be “forwarded” to where it is needed. This is called Data Forwarding. To realize data forwarding in hardware, a forwarding unit must be created and placed in the Execution (EX) stage of the pipeline. This unit determines when there is a data hazard that can be fixed by forwarding, and then proceeds to direct data from other stages of the pipeline to where it is needed. Figure 1 shows a block diagram of the EX stage with the addition of the Forwarding Unit. Annotation 1 in the Figure shows the additions needed in this stage to implement Data Forwarding.
B. Stalling the Pipeline
If data is being loaded from memory and an instruction following this load requires this data, then the pipeline must be “stalled” to wait for it so that the instructions following the load instruction executes properly. To implement this pipeline stalling solution to data hazards that result from load instructions, a Hazard Detection Unit must be created and placed in the Instruction Decode (ID) Stage of the pipeline so that it may detect when a data hazard caused by a load requires the pipeline to be stalled. Figure 2 shows a block diagram of the ID stage with the addition of the Hazard Detection Unit. Annotation 1 in the Figure shows the additions needed in this stage to implement load hazard detection.

C. Branch Hazards
In the MIPS2000 processor which we are designing, we are implementing a method of branch prediction called “assume not taken” in which instructions following a branch instruction are automatically executed until it is determined whether the branch will be taken or not. If the branch is taken, the IF, ID, and EX stages of the pipeline are to be “flushed.” If the branch was not taken, the pipeline is left alone to execute as is. To realize this method, a “flush” output needs to be added to the Memory Stage Controller (MEM_Control) such that the flush is true when the instruction currently in the MEM stage is a branch that is to be taken, or a Jump instruction. This flush output should be sent to all pipeline registers prior to the MEM stage. Figure 3 shows a block diagram of the MEM stage with the addition of the flush output signal.

[image: image1.png]= I

2 L5

> w 3
B s e

1 Hal o ags:H

H

L PR—— o

Bnem

Figure 1: EX Stage Block Diagram
[image: image2.png]g
Regamy i+
E
3
H
5
|
H
[P

Figure 2: ID Stage Block Diagram
[image: image3.png].o

L)

g ot

- wep.o)
= cpcece
Lol

emctonkes

Figure 3: MEM Stage Block Diagram
Preparation
A. Data Forwarding
The additions to the Execution Stage discussed in part A of the Design section were implemented in the MaxplusII graphic editor. The Forwarding Unit was written in VHDL (see the MIPS2000 Forwarding Unit Technical Data Sheet in Appendix D for more information about this component including the complete code listing). Two 4-to-3 bit MUX’s were also added to the design at the inputs of the ALU (side A and side B). Figure 4 shows the hardware internal to the EX stage as seen in the MaxplusII graphic editor. Figure 5 shows the EX component after being compiled. See the MIPS2000 Execution Stage Technical Data Sheet in Appendix D for more information about this stage of the MIPS2000 pipeline.
[image: image4.png]ALU_SHIFT 32

oy OV
OvR

ZeRO

EX_CONTROL

[orta ep—aitll

nuxa 52

Huxe s

Loadt Hazard Detection Hardware
EX_nEn_READ

opeode[s (] orconre. .01 oeenocd] Gestsel dest_sel
funct5. 0 T o breg D BX 40
APl Dirden)
Forwardng Hardware
opeode[s.]

EX_EM Feawe
VEM_WE_Regwe

D_EX rsia o)

FORWARDING_UNIT,

Fonunanpacs. . ot atdAll0)
Fonunnper s . ot taIdE(L 1)

nuxa 52

AL

‘g so31.0

e

ADDER_ 32

nuxs 52

o EX_destia 0]

o AL 31,0

ID_EX_Memd

o AL B[31.0)

Figure 4: EX Hardware (ex.gdf)
[image: image5.png]

Figure 5: EX Component

B. Stalling the Pipeline
The additions to the Instruction Decode Stage discussed in part B of the Design section was implemented in the MaxplusII graphic editor. The Hazard Detection Unit was written in VHDL (see the MIPS2000 Hazard Detection Unit Technical Data Sheet in Appendix D for more information about this component including the complete code listing). Figure 6 shows the hardware internal to the ID stage as seen in the MaxplusII graphic editor. Figure 7 shows the ID component after being compiled. See the MIPS2000 Instruction Decode Stage Technical Data Sheet in Appendix D for more information about this stage of the MIPS2000 pipeline.
[image: image6.png]K

we_Reg_Aray

immef15.0]
ode[s. 0

REG_ARRAY._32X32

oourcas. o3 LDdd)
osourcas. o B Dale[31.0)

ID_EX_MemRd

STGN_EXTENDER. 38
bararis. o1 stamextraierp——ildlClL0)
HAZARD DETECTION_UNTT

[s

Figure 6: ID Hardware (id.gdf)

[image: image7.png]

Figure 7: ID Component

C. Branch Hazards
The additions to the Memory Stage discussed in part C of the Design section was implemented in the MaxplusII graphic editor. The VHDL for the Memory Stage Controller was extended so that a flush output would be generated (see the MIPS2000 Memory Stage Controller Technical Data Sheet in Appendix D for more information about this component including the complete code listing). Figure 8 shows the hardware internal to the MEM stage as seen in the MaxplusII graphic editor. Figure 9 shows the MEM component after being compiled. See the MIPS2000 Memory Stage Technical Data Sheet in Appendix D for more information about this stage of the MIPS2000 pipeline.
[image: image8.png]HEN_ CONTROL

Huxa 32

o nex PO[31.0

oge[3. 0 M dest a1 28]
dest_shiftefo7 0 "€ dest_aden[27.0)
dmem

wapmy o SMIETLE 4y sieqng

Figure 8: MEM Hardware (mem.gdf)

[image: image9.png]

Figure 9: MEM Component

D. Pipeline Registers
In order to realize the 3 different hardware additions discussed above, many registers internal to the MIPS2000 pipeline (namely the program counter, IF/ID pipeline registers, ID/EX pipeline registers, and EX/MEM pipeline registers) had to be altered to include “hold” and “clear” inputs. This will allow these registers to either hold their values or clear their values. These features were added to the VHDL descriptions of the previously mentioned components (see the 32-Bit Register and MIPS2000 Instruction Register Technical Data Sheets in Appendix D for more information about these components including the complete code listings).
Testing and Verification

A. Data Forwarding
The program Lab9_forwarding.asm was written to test the effects of data dependencies on the MIPS2000 pipelined architecture. Figure 10 shows the complete code listing of Lab9_forwarding.asm. Annotation 1 in the Figure points out the data dependency that arises from the code listed in this program. Forwarding should be able to resolve this data dependency because the result of the subtraction can be forwarded back to the EX stage of the AND instruction. This program was compiled and loaded into the Program memory of the MIPS2000 computer in MaxplusII. The program was then simulated in MaxplusII’s waveform simulator (see Appendix B, 32. MIPS2000 Waveform Simulation: Lab9_forwarding.scf for the complete waveform simulation results). Figure 11 shows a portion of the simulation results in MaxplusII. As Annotation 1 in the Figure points out, Registers R12, R13, and R14 were all loaded with the appropriate values as a result of the instructions they were involved in. This shows that the data forwarding hardware added in this lab functions as desired.
* Lab9_forwarding.ASM - Program that demonstrates the affects of a
* data dependence on the pipeline
*
Orged in PROM ($0000)
*
DRAM Begins at $2000)
* Dean Morrison
* 3/1/04

include "mips.mac"

list

ORG $2000

here
dc.b
$12

dc.b
$34

dc.b
$56

dc.b
$78

here2
dc.b
$FF

dc.b
$00

dc.b
$FF

dc.b
$00

here3
dc.b
$11

dc.b
$22

dc.b
$33

dc.b
$44

here4
dc.b
$00

dc.b
$00

dc.b
$11

dc.b
$11

here5
dc.b
$00

dc.b
$00

dc.b
$FF

dc.b
$FF

ORG $0000

* Load Registers

lw
R1,R0,here
;(OPCODE = 0x23) R1 <- $12345678

lw
R2,R0,here2
;(OPCODE = 0x23) R2 <- $FF00FF00

lw
R3,R0,here3
;(OPCODE = 0x23) R3 <- $11223344

lw
R5,R0,here4
;(OPCODE = 0x23) R5 <- $00001111

lw
R6,R0,here5
;(OPCODE = 0x23) R6 <- $0000FFFF
* Demonstrate Data Dependence

sub
R2,R1,R3
;(OPCODE = 0x00) R2 <- $01122334

and
R12,R2,R5
;(OPCODE = 0x00) R12 <- $00001100 (data dependence)

or
R13,R6,R2
;(OPCODE = 0x00) R13 <- $0112FFFF

add
R14,R2,R2
;(OPCODE = 0x00) R14 <- $02244668

sw
R15,R2,100
;(OPCODE = 0x2B)

GFO

Figure 10: Lab9_forwarding.asm
[image: image10.png]Name: Vayb2us 23us 24us 28us 2Bus 27us 28us 28us 30us 3Mus 32us 33us 3dus
o= Clk o “'J I
S pef31.0] - 0000002C 00000030 00000034 00000038 0000003C 00000040 -
S opcodel5.0] 128 EE] 3F [

— 7ERO 0

- OVR 0

Y 138lreg_aray_32:G275R0_R| - 00000000

AV 136heq_anay 3262751 R| - 12345678

AV 136heq_anay 3262 75R2_R| - 01122334

AV 136heq_anay 32662 75R3R| - 11223344

Y 138lreg_aray_32:G275R4_R| - 00000000

Y 138lreg_aray_32:G275R5_R| - 00001111

A 136heq_anay 322 75IR6_R| - OD00FFFF

Y 138lreg_amay_32:G275R7_R| - 00000000

Y 138lreg_aray_32:G275R8_R| - 00000000

Y 138lreg_aray_32:3275R9_R| - 00000000

A Blreg_anay_32x275R10_R| - 00000000

A Blreg_anay_32x3275R1_R| - 00000000

A 3lreg_anay_32¢3275IR12_R| - [00000000 00000110

A Blreg_anay_I2x3275R13_R| - 00000000 O112FFFF

A Blreg_anay_I2x3275R14_R| - 00000000 12244568

@Y FBireg_anay_32E275R15 R - 00000000

Figure 11: Portion of Lab9_forwarding.scf
B. Stalling the Pipeline
The program Lab9_hazard.asm was written to test the effects of load instructions on the MIPS2000 pipelined architecture. Figure 12 shows the complete code listing of Lab9_hazard.asm. Annotation 1 in the Figure points out the data dependency that arises from the code listed in this program. The load instruction should cause the pipeline to stall for one cycle so that the appropriate data can be retrieved from the Data memory and then forwarded to the Execution stage to be used in the following instruction. This program was compiled and loaded into the Program memory of the MIPS2000 computer in MaxplusII. The program was then simulated in MaxplusII’s waveform simulator (see Appendix B, 33. MIPS2000 Waveform Simulation: Lab9_hazard.scf for the complete waveform simulation results). Figure 13 shows a portion of the simulation results in MaxplusII. As Annotation 1 in the Figure points out, Registers R4, R8, and R9 were all loaded with the appropriate values as a result of the instructions they were involved in. This shows that the hazard detection hardware added in this lab functions as desired.

* Lab9_hazard.ASM - Program that demonstrates the affects of a data dependence on the pipeline
*
Orged in PROM ($0000)
*
DRAM Begins at $2000)
* Dean Morrison
* 3/1/04

include "mips.mac"

list

ORG $2000

here
dc.b
$12

dc.b
$34

dc.b
$56

dc.b
$78

here1
dc.b
$FF

dc.b
$00

dc.b
$FF

dc.b
$00

ORG $0000

* Load Registers

PC

nop

;

00

lw
R5,R0,here1
;(OPCODE = 0x23) R5 <- $FF00FF00

04

lw
R2,R0,here
;(OPCODE = 0x23) R2 <- $12345678

08
* Demonstrate Data Dependence

and
R4,R2,R5
;(OPCODE = 0x00) R4 <- $12005600 (data dependence)
0C

or
R8,R2,R5
;(OPCODE = 0x00) R8 <- $FF34FF78

10

add
R9,R4,R2
;(OPCODE = 0x00) R9 <- $2434AC78

14

slt
R8,R9,R1
;(OPCODE = 0x00) R8 <- $00000000 (R9 = $2434AC78 not < $00000000 = R1

GFO

end
Figure 12: Lab9_hazard.asm
[image: image11.png]Name vaiyfus 18us 1Bus 17us 1Bus 18us 20us 21us 22us 23us 24us 28us 2Bus
- Clk iR

S pef31.0] - 00000015 0000001C 00000020 00000024, 00000028 00000020~
S opcodel5.0] Hoo i 3F (i

> stall 0

A fforwarding_unit:154[F orwarda| HO [1 2 [

A fforwarding_unit:154[F orwardB | HO [

A 154leq_anay 32632 75R0R| - 00000000

Ay 15dleq_anay 32632 75IR1_R| - 00000000

Ay 15dleq_anay 32632 75R2_R| - 12345678

Ay 15dleq_anay 3232 75R3R| - 00000000

A 15dleq_anay 32632 75IR4_R| - 00000000 12005600

A 15dleq_anay_3263275IR5_R| - FFO0FFOD

A 154leq_anay 32632 75IR6_R| - 00000000

Ay 15leq_anay 3262757 R| - 00000000

A 154leq_anay_32x3275IR8_R| - 00000000 FF34FF78 00000000

@ 154lreg_array_323275IR9_R| - 00000000 2434AC78

Figure 13: Portion of Lab9_hazard.scf
C. Branch Hazards
The program Lab9_branch.asm was written to test the effects of branch and jump instructions on the MIPS2000 pipelined architecture. Figure 14 shows the complete code listing of Lab9_hazard.asm. Annotation 1 in the Figure points out the potential data hazard that arises if the branch instruction is to be taken. The branch instruction should cause the pipeline to be flushed since the program is written such that the branch is to be taken. This program was compiled and loaded into the Program memory of the MIPS2000 computer in MaxplusII. The program was then simulated in MaxplusII’s waveform simulator (see Appendix B, 34. MIPS2000 Waveform Simulation: Lab9_branch.scf for the complete waveform simulation results). Figure 15 shows a portion of the simulation results in MaxplusII. As Annotation 1 in the Figure points out, Registers R4, R5, and R6 all maintained their initial values of 0x0000000, meaning that the instructions following the branch that altered these registers did not execute. This shows that the branch hazard detection hardware added in this lab performs as desired.

* Lab8_branch.ASM - Program that demonstrates the affects of branch taken in the Pipeline
*
Orged in PROM ($0000)
*
DRAM Begins at $2000)
* Dean Morrison
* 3/1/04

include "mips.mac"

list

ORG $2000

here
dc.b
$12

dc.b
$34

dc.b
$56

dc.b
$78

here2
dc.b
$FF

dc.b
$00

dc.b
$FF

dc.b
$00

here3
dc.b
$FF

dc.b
$00

dc.b
$FF

dc.b
$00

ORG $0000

* Load Registers

lw
R1,R0,here
;PC = 00 (OPCODE = 0x23) R1 <- $12345678

lw
R2,R0,here2
;PC = 04 (OPCODE = 0x23) R2 <- $FF00FF00

lw
R3,R0,here3
;PC = 08 (OPCODE = 0x23) R3 <- $FF00FF00

* Demonstrate Branch Problem

beq
R2,R3,there
;PC = 0C (OPCODE = 0x04)

and
R4,R2,R3
;PC = 10 (OPCODE = 0x00) R4 <- $FF00FF00 (should not be executed)

and
R5,R2,R3
;PC = 14 (OPCODE = 0x00) R5 <- $FF00FF00 (should not be executed)

or
R6,R1,R2
;PC = 18 (OPCODE = 0x00) R6 <- $FF34FF78 (should not be executed)
there
sltu
R7,R4,R1
;PC = 1C (OPCODE = 0x00) R7 <- &00000001

GFO

end
Figure 14: Lab9_branch.asm
[image: image12.png]Name: valuP0Ons 10us 12us 14us 1Bus 1.Bus 20us 22us 24us 26us 28Bus 30us 3.2
o= Clk o t)
S pef31.0] - [-}ooooooto - - - - , 5

S opcodel5.0] Hoo |- 04 0 3F 00

> stall o]

> flush 0

— 7ERO 1

- OVR 0

A 154lrey_amay_32:G275R0_R| - 00000000

Ay 15dleg_anay 32332 75R1R| - [~ 12345678

A 154]reg_aray_32x3275R2_R| - |_00000000 FFODFFOD

A 154lrey_amay_32:G275R3_R| - 00000000 FFODFFOD

A 15dleq_anay 32632 75IR4_R| - 00000000

A 15dleq_anay_3263275IR5_R| - 00000000

A 154lrey_amay_32:G275R6_R| - 00000000

Ay 15leq_anay 3262757 R| - 00000000 00000001

@ 154lreg_array_323275IR6_R| - 00000000

Figure 15: Portion of Lab9_branch.scf
Conclusion

It is clear from reviewing the results of the tests applied to the data hazard resolution hardware designed and implemented in this lab that they enhance the performance of out MIPS2000 pipeline.
Lab Questions:

1. What would be required in the way of hardware modification to cause the machine to fetch instructions from the “destination address” of a branch if the branch was toward a lower memory address or continue with the instructions immediately following the branch if the branch was toward a higher memory address?
The branch target address would have to be calculated in the ID stage (the earliest possible stage it can be determined). To do this, the 32-bit adder currently in the EX stage would have to be moved to the ID stage. Then, an additional piece of logic would be required to either force the PC to the destination address lower in memory (if the destination is before the branch instruction), or simply increment the PC so that it fetches the instruction following the branch (if the destination is after the branch instruction). This additional logic would also be located in the ID stage.
2. Would the strategy in question 1 result in a means of branch prediction that was more efficient than the one chosen for our machine in lab? Why?
Yes. This form of branch prediction would be more efficient than a “assume not taken” strategy because it is often the case that a loop will branch backwards in the program several times. Also, whenever a branch is encountered that has a destination address that precedes the address of the branch instruction, it is likely that this is loop and this branch to the lower memory destination will be taken several times. So, by assuming to take the branches that have lower memory destinations, there will be less miss-prediction penalties because loops will be properly predicted.
3. If a program consisted of a large number of loads and stores, what would the effective instruction execution rate be?
The approximate instruction rate would be less than normal because with many load instructions, there is a higher chance of load hazards. And the penalty for a data dependency in a load instruction is one clock cycle (i.e. in a load instruction data dependency, a nop is inserted after the load). So, the instruction execution rate is likely to be lower than normal.

1

1

1

1

1

1

