
Lab 3
Dean Morrison

Page: 14/14

The Sweet16 CPU

 2/16/2004

Lab 3: The Sweet16 CPU
Dean Morrison
UF ID: 8989-4870

EEL 4713 Section 2485

Monday – Periods E1-E3

TA: Grzegorz Cieslewski

16 February 2004
I have performed this assignment myself. I have performed this work in accordance with the Lab Rules specified in 4713 Lab No. 3 and the University of Florida’s Academic Honesty manual. On my honor, I have neither given nor received unauthorized aid in doing this assignment.

X___

Introduction
The purpose of this lab is to study the CPU of a CISC computer. When this lab is complete, a CISC CPU will have been constructed in VHDL and its instruction fetch sequence simulated. Construction of the CPU will proceed in three steps. First, the Internal Architecture will be designed using the MaxPlusII Graphic Editor. Then, the CPU controller will be constructed also using the Graphic Editor. Finally, the CPU controller and Internal Architecture will be wired together along with a few other components to form the CPU of the Sweet16 processor.
Design

A. Sweet16 Internal Architecture
The internal architecture of the Sweet16 is nothing more than the 16-bit RALU designed in Lab 1 along with various MUX’s to control the flow of data in and out of the RALU. In the Preparation section we will discuss the actual construction of this component and its logical make-up.
B. Sweet16 Controller
The Sweet16 controller is made up of the register-based microprogrammed state machine controller designed in Lab 2 along with a 256 word x 56 bit microprogram memory, a MapRom, a pipeline register, and an instruction register. The MapRom is used to determine the appropriate insertion point into the microprogram memory. The microcontroller generates the proper control signals for the internal architecture according to the execution of the appropriate microinstructions. The specific architecture of this component will be discussed in depth in the Preparation section that follows.
C. Sweet16 CPU
With a functioning internal architecture and controller, the CPU of the Sweet16 can be produced by simply wiring these two components together along with a tri-state buffer to allow the bidirection of the data bus and a Memory Address Register. The preparation section following will discuss the logical design of the CPU in further detail.
Preparation

A. Sweet16 Internal Architecture
The Internal Architecture of the Sweet16 was created using the MaxPlusII Graphic Editor (see the Sweet16 Internal Architecture datasheet in Appendix D for more information about this component). Figure 1 shows the Sweet16 Internal Architecture graphic design file created in MaxPlusII. This graphic design file was made to implement the logical structure of the internal architecture. Figure 2 shows the logical diagram of the Sweet16 Internal Architecture. The macro status register flags C, V, S, and Z were brought out of the design as outputs, though there is no real need to do so other than for debugging purposes. The design of the internal architecture includes numerous MUX’s to control the flow of data within the architecture. These MUX’s will eventually be controlled by control signals generated by the Sweet16 Controller.
[image: image1.png]AMUGEL)
BL_REGA{A.0]
o RG]
o RS 0]
) SROWR(2.0]
o FSHF e o)
o QLS SELl o)
o MUK SEL

W s

g
S
S
S
S
S
S
S
S

INPUTS
BMUNSEL[.0 T
PLRECBI.0] T
s RRIBO. T
. W
S i
. iR
i CNSEL[T 0]
o PSS o
WFSISELL0) o

i SE]

bing1s.f
DsEL

g
S
S

OUTPUTS
B g
e ke (L
[
rma——_
R
ey

[image: image2.png]AP ESLSEL1.0) prr—
2 o2
had tlags{1] s
BMUXSEL[1] P Huxe_s
ELECE[S. |, pors..e1 zrs..el BC_AODRs.A o MUX4_1
e Huxa_1 £so b1 as
PL_REGA[0] oo A_ADDR[0] tlags{1] s
IRR2[0] o1
IRR1[0] o1 tlags{1] o=
< o3
[N DSEL xete
SRWREO . unce. o1 be_outris. . ol bor1s. zt1s. o DOUTS)
ADDRLA. . @1 ot v e
c_apor s
i S
FSELL3.. @1 us flags(2]
rea. . on vl tlags{3]
[N fa e FSO o
F_SHFT _SEL[1.0] o emrT_seL aso &
& i

Figure 1: sw16intarch.gdf
[image: image3.png]= RALU 16

e L 5 xzom_ e

B s sonsce..| EN
32| s seoniaof | v cmmo
cmepoa)7 e

[~ . f—
e [T B P N

;. h T | e
s e .

T
[2 f— e

1

. o sf—ro

L =™

Swret]6 Internal Architectire

Figure 2: Sweet16 Internal Architecture Logical Diagram
B. Sweet16 Controller
The Sweet16 Controller was created using the MaxPlusII Graphic Editor (see the Sweet16 Controller datasheet in Appendix D for more information about this component). Figure 3 shows the Sweet16 Controller graphic design file created in MaxPlusII, sw16cont.gdf. This graphic design file was made to implement the logical structure of the controller shown in Figure 4. The microprogram address, microinstruction opcode, condition code select, and branch address signals were brought out of the controller design as outputs for use in verification and debugging of the component.
[image: image4.png]Inputs. Outputs

o F N PUIUT 5 opcodel7 .0
. i o)
e
ot s e i o]
s = LTS 1.0

P Command(at]

[image: image5.png]UPCONT

:: I . Y
7..01 ADDRL7.. 0] b Scch(7. 0
e « _eseinsa
o1 Reed ReseT eLraz. o1
detelS% 42 oATAC13. . 01
[conrenstt
deteld1.0) oATACal. . 01
« _ meoio e
B Lo acis. . o
e oris..e1

LA ADORESS CONTROLUNRES STERED

LPMFILE="sMaouments and settingsdaan morsonimy doouments'oourse flesel4713 - dighalcomputr achectureish Soodehusu 1 mif’
LA HUMORD:

LA OUTDATA="UNREGISTERED'
LAWIOTH=SE

LALWIDTHAD= &

LP_ RO

B A R e |

@ dat55.0

LA ADORESS CONTROLUNRES STERED

LPU_FILE="o7dzouments and 2etingsan mariontmy dacumentYourze les\ae4713 - il computer aehtcturs s eodsimapro it

s LPMNUMWORD:
LM OUTDATA"UNREGISTERED'
LPACWIDTH 3
LPWIDTHAD: 5
LPhd_ROM
21s.5) adressl]

@ map_bus(7.0)

Figure 3: sw16cont.gdf
[image: image6.png]& reed3-0F

1

DINis

vs:
o | resianema
Instruction Reg
e S YT
] o
TR e .
" st b |
"
e
PO
Upcont
uls o 1
o l:“"“ cosa Address pluai..o
) W .
El co0) b |
D wefone -
werianl— |
agngal
§ nest
=

wp addr{7.01 command[41..)

Figure 4: Sweet16 Controller Logical Diagram
C. Sweet16 CPU
The Sweet16 CPU was created using the MaxPlusII Graphic Editor (see the Sweet16 CPU datasheet in Appendix D for more information about this component). Figure 5 shows the Sweet16 CPU graphic design file created in MaxPlusII, sw16cpu.gdf. This graphic design file was made to implement the logical structure of the central processing unit shown in Figure 6. As Figure 5 shows, both the Sweet16 Controller and the Sweet16 Internal Architecture components were used in the design of the CPU. A tristate buffer component, tsbuf_16.vhd, was used to allow the data bus to be bidirectional inside the CPU. Another additional component, the Memory Address Register (regld_16), was added to complete the design of the Sweet16 CPU.
[image: image7.png]Inputs QOutputs Bidirectional
G s U i B baTA B 01

i B s

e e

e

e

T o pusis.l

T e 6

[image: image8.png]up_cmndl24.23]

nl26]

wpcmndl7 5

(2]

up_cmndl15.14]

b

o]

wp_cmndl21 18]

Up_cmndl27]
upcmndl13.12]

K
Reset

flags[3 1]
DATA FUSITE 0

swisintarch

up_cmnef1]

up_cmnef0)

imnira. e Finesca. o] Jogsl.0)
oser b_ourtis. o3 DouTie.0)

Swidcant

K

]
D_OUT[15.0]

rdstr

wr_str

TSBUF 16

up_emndi) - ool DATA BUSIS.0)
Soume.) brnis. o1

REGLD 16

o ADDR_BUS15.0]

Figure 5: sw16cpu.gdf
[image: image9.png]T SWIGNTARCHGDF

us
Do o™
o |

[

X ooy o nw
Y Iy
L B e—)
ek R
[o]
o

U2: SWI6CONT.CDF

Figure 6: Sweet16 CPU Logical Diagram
Testing and Verification

A. Sweet16 Internal Architecture
To test the Internal Architecture of the Sweet16, a waveform simulation file was created in MaxPlusII’s waveform editor. A few test vectors were applied to the design to test its performance (see Appendix B, 8. Sweet16 Internal Architecture Waveform Simulation: sw16intarch.scf for the complete waveform simulation results). Figure 7 shows the portion of the waveform simulation devoted to testing the ALU functions on data in the general purpose registers. Table 1 shows the data that was loaded into the corresponding registers. Annotation 1 in the Figure shows the F = B – A function being performed (FSEL = 3). As the annotation shows, the two registers being used are A = R1 = 0x7FFF and B = R2 = 0x0001. This is because the AMUXSEL is set to 0 so that the A_ADDR[4..0] input of the RALU gets PL_REGA[4..0] as its input. The BMUX_SEL is also set to 0 so the B_ADDR[4..0] and C_ADDR[4..0] inputs to the RALU get PL_REGA[4..0] as their value. If the subtraction operation is functioning properly, the value 0x7FFE should appear on the D_OUT[15..0] bus when Cin = 1, as it does.
[image: image10.png]Narme: Value: |7us 175us 1.8us 185us 18us 195us 20us 205us 21us 215us 22us 225us 2.3us
P CLK o | L
£ DIN[15.0] H oo 0000 111
€9 CNSEL[1. 0] Ho [1 1 [1 [1 [1
€9 FSEL3.0] Ho 2 3 4 5 6 7
€9 RSEL[1.0] Ho 3 [3
€97 F_SHFT_SEL[1.0] | HO [
£5° AMUXSEL[1.0] Ho 3 [
€9 PL_REGA[4. 0] Hoo i] i 06 03 04
€5 IRR2(3.0] Ho 6 [
£ BMUXSEL[1.0] Ho 3 [
€9 PL_REGE[4. 0] Hoo i [06 05
£ IRR13.0] Ho 5 [

- WE 0
£ SR_WR[2.0] Ho 5
€9 FSI_SEL[1.0] Ho [

5 D_0UT(15.0] roooo [JCOFED { OFEE J_7FFD J(_7FFE 0000 222 000D EEEE

5 flags[3.0] H1 [0 2 3 E 1 5

- C o |]

>V 0

3 0 r
7 0

Y A_ADDR4.D] Hoo 06] (i 06 03 04
@Y BC_ADDRI4..0] Hoo 5 [[05

Figure 7: Portion of sw16intarch.scf
	Address
	Register
	Data (Hex)

	0x00
	R0
	0000

	0x01
	R1
	7FFF

	0x02
	R2
	0001

	0x03
	R3
	FFFF

	0x04
	R4
	1111

	0x05
	R5
	2222

	0x06
	R6
	1234

Table 1: Register Array Data

After reviewing the remaining portion of the waveform simulation results, it is evident that the Internal Architecture of the Sweet16 is functioning properly.
B. Sweet16 Controller
In order to test the Sweet16 Controller component, its two ROM components first had to be loaded with appropriate memory information files. The Microprogram Memory was loaded with “usw16.mif” which was generated by the s2mif56 executable file with “usw16.s” as its input. This file contains the microcode necessary to execute any instruction in the Sweet16 Instruction Set. The MapRom was then loaded with “maprom.mif”. This file allows the MapRom to correctly choose the appropriate insertion point into the microprogram memory according to the instruction being executed.
With the two ROM components loaded with memory information files, it is now possible to compile and simulate the component. A waveform simulation file sw16cont.scf was created to verify this component. A small set of test vectors were applied in simulation to assess the validity of the controller. Figure 8 shows the waveform simulation applied to the controller component. The instruction 0x2B34 (LDR R3,R4) was used to test the controller.
[image: image11.png]Name: Value: 100.0ns 2000ns 300.0ns 4000ns 5000ns BOOOns 700.0ns 8000Ons S00.0ns 10us 1.1us 1.2us
- Clk 0

29— Reset 0

€< D_IN[15.0] Hoooo | 0000 2834

£ D_IN[7.0] Hoo [o0 34

£5= flags[3..0] Ho [

S up_add[7.0] Hoo i] [03 6F] [03
S up_rpt{13.0] Hoooo [oooo 04002002 2402 5C00_{ o801 2002 2402

S command[41.0] - [osst7sa0oo0 - 00003400002 - - - 00003400002
S opcodel7. 0] Hoo i EE]

5 reg1[3.0] Ho [3

5 reg2(3.0] Ho [4

Figure 8: Portion of sw16cont.scf
As the Figure shows, it takes 6 clock cycles for the instruction to be loaded into the Instruction register. In the 5th clock cycle, the microprogram insertion point is chosen by the MapRom. Annotation 1 in the Figure shows this by highlighting the microprogram address bus and its value during the 5th clock cycle, 0x6F. Taking a look at the usw16.asm file, we can see that an entry point at address 0x6F corresponds to the instruction LDR. Figure 9 shows a portion of the usw16.asm code. Annotation 1 in Figure 9 shows the entry point of 0x6F corresponding to the LDR instruction.

ORGA
$6E

XORR:

JUMP
FETCH

endsc

ORGA
$6F

LDR:

JUMP
FETCH

endsc

ORGA
$70

UMULR:

JUMP
FETCH

endsc

Figure 9: Portion of usw16.asm
After reviewing the waveform simulation results, it is clear that the controller for the Sweet16 is functioning properly.
C. Sweet16 CPU
A similar test was applied to the Sweet16 CPU component to verify its performance. Figure 10 below shows the waveform simulation file for the CPU (see Appendix B, 10. Sweet16 CPU Waveform Simulation: sw16cpu.scf for the complete waveform simulation results). As the Figure shows, first the CPU was reset. Then, once the read strobe was asserted by the controller, the machine code for an LDR R3,R4 instruction, 0x2B34, was placed onto the data bus. The read strode is appropriately held true for 4 clock cycles, after which the Instruction Register is then loaded with the corresponding opcode and r1 and r2 values. Annotation 1 in the Figure shows the appropriate data being loaded into the Instruction Register. Also, one can see the correct microprogram address, 0x6F, being placed onto the up_addr[7..0] bus after the sixth clock cycle (see Annotation 2 in the Figure).
[image: image12.png]Narme: Value: 1000ns 200.0ns 300.0ns 400.0ns 5000ns BOOOns 7000ns 8000ns 9000ns 1.0us 1dus 12us
29— Reset o 1

- Clk 1

£9< DATA BUS[15.0] | HOODD 0000 2834 0000

S DATA BUS[15.0] | HOO0D 0000 2834 0000

> wr_str 0

> rd_str 0

S up_cmnd[41..0] - 06517980000 - 00003400002 - - - 00003400002
S up_rpt{13.0] H oo 0000 04002002 2402 5C00_f_oso1 2002 2402

S up_add[7.0] Hoo i] [03 6F] [&
S up_cmnd[2] HX X

S opcodel7. 0] Hoo i EE]

Y Regl3.0] Ho [3

Y Reg2l3.0] Ho [4

S ADDR_BUS[15.0] | HOO00D 0000 0002

Figure 10: Portion of sw16cpu.scf
It is clear from reviewing the waveform simulation results of the CPU that this component functions as desired.
Conclusion

It is obvious after reviewing the results of the tests applied to the sw16intarch.gdf, sw16cont.gdf, and sw16cpu.gdf components that they accurately reflect the desired behavior of the Internal Architecture, Controller, and CPU that we are designing for the Sweet16 processor. With a functioning CPU, we are now able to begin assembling the complete Sweet16 processor with the addition of external memory and I/O.
Lab Questions:
1. In which clock cycles (of the first 6) was the ISP’s PC incremented?
The ISP’s PC is incremented in the 2nd and 6th clock cycles.
2. Why was the ISP’s PC incremented twice? Could we have added two to it in a single cycle? Did the technique used cost any time?
The PC was incremented twice because the RALU allows a register to be incremented by 1 during a single clock cycle through the use of function 1 (FSEL = 1). This function adds the Cin value to the data from the B-side register of the register array. Since the controller also controls the CNSEL signal, it is able to choose Cin = 1 to allow the register to effectively be incremented by 1. Therefore, the incrementing of the register does not cost any time, whereas an addition of two would require multiple clock cycles to accomplish.
3. What are the units of address in the ISP? Does this change because we have a 16-bit data bus for Sweet16?
In the Sweet16, only two-byte word-aligned addresses can be referenced, since address bit 0 is not even connected to the address inputs of the external memory components. Since the data bus is 16-bits wide, the lower 8 bits of the bus are connected to the data output of the “low-byte” memory and the upper 8-bits are connected to the data output of the “upper-byte” memory.
4. Why were there so many cycles used to access external memory during the instruction fetch sequence?

Multiple clock cycles were used to access external memory during the instruction fetch because the external memory requires a sufficient amount of time for the data to stabilize on the bus (memory access time). The read strobe is held true for 4 clock cycles to make certain that the correct data is latched instead of possibly latching the garbage that occurs before stabilization.
5. Describe the path that the ISP’s opcode follows to become the address of the microinstruction that implements the opcode. (Use LDR R3,R4 as an example).

The ISP’s opcode is contained in the upper byte of the data bus. This data is fed into the Map ROM as the 8-bit address input. Then, the data that is at this address (the insertion point into the Microprogram Memory) is fed into the microcontroller and is then outputted as the address for the microprogram memory. Given the starting address in the microprogram memory, the controller will then execute all of the necessary microinstructions to carry out this instruction. Figure 11 shows the path taken by the opcode described above.
[image: image13.png]& reed3-0F

1

DINis

vs:
o | resianema
Instruction Reg
e S YT
] o
TR e .
" st b |
"
e
PO
Upcont
uls o 1
o l:“"“ cosa Address pluai..o
) W .
El co0) b |
D wefone -
werianl— |
agngal
§ nest
=

wp addr{7.01 command[41..)

Figure 11: Path of opcode through Sweet16 Controller
The dashed arrows show the path the opcode takes to become the microinstructions that eventually implement the instruction being executed.
What is the address of the first microinstruction in the “LDR” execution sequence in the microprogram?

The first microinstruction in the “LDR” execution is the microinstruction that resides at address 0x6F in the microprogram memory. This translates to microinstruction 2, “Jump to branch address.”

Addr[7..0] = 6F

Map_bus[7..0] = 6F

Instruction: LDR R3, R4

opcode = D_IN[15..8] = 2B

2

1

1

1

1

