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Abstract 
 

Demand prepaging, an extension to the widely 
employed method of demand paging, is a concept 
designed to reduce page faults in a system 
implementing virtual memory by prefetching pages 
speculated to be referenced in the near future in 
addition to pages that have already been referenced.  
Doing so exploits high disk bandwidths while 
attempting to avoid high disk latencies.   

Although studies have shown that demand 
prepaging is generally not beneficial, other more 
recent studies have been able to demonstrate 
significant page fault reductions using dynamic 
prepage parameters as opposed to static [4].  There 
are several major parameters associated with demand 
prepaging however, and to date there are no studies 
which evaluate the performance of a completely 
dynamic set of these parameters. 

In this paper, I propose and evaluate a 
Dynamically Adaptive Prepaging (DAP) scheme in 
which all major demand prepaging parameters are 
dynamically modulated to changes in reference stream 
trends and phases.  My proposed DAP policies attempt 
to reduce page faults by exploiting high disk 
bandwidths.   

I evaluate my proposed system through simulation, 
using a custom trace-driven simulator developed in 
C++.  Various uni-programmed memory reference 
traces were simulated.   My evaluation shows a 
potentially significant reduction in page faults for the 
simulated traces. 

1. Introduction 
ITH    processor    and    main    memory    speeds  
increasing ever more rapidly, the gap between 

storage disks and memory is growing wider every day.  
As this gap grows larger, so does the latency associated 
with the handling of page faults – an event in which a 
virtual memory reference translates to a physical page 
not currently located in physical memory.  This 
increasing latency is why reducing virtual memory 
page faults is a growing interest. 

Demand paging, a concept as old as virtual memory 
itself, is a technique for implementing virtual memory 
in which only demanded pages are fetched from the 
backing store into physical memory.  An extension to 
this technique is the concept of demand prepaging 
which was proposed as a means for reducing page 
faults.  Just as instruction prefetching is used in 
processor pipelines to maximize pipeline utilization, so 
is demand prepaging used to reduce disk accesses 
caused by page faults.  With demand prepaging, the 
O/S (or VMM) is permitted to fetch extra pages in 
addition to the demanded page.  If the prepaged pages 
are referenced relatively soon after being fetched, the 
demand prepaging system successfully averted 
additional disk accesses. 

The effectiveness of demand prepaging relies on 
the fact that the bulk of the delay associated with 
retrieving a page from disk storage is due to the latency 
of the disk access (typically 1 to 10 ms). The transfer 
delay – the time required to transmit the page from the 
backing store into physical memory – is significantly 
smaller (on the order of tenths of a millisecond). 
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Therefore, the additional delay caused by “piggy-
backing" the transfer of extra pages along with the 
demanded page can be considered negligible. Since 
disk bandwidths have been improving at a greater rate 
(approximately 20% per year) than disk latencies 
(approximately 5% per year), it is clear that reducing 
the number of page faults is more important than 
reducing the number of pages transferred between disk 
and main memory. 

1.1 Demand Prepaging 
As previously mentioned, demand prepaging is an 

extension to demand paging that allows extra pages to 
be fetched into main memory along with the demanded 
page.  There are several parameters associated with 
demand prepaging, the most important of which (and 
those that will be analyzed in this paper) are: 
• Prepage Memory Allocation: The number of main 

memory page frames to be allocated for prepaged 
pages – pages that are fetched along with the page 
whose reference cause a page fault. 

• Prepage Degree: The number of additional pages 
to fetch along with the page whose reference 
caused a page fault. 

• Prepage Prediction Method: The method used to 
predict pages that are most likely to be referenced 
in the near future and should therefore be 
candidates for prepaging. 

It is intuitive that there exists an optimum 
configuration of these parameters that will minimize 
page faults. 

The concern with applying prepaging techniques to 
virtual memory management, however, is the 
(somewhat likely) possibility of causing more page 
faults than would occur in a system that does not use 
prepaging.  This, along with obvious drawbacks of 
increased kernel complexity and strain on disk 
bandwidth, are factors which must be overcome in 
order to benefit from the application of prepaging. 

Many prepaging techniques have been suggested, 
from the simple One Block Lookahead (OBL) policy 
[1] to the somewhat more complex OBL/k policy 
proposed by Horspool and Huberman [3].  Until 
recently, the problem with most of the suggested 
prepaging techniques is simply that they fail to 
substantially reduce page faults over a broad range of 
workloads.  Kaplan et al. [4] propose a means to 
dynamically adapt prepaging policies in order to 
accommodate various workloads.  This was done by 
dynamically adjusting prepage memory allocation, or 
what they refer to as target allocation or prepaged 
allocation. 

1.2 Dynamically Adaptive Prepaging (DAP) 
Although dynamically adjusting prepaged 

allocation will surely help the O/S (or VMM) adapt to 
changes in memory reference behavior, it fails to fully 
exploit the mutual relationship between all of the 
prepaged parameters.  This is why I propose to design 
and evaluate more advanced methods for dynamically 
adapting not only prepage memory allocation, but 
prepage degree and prediction as well.  It is reasonable 
to believe there should exist a combination of these 
three parameters that optimizes the performance 
(minimizes page faults) of a virtual memory 
management system.  The challenge lies in developing 
methods to adjust these parameters in order to adapt to 
changing memory reference behavior without incurring 
an unacceptable overhead in the process. 

2. Background and Related Work 
It is important to understand the consequences of 

prepaging and the adjustment of its parameters on the 
efficacy of virtual memory management before trying 
to optimize it.  The following section will discuss the 
various costs and benefits of different prepaging 
strategies. 

2.1 Prepaging: Costs and Benefits 
In this paper, I will refer to pages that are resident 

in main memory as a result of being referenced by the 
memory management unit as used pages.  Pages that 
are resident but have not yet been referenced are called 
prepaged pages.   

Prepaging is beneficial only if pages that are 
prepaged are referenced before being evicted.  If 
evicted having never been referenced, the prepaged 
page only occupied a main memory page frame which 
could have been better used by a used page.  This 
means that prepaging is harmful only if prepaged pages 
displace used pages that, under a non-prepaging 
system, would have been re-referenced before being 
evicted.  So, one could characterize the cost of 
prepaging as the number of references to pages that are 
not resident under the given prepaging policy but 
would have been resident had prepaging not been used.  
Then, the benefit of prepaging is the number of 
references to prepaged pages that would not have been 
resident without prepaging. 

2.1.1 Prepage Allocation 
As previously mentioned, prepage allocation is the 

number of main memory page frames to allocate to 
prepaged pages.  The allocation of main memory page 
frames between used and prepaged pages is a source of 
contention that will be managed by the O/S (or VMM). 
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The two extremes of prepage allocation lead to 
associated costs and benefits.  If prepage allocation is 
too high, less memory is allocated to used pages which 
could result in an increase in page faults.  If it is too 
low, this reduces the effectiveness of prepaging 
altogether. 

2.1.2   Prepage Degree 
Prepage degree is the number of additional pages to 

fetch along with the demanded page when handling a 
page fault.  If the degree is too low, the effectiveness of 
prepaged page prediction is reduced.  If the degree is 
too high, however, previously prepaged pages may be 
evicted before ever being referenced in order to make 
room for the large amount of new prepaged pages.  
Recall that prepaging is beneficial only if pages that are 
prepaged are referenced before being evicted.  
Therefore, a high prepage degree may reduce the 
potential for prepaging to be beneficial. 

2.2 Previous Research in Prepaging 
Many papers evaluate the benefits of demand 

prepaging.  It is important to review their findings 
before attempting to develop new, more effective 
methods. 

2.2.1 One Block Lookahead (OBL) 
Perhaps the earliest and most minimal prepaging 

concept was Joseph’s One Block Lookahead (OBL) 
policy [1].  Under this policy, if a reference to page p 
causes a page fault, page p+1 will be fetched along 
with page p if it is not already resident in main 
memory.  The main purpose of such a policy was to 
exploit spatial locality in memory pages.  

Joseph also suggested loading prepaged pages into 
the LRU position of the resident page queue, as a way 
to avoid evicting used pages before prepaged pages.  In 
doing so, however, the benefits of prepaging were 
minimized since a prepaged page must be used prior to 
the next page fault in order not to be evicted.  It is no 
surprise that experiments with OBL yielded little to no 
benefit. 

Smith [2] modified OBL such that pages p and p+1 
are placed in the first and second positions of the LRU 
queue.  This essentially amounts to a prepaging policy 
with a prepaged allocation of 50%.  This relatively 
high prepaged allocation is most likely why this policy 
increased page faults more often than not.   

2.2.2 OBL/k 
Horspool and Huberman [3] proposed a more 

complex extension to OBL in which prepaged pages 
advanced towards eviction at a rate k.  This bias toward 
preserving used pages proved effective as they were 
able to demonstrate a modest reduction in page faults.   

2.2.3 Adaptive Caching 
Kaplan et al. [4] proposed a means to dynamically 

adapt prepaging policies in order to accommodate 
various workloads.  This was done by adjusting 
prepage memory allocation, or what they refer to as 
target allocation.  The optimum target allocation is 
determined by a cost-benefit analysis done for all 
possible target allocations.  Prepaged allocation costs 
and benefits are generated through the use of 
histograms that track the references to each individual 
position in the LRU page queue. 

This work is essentially the basis for my research.  
My proposal extends their concept of a dynamic target 
allocation to a more adaptive design in which all 
prepage parameters are dynamic. 

3. Design and Implementation 
Since DAP is an extension to demand prepaging, all 

designs are targeted for O/S kernels (or VMMs).  The 
implementations of these designs should therefore be 
as efficient as possible in order to minimize any 
associated overhead. 

3.1.1 Basic Data Structures 
In order to implement the concept of dynamic 

prepage parameters, and even the concept of prepaging 
itself, several basic data structures are necessary.  The 
first of which is called a Used Page Queue (see Figure 
3.1).  This queue is used to maintain the page numbers 
of used pages, both resident (pages that are currently 
loaded in main memory) and non-resident (pages that 
exist on the backing store only).  For prepaged pages, a 
similar queue, called the Prepaged Page Queue, is 
required (see Figure 3.2).  The sum of the number of 
resident entries in both queues is equal to the number 
of page frames in main memory, since each entry 
contains the page number of a page frame in main 
memory. 

When considering the prepaged page queue, it is 
useful to make a distinction between prepaged 
allocation, or target allocation as we will refer to it 
from now on, and consumed allocation.  Consumed 
allocation is the number of main memory page frames 
within the prepaged allocation that are actually being 
consumed by prepaged pages.  It would be 
counterproductive if we did not allow used pages to 
populate unused prepaged page frames, despite the fact 
that those frames are within the prepaged memory 
allocation.  It is for this reason that we distinguish 
between target and consumed allocation, so that used 
pages can populate the remainder of page frames 
between the consumed and target allocations.   
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Figure 3.1: Used Page Queue 

 

 
Figure 3.2: Prepaged Page Queue 

 
Both of these queues have hit histograms 

corresponding to each of their entries.  When a page 
resident in either queue is referenced, the 
corresponding histogram entry will be incremented.  
These histograms will be used later to enable the 
optimization of prepage parameters. 

Both queues will also be maintained in a least 
recently used (LRU) ordering.  Admittedly, this 
ordering is impractical with respect to implementation 
(in hardware) and overhead (in software).  For the 
purposes of this project, however, it will be used to 
simplify page replacement. 

To handle a page reference, the used page queue is 
scanned to determine if the demanded page is resident.  
If so, the hit histogram element corresponding to the 
queue position in which the page number resides will 
be incremented and the page will be promoted to the 
most recently used (MRU) position of the queue.  If the 
demanded page is not resident in the used page queue, 

the prepaged page queue is then checked.  If the 
demanded page is resident in this queue, the hit 
histogram element corresponding to the queue position 
in which the page number resides will be incremented.  
Then the page will be evicted from the prepaged page 
queue and promoted to the MRU position of the used 
page queue.  If the demanded page is not resident in the 
prepaged page queue, a page fault has occurred. 

As part of handling a page fault, the demanded 
page along with additional prepaged pages are fetched 
from disk into main memory.  The demanded page 
number is inserted into the MRU position of the used 
page queue.  If by adding a page reference to the used 
queue it exceeds its allocation (defined as the 
difference between the total number of main memory 
page frames and the prepaged consumed allocation), 
the LRU page reference of the queue is evicted into the 
non-resident section of the queue as to reflect the 
eviction of that page from main memory.   

Likewise, all prepaged page numbers fetched from 
disk are placed in the MRU positions of the prepaged 
page queue.  If by adding these page references to the 
queue the prepaged target allocation is exceeded, the 
appropriate number of references are evicted into the 
non-resident section of the queue, just as the pages they 
reference are evicted from main memory.   

3.1.2 Dynamic Prepaged Allocation 
Just as costs and benefits were considered when 

evaluating the efficacy of prepaging, so too should they 
be taken into account when trying to optimize prepage 
allocation.  Kaplan et al. [4] proposed a method for 
calculating the cost and benefit of all possible target 
allocations as a means for determining which is 
optimum.    This method will be used as part of my 
proposed DAP system for adapting prepaged 
allocation. 

The cost of a certain target allocation can be 
defined as the number of page faults that would have 
occurred had that specific allocation been used.  The 
benefit of a particular target allocation can be defined 
as the number of page faults that would have been 
averted if that allocation were implemented.  The hit 
histograms of each queue can be used to calculate these 
costs and benefits.  Assuming a main memory size of m 
page frames, and a target allocation t, the cost and 
benefit of this allocation are defined as follows: 
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A net reduction in misses can then be calculated as 
the difference between the benefit and cost of a 
particular target allocation.  The optimum target 
allocation is finally defined as the allocation that 
produces the maximum net reduction in misses, as seen 
below.  This entire process is depicted in Figure 3.3.   

 

 
As programs are executed and page references 

accumulate, it is clear that the hit histograms will 
saturate in the sense that their values will no longer 
reflect the “current” behavior or phase of a program.  
Since these histogram values are an integral part of 
optimizing prepage allocation, they must be 
conditioned such that they are more reflective of a 
program’s recent behavior.  Kaplan et al. [4] avoided 
histogram saturation by periodically decaying all 
entries by a constant value λ, 0 < λ < 1, such that a 
histogram entry after decay would equal its value 
before decay times the decay value.  Surprisingly, their 

analysis found that the value of the decay variable had 
little to no effect on performance. 

Both the cost-benefit analysis and the histogram 
decay are computationally intensive.  The only way to 
minimize the overhead associated with these actions is 
to hide it by performing the computations during the 
disk accesses associated with the handling of a page 
fault.  Since disk latency is many orders of magnitude 
higher than processor clock cycles, these calculations 
should not present any additional latency if carried out 
while pages are being fetched from the backing store.  
However, this does not imply that these processes do 
not require efficient implementation.  Other tasks can 
be scheduled during disk accesses, such as execution of 
different threads in the processor, while waiting on the 
demanded page to be loaded.  Another way to 
minimize the overhead of the dynamic prepage 
allocation calculations is to force the parameter to be 
updated less often.  Instead of updating prepage 
allocation upon every page fault, updates can be 
performed on a much longer period, thereby reducing 
the computational overhead. 

 

 
Figure 3.3: Prepage Allocation Cost-Benefit Analysis 
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3.1.3 Dynamic Degree 
The degree of prepaging is a parameter that is 

closely related to the method used to predict prepages.  
If prepaged pages are being referenced soon after being 
fetched, than the prediction method is performing 
effectively.  If this is the case, it would be most 
beneficial if prepage degree is high, so that more pages 
can be prepaged, and more page faults can be avoided.  
Conversely, if prepage prediction is not effective, the 
optimum prepage degree would be relatively low so as 
to minimize wasteful memory consumption. 

In DAP, this relationship is exploited in order to 
optimize prepaging degree.  To do so, a new data 
structure called the Degree Queue is required (see 
Figure 3.4).  This is a simple three-entry queue with a 
corresponding hit histogram.  For a degree d, the dth, 
(d+1)th, and (d+2)th prepage predictions are stored in 
the degree queue after every page fault.  It is important 
to note that although prepage page prediction numbers 
d+1 and d+2 are stored in this queue, the page which 
those predictions reference are not actually loaded into 
physical memory.   

 

 
Figure 3.4: Degree Queue 

 
The degree queue hit histogram enables the system 

to determine whether prepaging additional pages under 
the current prediction method would be beneficial.  If 
the histogram shows there were references to prepage 
page prediction number d+2, then the degree will be 
promoted to d+2.  Likewise, if prediction number d+1 
was referenced, the degree will be incremented by one.  
Otherwise, if the dth prepage page prediction was 
referenced, than the degree is left unchanged.  If none 
of these predictions were referenced since the last page 
fault, then the degree can actually be decremented, 
since the current prediction method is not performing 
accurately.  Figure 3.5 depicts this algorithm for 
dynamically adapting prepage degree. 

Pre-defined, static minimum and maximum prepage 
degrees should also be implemented in order to avoid 
what could be considered runaway adaptation, a 
scenario in which the degree is constantly incremented 
or decremented to the eventual detriment of the system. 
 

 

 
Figure 3.5: Dynamic Optimization of Prepage Degree 
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3.1.4 Dynamic Prepage Prediction 
There are several prepage prediction schemes, 

each performing better in different scenarios.  Three 
prediction methods are used in the proposed DAP 
system: 

 
1.  Address-local Prediction: Predicts pages nearby 

in the address space relative to the page being 
demanded are likely to be referenced soon. 

 
 Example: Referenced page number n  

Predictions: n + 1, n - 1, n + 2, n - 2, . . . 
 

2.  Recency-local Prediction: Predicts pages nearby 
in an LRU ordering to the page being demanded 
are likely to be referenced soon. 

 
 Example: Reference to page found at LRU queue 

position p 
Predictions: Pages found in LRU queue positions  

p - 1, p + 1, p - 2, p + 2, . . . 
 

3.  Stride Prediction: Predicts pages located at a 
constant stride in the address space from the page 
in demand relative to the MRU page are likely to 
be referenced soon. 

 
 Example: Degree d, Referenced page number n, 

MRU page queue entry p → stride s = n – p 
Predictions: n + s, n + 2s, n + 3s, . . . , n + ds 

 
In order to dynamically choose the optimum 

prediction method, a new data structure must be 
introduced.  Figure 3.6 shows a Prediction Queue, a 
queue which holds the prepage page predictions 
associated with a prediction method.  This queue also 
has a corresponding hit histogram which will be used 
to determine the optimum prediction method. 
 

 
Figure 3.6: Prediction Queue 

 
The optimum prediction method can be easily 

defined as the method that predicted pages that resulted 
in the most references.  This optimization can be 
implemented using the prediction queue hit histograms.  
Whichever prediction method has the greatest sum of 
hit histogram entries since the last page fault is the 
optimum prediction method.  Figure 3.7 depicts this 
optimization process. 
 

 
 

 
Figure 3.7: Dynamic Optimization of Prepage Prediction Method
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4. Simulation Methodology 
To test and evaluate the efficacy of dynamically 

adaptive prepaging, its policies must be applied to a 
memory reference trace.  The performance results 
(page fault rate, disk transfers, etc.) may then be 
compared to the performance of a completely static 
demand prepaging policy.  To enable such a 
performance comparison, a trace-driven simulator was 
developed in C++. 

4.1 DAPsim 
DAPsim is a trace-driven demand prepaging 

simulator developed to enable the design, testing, and 
evaluation of DAP concepts.  DAPsim has the 
following capabilities: 

1. Maintains main memory page queues 
2. Handles page references 
3. Models dynamic prepage allocation, degree, 

and prediction method 
4. Accumulates performance statistic (page 

faults, fault rate, reference trace 
characteristics, hit/miss trace, disk transfers, 
etc.) 

The simulator reads through a memory reference trace, 
handling each page reference one at a time.  The state 
of the prepaging system after handling every reference 
is exactly that of a real-world implementation. 
 

 
Figure 4.1: Page Reference Flow 

Figures 4.1 and 4.2 show the flow of the DAPsim 
simulator.  To handle a page reference, the simulator 
first checks if the reference is resident in the used page 
queue.  If so, the corresponding hit histogram entry is 
incremented and the reference is promoted to the MRU 
position of the queue.  If the page reference is not 
resident in the used queue, the prepage page queue is 
checked.  If the reference is resident in the prepaged 
page queue, the corresponding hit histogram entry is 
incremented and the reference is evicted from the 
prepaged queue into the MRU position of the used 
queue.  If it is not resident, then a page fault has 
occurred. 

 

 
Figure 4.2: Page Fault Flow 

 
To handle a page fault, DAPsim “fetches” the 

demanded page along with several prepaged pages 
from main memory.  The reference to the demanded 
page is placed in the MRU position of the used page 
queue.  The references to the prepaged pages are place 
in the MRU positions of the prepaged page queue.  
Then, the prepage parameters are updated according to 
the previously described methods.  Obviously, in the 
real-world implementation of this system, prepage 
parameters would be updated in parallel with the 
accesses to the backing store so as to hide the 
computational overhead.  Since DAPsim does not 
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directly simulate any cycle-accurate latencies, updating 
prepage parameters immediately after fetching pages 
from disk is an acceptable model of the system. 

After prepage parameters are updated, several other 
maintenance-related tasks are performed, such as 
decaying hit histograms if necessary.  Once this is 
done, the next page reference in the memory trace is 
handled, thus completing the cycle. 

4.2 Simulation Methodology 
In order to properly evaluate the performance of my 

proposed DAP system, a broad range of memory 
reference behavior must be tested.  Simulations were 
performed on several uni-programmed memory 
reference traces over a range of main memory sizes.  
The reference traces were gathered using the Etch 
instrumentation tool on a Windows NT system.  The 
majority of the traces used are the same used by 
Kaplan et al. [4] in their research on adaptive caching 
for demand prepaging.  The traces include a mix of 
batch-style processes (gcc, compress), synthetic 
processes (sawtooth, lu, mm16, and mm32), and 
interactive, GUI processes (Acrobat Reader, Go, 
Netscape Navigator, Photoshop, PowerPoint, and 
Word).  Table 4.1 shows reference trace details. 
 

Table 4.1: Memory Reference Trace Descriptions 

Trace Name Benchmark 
Type Program Program Description

acroread Real Acrobat Reader / WinNT PDF viewer
cc1 Real Compiler Batch-style process

compress95 Real Compress Batch-style compression
sawtooth Synthetic Custom Sawtooth Sawtooth trace

go Real GO Interactive GUI process
lu Micro LU LU matrix decomposition

mm16 Micro Matrix Multiply (16x16) Matrix Multiply (16x16)
mm32 Micro Matrix Multiply (32x32) Matrix Multiply (32x32)

netscape Real Netscape / WinNT Web browser
powerpoint Real Power Point / WinNT Slide show developer

winword Real Word / WinNT Word processing

Trace Name Benchmark 
Type Program Program Description

acroread Real Acrobat Reader / WinNT PDF viewer
cc1 Real Compiler Batch-style process

compress95 Real Compress Batch-style compression
sawtooth Synthetic Custom Sawtooth Sawtooth trace

go Real GO Interactive GUI process
lu Micro LU LU matrix decomposition

mm16 Micro Matrix Multiply (16x16) Matrix Multiply (16x16)
mm32 Micro Matrix Multiply (32x32) Matrix Multiply (32x32)

netscape Real Netscape / WinNT Web browser
powerpoint Real Power Point / WinNT Slide show developer

winword Real Word / WinNT Word processing  
 

The use of such a variety of benchmarks was done 
in an attempt to gauge performance over different 
reference patterns.  Figures 4.3 through 4.5 show the 
variation in memory reference profiles used to evaluate 
DAP performance.  The memory reference profiles for 
all the traces used in the evaluation process are located 
in Appendix A. 
 

 
Figure 4.3: Netscape Memory Reference Profile 

 

 
Figure 4.4: Sawtooth Memory Reference Profile 

 

 
Figure 4.5: LU Decomposition Memory Reference 

Profile 
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Different system configurations were simulated in 
order to evaluate the performance relationships 
between different prepage parameters as well as DAP 
as a whole.  Table 4.2 shows the different modes that 
were simulated for each memory reference trace.  
Obviously, DAP Mode is the mode which will be used 
to evaluate the performance of my proposed DAP 
concepts. 
 

Table 4.2: Simulation Modes 

 

4.3 System Settings 
It is important to note the system settings used 

during simulations.  Table 4.3 shows the values of all 
major system parameters.  The values of these 
parameters were defined after careful analysis of 
empirical data obtained through simulation.  Values 
were chosen such that performance was optimized in 
static parameter mode.  This was done so that DAP 
could be evaluated against a formidable control.    
 

Table 4.3: System Settings 

 
 

5. Simulation Results 
Many useful statistics were gathered during 

simulations, the most important of which, for the 
purpose of a performance evaluation, are the quantity 
of page faults and disk transfers.  When comparing to a 
demand prepaging policy with completely static 
parameters, it is more useful to relate corresponding 

statistics to determine whether or not the proposed 
concepts offer any performance gains.  Therefore, the 
simulation results will be focused on two major 
statistics, page fault reduction and page transfer 
increase. 

5.1 Page Fault Reduction 
The ultimate goal of dynamically adaptive 

prepaging is to reduce the page fault rate over a broad 
range of workloads.  Simulations were conducted on 
the previously mentioned memory reference traces 
over a range of main memory sizes in order to 
determine page fault rates.  Then, page faults rates for 
the various simulation modes (see Table 4.2) were 
compared to a control (Static Prepage Parameter 
mode) in a statistic called page fault reduction.  Page 
fault reduction is computed as follows: 

_
_ ,StaticMode Mode X

Mode X
StaticMode

PageFaultRate PageFaultRate
PageFaultReduction

PageFaultRate
 

 

where PageFaultReductionMode_X is the reduction in 
page fault rate by Mode X in relation to Static Prepage 
Parameter mode.  Table 5.1 and Figure 5.1 show DAP 
page fault reductions corresponding to each memory 
reference trace.   
 

Table 5.1: DAP Page Fault Reduction 

Benchmark 500 1000 2000 5000 10000 Average
acroread -6.80% 5.46% 1.36% 0.91% 0.23%
cc1 5.32% 5.32% 11.70% 11.70% 8.51%
compress 9.26% 10.19% 12.96% 13.89% 11.57%
sawtooth 95.86% 97.64% 98.23% 97.52% 97.31%
go -36.78% -5.88% -5.88% -5.88% -13.61%
lu 74.55% 69.57% 69.57% 69.57% 69.57% 70.56%
mm16 62.69% 64.93% 64.93% 64.93% 64.37%
mm32 40.77% 16.69% 79.38% 79.62% 79.62% 59.22%
netscape -7.12% 7.10% 2.37% -1.08% 0.32%
powerpoint 2.96% 0.80% 0.00% 0.00% 0.94%
winword -5.45% 8.00% 4.53% 0.40% 2.39% 1.97%
Average 21.39% 25.44% 30.83% 30.14% 50.53% 31.66%

DAP Page Fault Reduction (per Main Mem. Size in Pages)Benchmark 500 1000 2000 5000 10000 Average
acroread -6.80% 5.46% 1.36% 0.91% 0.23%
cc1 5.32% 5.32% 11.70% 11.70% 8.51%
compress 9.26% 10.19% 12.96% 13.89% 11.57%
sawtooth 95.86% 97.64% 98.23% 97.52% 97.31%
go -36.78% -5.88% -5.88% -5.88% -13.61%
lu 74.55% 69.57% 69.57% 69.57% 69.57% 70.56%
mm16 62.69% 64.93% 64.93% 64.93% 64.37%
mm32 40.77% 16.69% 79.38% 79.62% 79.62% 59.22%
netscape -7.12% 7.10% 2.37% -1.08% 0.32%
powerpoint 2.96% 0.80% 0.00% 0.00% 0.94%
winword -5.45% 8.00% 4.53% 0.40% 2.39% 1.97%
Average 21.39% 25.44% 30.83% 30.14% 50.53% 31.66%

DAP Page Fault Reduction (per Main Mem. Size in Pages)
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Figure 5.1: DAP Page Fault Reduction 

 
The best reduction was is the sawtooth benchmark, 

most likely because of its extremely predictable 
memory references.  On average, simulations showed a 
32% reduction in page fault rate across all benchmarks.  
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The majority of this reduction was in the synthetic and 
micro benchmarks, again most likely because of the 
predictability of their memory references.  In real 
benchmarks, the average page fault reduction was 
between 1.5 and 4%, depending on the benchmarks 
included in the average. 

The other simulation modes showed a wide 
variation of page fault reduction.  Figures 5.2 through 
5.4 show page fault reductions for each of these modes.  
The highest average page fault reduction, 
approximately 36%, was under dynamic degree mode. 
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Figure 5.2: DPA Page Fault Reduction 
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Figure 5.3: DD Page Fault Reduction 
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Figure 5.4: DPM Page Fault Reduction 

5.2 Page Transfer Increase 
Another important statistic that must be considered 

when evaluating the efficacy of a prepaging scheme is 
page transfers.  It is obvious that demand prepaging 
will lead to an increase in page transfers when 
compared to demand paging.  The question this 
research aims to answer is whether dynamic demand 
prepaging (namely my proposed dynamically adaptive 
prepaging scheme) will likewise instigate an increase 
in page transfers. 

5.2.1 Total Page Transfers 
It is useful to define a comparative statistic in order 

to more easily evaluate the impact DAP has on page 
transfers relative to a static demand prepaging scheme.  
This new statistic, called page transfer increase, is 
defined as follows: 

_
_ ,Mode X StaticMode

Mode X
StaticMode

PageTransfers PageTransfers
PageTransferIncrease

PageTransfers
 

 

where PageTransferIncreaseMode_X is the percent 
increase in page transfers of Mode X relative to static 
demand prepaging.   

Table 5.2 and Figure 5.5 show DAP page transfer 
increases in all benchmarks over a range of memory 
sizes.  The average page transfer increase across all 
benchmarks and memory sizes was approximately 
20%.  Again, the highest page transfer increases 
happened to occur in the micro and synthetic 
benchmarks.  Among the real benchmarks, the average 
page transfer increase was approximately 12%. 

 
Table 5.2: DAP Page Transfer Increase 

Benchmark 500 1000 2000 5000 10000 Average
acroread 8.79% -0.80% 2.35% 2.87% 2.37% 3.12%
cc1 15.10% 17.94% 12.69% 12.69% 14.61%
compress 34.54% 33.73% 30.32% 29.52% 32.03%
sawtooth
go 45.33% 15.38% 15.38% 15.38% 22.87%
lu 14.26% 23.27% 23.27% 23.27% 23.27% 21.47%
mm16 29.06% 27.08% 27.08% 27.08% 27.57%
mm32 34.88% 156.26% 35.93% 33.59% 33.59% 58.85%
netscape 12.91% 1.39% 5.18% 8.59% 7.02%
powerpoint -0.14% 0.59% 1.40% 1.25% 0.78%
winword 9.02% -2.52% 1.15% 4.51% 3.04%
Average 20.38% 27.23% 15.48% 15.88% 19.74% 19.74%

DAP Page Transfer Increase (per Main Memory Size in Pages)Benchmark 500 1000 2000 5000 10000 Average
acroread 8.79% -0.80% 2.35% 2.87% 2.37% 3.12%
cc1 15.10% 17.94% 12.69% 12.69% 14.61%
compress 34.54% 33.73% 30.32% 29.52% 32.03%
sawtooth
go 45.33% 15.38% 15.38% 15.38% 22.87%
lu 14.26% 23.27% 23.27% 23.27% 23.27% 21.47%
mm16 29.06% 27.08% 27.08% 27.08% 27.57%
mm32 34.88% 156.26% 35.93% 33.59% 33.59% 58.85%
netscape 12.91% 1.39% 5.18% 8.59% 7.02%
powerpoint -0.14% 0.59% 1.40% 1.25% 0.78%
winword 9.02% -2.52% 1.15% 4.51% 3.04%
Average 20.38% 27.23% 15.48% 15.88% 19.74% 19.74%

DAP Page Transfer Increase (per Main Memory Size in Pages)
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Figure 5.5: DAP Page Transfer Increase 
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5.2.2 Average Page Transfers 
Perhaps a more significant statistic is the increase 

in page transfers per page fault.  This metric is 
certainly expected to be higher relative to a simple 
demand paging scheme, but how does a dynamic 
demand prepaging system compare to a static one?  
Table 5.3 and Figure 5.6 show average increases in 
page transfers per page fault under DAP for a variety 
of benchmarks, over a range of memory sizes.  Page 
transfers per page fault increased by an average of 4.32 
pages per fault across all benchmarks and memory 
sizes.  Again, the bulk of this increase was seen in the 
micro and synthetic benchmarks.  Among the real 
benchmarks, the average increase in page transfers per 
page fault was approximately 0.70.  Average page 
transfers per page fault in static demand prepaging was 
calculated to be 4.77, whereas the average for DAP 
was 9.72. 
 

Table 5.3: DAP Increase in Page Transfers  
per Page Fault 

Benchmark 500 1000 2000 5000 10000 Average
acroread 0.10 0.26 0.20 0.21 0.19
cc1 1.05 1.19 1.34 1.34 1.23
compress 2.23 2.25 2.29 2.32 2.27
sawtooth
go 0.32 0.45 0.45 0.45 0.42
lu 14.21 12.44 12.44 12.44 12.89
mm16 10.17 10.84 10.84 10.84 10.67
mm32 5.67 8.44 22.61 22.46 14.80
netscape 0.27 0.47 0.41 0.39 0.38
powerpoint 0.16 0.08 0.08 0.07 0.10
winword 0.17 0.31 0.31 0.26 0.26
Average 3.43 3.67 5.10 5.08 4.32

DAP Average Page Transfer Increase 
(per Main Memory Size in Pages)Benchmark 500 1000 2000 5000 10000 Average

acroread 0.10 0.26 0.20 0.21 0.19
cc1 1.05 1.19 1.34 1.34 1.23
compress 2.23 2.25 2.29 2.32 2.27
sawtooth
go 0.32 0.45 0.45 0.45 0.42
lu 14.21 12.44 12.44 12.44 12.89
mm16 10.17 10.84 10.84 10.84 10.67
mm32 5.67 8.44 22.61 22.46 14.80
netscape 0.27 0.47 0.41 0.39 0.38
powerpoint 0.16 0.08 0.08 0.07 0.10
winword 0.17 0.31 0.31 0.26 0.26
Average 3.43 3.67 5.10 5.08 4.32

DAP Average Page Transfer Increase 
(per Main Memory Size in Pages)
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Figure 5.6: DAP Increase in Page Transfers  

per Page Fault 
 

6. Evaluation 
The simulation data presented in the previous 

section show two main results: 1) that the proposed 
DAP policies reduced average page fault rates across a 

variety of memory reference traces, and 2) DAP also 
leads to an increase in page transfers, specifically 
average page transfer rates.  In order to evaluate the 
performance of DAP, both of these results must be 
weighed against each other. 

6.1.1 Page Fault Reduction vs. Page Transfer 
Increase 

In a direct comparison, the 32% reduction in page 
faults outweighs the 20% increase in page transfers by 
a significant amount.  This comparison can be 
misleading if not properly examined.  Although an 
increase in page transfers, in general, degrades 
performance, the increases seen in DAP can mostly be 
attributed to an increase in average page transfer rate 
(average page transfers per page fault).  So, although 
page transfers have increased, page faults have 
decreased.  In fact, page transfers per page fault 
increased by an average of 4.32 pages, or 
approximately 104% relative to static demand 
prepaging.  This means that DAP requires 
approximately 100% more disk bandwidth than static 
demand prepaging. 

Although this may seem alarming, one must 
consider and compare the implications of decreased 
disk latency at the expense of increased bandwidth 
utilization in order to fully evaluate the reported 
results.  As previously mentioned, disk bandwidths are 
increase at about four times the rate in which disk 
latencies are decreasing on a year-by-year basis.  This 
means that reductions in disk access events should be 
weighed more heavily than increased utilization of disk 
bandwidth in a comparative evaluation of performance 
enhancement.  It is important to note, however, that the 
effect of an increase in average page transfer rate on 
disk latency is highly dependant on the degree in which 
pages can be clustered on the disk.  Page clustering on 
storage disks is a widely researched topic that will not 
be explored in this paper. 

6.1.2 The Effects of Main Memory Size 
As Figure 5.1 shows, the average page fault 

reduction across all benchmarks increased, to an extent, 
with main memory size.  It is intuitive that page faults 
are likely to decrease under any paging policy as main 
memory size increases.  It is not so intuitive, however, 
that page fault reduction – a measure of the degree to 
which page faults are reduced relative to a static 
prepaging policy – increases with main memory size, 
as was shown.  It is undoubtedly a desirable result 
nonetheless. 

Just as desirable of an attribute of DAP is the fact 
that no such trend exists with average page transfer 
increase.  As Figure 5.5 shows, average page transfer 
increase did not grow with main memory size.   
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6.1.3 Overall Performance 
The overall performance of my proposed DAP 

scheme met my expectations.  It was evident that the 
prepage parameters were being dynamically adapted to 
exploit trace predictability and resource state.  Figures 
6.1 and 6.2 show an example of DAP’s demonstrated 
ability to adapt to trends in the memory reference 
stream.  In Figure 6.1, a constant density of page faults 
can be observed throughout the execution of the 
sawtooth reference trace.  In Figure 6.2, however, DAP 
is successfully able to adapt its prepage parameters to 
reduce page faults.  In fact, page fault reduction only 
increases as the trace continues to execute. 

As previously mentioned, the average page fault 
reduction for real benchmarks was observed to be 
approximately 1.5%.  This includes the go memory 
trace in which DAP actually caused an increase in page 

faults.  The go benchmark had an average page fault 
rate of 4.275 × 10-5 faults per reference under static 
demand prepaging, but an average of 4.863 × 10-5 
under DAP, an increase of 13.74%.  The go benchmark 
was the only benchmark used in this project in which 
the application of DAP actually increased the average 
page fault rate.  This demonstrates DAP’s potential for 
an undesired impact on virtual memory management. 

Despite this anomalous increase in page faults, a 
1.5% average reduction in page fault rate should not be 
considered insignificant.  When page references can 
reach practically endless numbers, during the indefinite 
execution of one or many workloads, an average page 
fault rate reduction of 1.5% translates to a substantial 
enhancement.     
 

 

 
Figure 6.1: Memory Reference Trace Results under Static Parameter Mode 
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Figure 6.2: Memory Reference Trace Results under DAP 

 

7. Conclusion 
The target environment for dynamically adaptive 

prepaging is not one with a single executing program, 
however.  So, in a sense, the simulations performed on 
uni-programmed memory reference traces fail to 
demonstrate (at least directly) any potential benefits 
DAP concepts would present in a more real-world 
scenario of multi-programmed or VM workloads.  In 
fact, the simulation results seem to show a correlation 
between memory reference trace range and average 
page fault rate reduction that might suggest that DAP 
would not perform as well in multi-programmed 
environments.   

Table 5.1 shows that DAP results in an average 
page fault rate reduction of 1.97% for the winword 
benchmark, yet only a 0.32% average reduction for the 
netscape trace, a trace with a larger range of memory 
references.  Since it is likely that multi-programmed 
and VM workloads would have a much higher 
reference range relative to a uni-programmed 
workload, this data suggests that, if this trend is 
maintained, DAP-induced page fault rate reduction 

would not be nearly as significant in the multi-
programmed and VM environments. 

Despite what empirical data might suggest, the 
significant performance enhancements seen in the 
simulation results warrant a further investigation into 
DAP’s performance with multi-programmed and VM 
workloads.  Although DAP increases average page 
transfer rates, this can be effectively neglected with 
increasing disk bandwidths.  What is not negligible is 
the reduction in page fault-induced disk accesses 
enabled by dynamically adaptive prepaging.  Avoiding 
even the smallest amount of disk accesses provides 
significant performance enhancement. 

Finally, it is in my judgment that the overhead and 
complexity associated with the necessary kernel-level 
DAP implementations do not negate the benefits of the 
reduction in disk accesses.  Still, more efficient 
implementations would of course be favorable. 
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8. Future Work 
The results of this research have not only shown 

the costs and benefits of dynamically adaptive 
prepaging, they have also provided insight into what 
may be necessary for more effective concepts.  The 
following are areas for possible expansion to the 
concept of DAP in an effort for a more effective 
prepaging system.  

8.1 Degeneration–resistant Adaptation 
Perhaps the most detrimental consequence of 

dynamically adaptive prepaging is its potential to 
degenerate performance relative to a static demand 
prepaging (or demand paging) scheme.  If safeguards 
could somehow be integrated into a DAP scheme that 
would limit, if not eliminate, the potential for 
performance degradation, then such a scheme would be 
vastly superior to any current proposals. 

Such a scheme is, to a certain extent, 
counterproductive.  For it is the vary attributes of the 
system that are made dynamic to provide the potential 
for performance improvement that also provide the 
potential for degradation.  Still, it seems viable to 
develop a dynamic prepaging scheme that at least 
limits the potential for performance degeneration while 

still maintaining the benefits of dynamic parameter 
adaptation.  

8.2 Compulsory Fault Prevention 
The simulation results presented in this paper 

show that a significant portion of the page faults under 
a dynamically adaptive prepaging scheme (or any 
paging scheme for that matter) are compulsory – page 
faults that occurred because the demanded pages had 
never been referenced prior to the fault.  Figure 8.1 
shows the DAP page fault trace for the winword 
benchmark.  Notice the preponderance of page faults 
near the start of the trace simulation.   

Cache hierarchies mitigate such misses through 
prefetching, or the fetching of cache blocks prior to 
being referenced in anticipation that they soon will be.  
This concept is somewhat similar to that of prepaging.  
Prepaging differs from prefetching in a slight but 
significant detail however.  Prepaging is conceptually a 
reactionary tactic, whereas prefetching is more 
proactive.  Although the incredibly high latency of disk 
accesses makes a compelling argument against any sort 
of proactive prepaging policy, the potential for a 
significant reduction in page faults is reason enough for 
at least a cursory feasibility analysis. 
 

 
Figure 8.1: winword Page Reference Trace
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Appendix A – Memory Reference Profiles 
 
acroread Memory Reference Profile:  

 
 

cc1 Memory Reference Profile:  
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compress95 Memory Reference Profile:  

 
 

sawtooth Memory Reference Profile:  

 
 

go Memory Reference Profile:  
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lu Memory Reference Profile:  

 
 

mm16 Memory Reference Profile:  

 
 

mm32 Memory Reference Profile:  
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netscape Memory Reference Profile:  

 
 

powerpoint Memory Reference Profile:  

 
 

winword Memory Reference Profile: 
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Appendix B – DAPsim Source Code 

 
LRU Page Queue Entry Class: LRU_pageQ_entry.h 
#include <string> 
#include <iostream> 
#include <fstream> 
#include <vector> 
#include <queue> 
#include <list> 
#include <map> 
#include <math.h> 
 
#include "main.h" 
 
using namespace std; 
 
class LRU_pageQ_entry { 
private: 
 unsigned long int pageNumber; 
 int lruValue; 
 bool resident; 
 //int histValue; 
 
public: 
 LRU_pageQ_entry(); 
 LRU_pageQ_entry(unsigned long int newPageNumber, int newLruValue, bool newResidency); 
 
 void setPageNumber(unsigned long int newPageNumber); 
 void setLRUValue(int newLruValue); 
 void setResidency(bool newResidency); 
 //void setHistValue(int newHistValue); 
 
 unsigned long int getPageNumber(void); 
 int getLRUValue(void); 
 bool getResidency(void); 
 //int getHistValue(void); 
 
 //void incHistValue(void); 
 
}; 
 
 

LRU Page Queue Entry Source: LRU_pageQ_entry.c 
#include "main.h" 
#include "LRU_pageQ_entry.h" 
 
LRU_pageQ_entry::LRU_pageQ_entry() 
{ 
 pageNumber = 0; 
 lruValue = 0; 
 resident = true; 
 //histValue = 0; 
} 
LRU_pageQ_entry::LRU_pageQ_entry(unsigned long int newPageNumber, int newLruValue, bool 
newResidency) 
{ 
 pageNumber = newPageNumber; 
 lruValue = newLruValue; 
 resident = newResidency; 
 //histValue = newHistValue; 
} 
void LRU_pageQ_entry::setPageNumber(unsigned long int newPageNumber) 
{ 
 pageNumber = newPageNumber; 
} 
void LRU_pageQ_entry::setLRUValue(int newLruValue) 
{ 
 lruValue = newLruValue; 
} 
void LRU_pageQ_entry::setResidency(bool newResidency) 
{ 
 resident = newResidency; 
} 
unsigned long int LRU_pageQ_entry::getPageNumber(void) 
{ 
 return pageNumber; 
} 
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int LRU_pageQ_entry::getLRUValue(void) 
{ 
 return lruValue; 
} 
bool LRU_pageQ_entry::getResidency(void) 
{ 
 return resident; 
} 
 

LRU Page Queue Class: LRU_pageQ.h 
#ifndef LRU_PAGEQ_H_ 
#define LRU_PAGEQ_H_ 
 
#include <string> 
#include <iostream> 
#include <fstream> 
#include <vector> 
#include <queue> 
#include <list> 
#include <map> 
#include <math.h> 
 
#include "main.h" 
#include "LRU_pageQ_entry.h" 
 
using namespace std; 
 
class LRU_pageQ { 
private: 
 int size; 
 int maxSize; 
 list<LRU_pageQ_entry> queue; 
 LRU_pageQ_entry LRU_entry; 
 LRU_pageQ_entry MRU_entry; 
 
public: 
 LRU_pageQ(); 
 LRU_pageQ(int newMaxSize); 
 
 void setMaxSize(int newMaxSize); 
 
 int getSize(void); 
 int getMaxSize(void); 
 LRU_pageQ_entry getLRU_entry(void); 
 LRU_pageQ_entry getMRU_entry(void); 
 
 void pushMRU(unsigned long int newPage); 
 LRU_pageQ_entry popLRU(void); 
 
 //bool referenceUsedPage(long int pageNumber); 
 //LRU_pageQ_entry referencePrepagedPage(long int pageNumber); 
 
 void addUsedPage(unsigned long int newPage); 
 void addPrepagedPage(unsigned long int newPage); 
 
 void evictPage(void); 
 
 list<LRU_pageQ_entry> * getQueue(void); 
 
 bool pagePresentInQ(unsigned long int pageNumber); 
}; 
 
#endif 
 

LRU Page Queue Source: LRU_pageQ.c 
#include "main.h" 
#include "LRU_pageQ.h" 
 
LRU_pageQ::LRU_pageQ() 
{ 
 size = 0; 
 maxSize = DEFAULT_MAX_MEM_SIZE; 
} 
LRU_pageQ::LRU_pageQ(int newMaxSize) 
{ 
 size = 0; 
 maxSize = newMaxSize; 
} 
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void LRU_pageQ::setMaxSize(int newMaxSize) 
{ 
 maxSize = newMaxSize; 
} 
int LRU_pageQ::getSize(void) 
{ 
 size = queue.size(); 
 return size; 
} 
int LRU_pageQ::getMaxSize(void) 
{ 
 return maxSize; 
} 
LRU_pageQ_entry LRU_pageQ::getLRU_entry(void) 
{ 
 return queue.back(); 
} 
LRU_pageQ_entry LRU_pageQ::getMRU_entry(void) 
{ 
 return queue.front(); 
} 
void LRU_pageQ::pushMRU(unsigned long int newPage) 
{ 
 if ((queue.size() + 1) > maxSize) return;  
 LRU_pageQ_entry newEntry; 
 newEntry.setPageNumber(newPage); 
 newEntry.setLRUValue(0); 
 newEntry.setResidency(true); 
 //newEntry.setHistValue(0); 
 queue.push_front(newEntry); 
 
 // record new queue size 
 size = queue.size();  
} 
LRU_pageQ_entry LRU_pageQ::popLRU(void) 
{ 
 LRU_pageQ_entry LRUentry = queue.back(); 
 queue.pop_back(); 
 
 // record new queue size 
 size = queue.size(); 
 
 return LRUentry; 
} 
void LRU_pageQ::evictPage(void) 
{ 
 popLRU(); 
 
 // record new queue size 
 size = queue.size();  
} 
list<LRU_pageQ_entry> * LRU_pageQ::getQueue(void) 
{ 
 return &queue; 
} 
bool LRU_pageQ::pagePresentInQ(unsigned long int pageNumber) 
{ 
 bool pagePresent = false; 
 list<LRU_pageQ_entry>::iterator position; 
    for (position = queue.begin(); position != queue.end(); ++position) { 
        if ((*position).getPageNumber() == pageNumber) { 
   pagePresent = true; 
   break; 
  } 
    } 
  
 return pagePresent; 
} 
 

Used Page Queue Class: UsedPageQ.h 
#include <string> 
#include <iostream> 
#include <fstream> 
#include <vector> 
#include <queue> 
#include <list> 
#include <map> 
#include <math.h> 
 
#include "main.h" 



Morrison                              Appendix B 24

#ifndef LRU_PAGEQ_H_ 
#include "LRU_pageQ.h" 
#endif //LRU_PAGEQ_H_ 
 
using namespace std; 
 
class UsedPageQ { 
private: 
 int size; 
 int maxSize; 
 int minSize; 
 LRU_pageQ ResidentQ; 
 LRU_pageQ NonResidentQ; 
 int histogram[DEFAULT_MAX_MEM_SIZE]; 
 
public: 
 UsedPageQ(); 
 
 void setMaxSize(int newMaxSize); 
 void setMinSize(int newMinSize); 
 
 int getSize(void); 
 int getMaxSize(void); 
 int getMinSize(void); 
 
 bool referencePage(unsigned long int pageNumber); 
 
 void addPage(unsigned long int newPage); 
 
 void evictPage(void); 
 void removeNonResidentPage(unsigned long int pageNumber); 
 
 void printQueueEntries(void); 
 
 void clearHistogram(void); 
 void incHistogram(int index); 
 int findHistogramIndex(unsigned long int pageNumber); 
 void printHistogram(void); 
 void decayHistogram(double decayValue); 
 int getHistogramEntry(int index); 
 
 bool pagePresentInResidentQ(unsigned long int pageNumber); 
 bool pagePresentInNonResidentQ(unsigned long int pageNumber); 
 
 long int getMRUPageNumber(void); 
}; 
 
 

Used Page Queue Source: UsedPageQ.c 
#include "main.h" 
#include "UsedPageQ.h" 
 
int debugModeUsed = DEBUG_MODE; 
 
UsedPageQ::UsedPageQ() 
{ 
 size = 0; 
 maxSize = DEFAULT_MAX_MEM_SIZE; 
 ResidentQ.setMaxSize(maxSize); 
 NonResidentQ.setMaxSize(DEFAULT_MAX_MEM_SIZE); 
 clearHistogram(); 
} 
 
void UsedPageQ::setMaxSize(int newMaxSize) 
{ 
 int currentSize = getSize(); 
 maxSize = newMaxSize; 
 ResidentQ.setMaxSize(maxSize); 
 //if (debugModeUsed == DEBUG_4) cout << "Used Queue Max Size set to: " << ResidentQ.getMaxSize() 
<< endl; 
 
 // If New Max Size is less than old, remove extra pages 
 int elementNum; 
 int numOfPagesToRemove = 0; 
 if (newMaxSize < currentSize) { 
  numOfPagesToRemove = currentSize - newMaxSize; 
  for (elementNum = 0; elementNum < numOfPagesToRemove; ++elementNum) { 
   NonResidentQ.pushMRU((ResidentQ.popLRU()).getPageNumber()); 
  } 
 } 
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} 
 
void UsedPageQ::setMinSize(int newMinSize) 
{ 
 minSize = newMinSize; 
} 
 
int UsedPageQ::getSize(void) 
{ 
 size = ResidentQ.getSize(); 
 return size; 
} 
 
int UsedPageQ::getMaxSize(void) 
{ 
 return maxSize; 
} 
 
int UsedPageQ::getMinSize(void) 
{ 
 return minSize; 
} 
 
bool UsedPageQ::referencePage(unsigned long int pageNumber) 
{ 
 bool pageHit = false; // Default = Page Fault 
 
 int elementNum = 0; 
 LRU_pageQ_entry entryReferenced; 
 list<LRU_pageQ_entry>::iterator position; 
    for (position = ResidentQ.getQueue()->begin(); position != ResidentQ.getQueue()->end(); 
++position) { 
        if ((*position).getPageNumber() == pageNumber) { 
   pageHit = true; 
   incHistogram(elementNum); 
   break; 
  } 
  elementNum++; 
    } 
 // If pageNumber not in Resident Queue, mark as Page Fault 
 if (!pageHit) { 
  // Check Non-Resident Queue for page 
  elementNum = maxSize; 
  for (position = NonResidentQ.getQueue()->begin(); position != NonResidentQ.getQueue()->end(); 
++position) { 
      if ((*position).getPageNumber() == pageNumber) { 
    incHistogram(elementNum); 
    removeNonResidentPage((*position).getPageNumber()); 
    break; 
   } 
   elementNum++; 
  } 
 
  return pageHit; 
 } 
  
 entryReferenced = *position; 
 ResidentQ.getQueue()->erase(position); 
 ResidentQ.getQueue()->push_front(entryReferenced); 
 
 return pageHit; 
} 
 
void UsedPageQ::addPage(unsigned long int newPage) 
{ 
 // Check if Eviction is necessary 
 if ((ResidentQ.getSize() + 1) > maxSize) {  
  //Evict LRU Page 
  evictPage(); 
 } 
 ResidentQ.pushMRU(newPage); 
 // Update size 
 size = ResidentQ.getSize(); 
} 
 
void UsedPageQ::evictPage(void) 
{ 
 LRU_pageQ_entry evictedPage = ResidentQ.popLRU(); 
 size = ResidentQ.getSize(); 
 NonResidentQ.pushMRU(evictedPage.getPageNumber()); 
} 
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void UsedPageQ::removeNonResidentPage(unsigned long int pageNumber) 
{ 
 list<LRU_pageQ_entry>::iterator position; 
    for (position = NonResidentQ.getQueue()->begin(); position != NonResidentQ.getQueue()->end(); 
++position) { 
        if ((*position).getPageNumber() == pageNumber) { 
   // Remove Page 
   NonResidentQ.getQueue()->erase(position); 
   return; 
  } 
    } 
} 
 
void UsedPageQ::printQueueEntries(void) 
{ 
 cout << "Used Page Queue:\n"; 
 cout << "Resident Queue:\n"; 
 cout << "\tPage #\tHist Value\n"; 
 cout << "\t------\t----------\n"; 
  
 int elementNum = 0; 
 list<LRU_pageQ_entry>::iterator position; 
    for (position = ResidentQ.getQueue()->begin(); position != ResidentQ.getQueue()->end(); 
++position) { 
  if (elementNum == 0) cout << "    MRU\t"; 
  else if (elementNum == (ResidentQ.getSize()-1)) cout << "    LRU\t"; 
  else cout << "\t"; 
  cout << (*position).getPageNumber() << "\t"; 
  //cout << (*position).getHistValue() << "\n"; 
  cout << histogram[elementNum] << "\n"; 
  elementNum++; 
 } 
 
 //elementNum = ResidentQ.getSize() + 1; 
 elementNum = maxSize; 
 cout << "Non-Resident Queue:\n"; 
 cout << "\tPage #\tHist Value\n"; 
 cout << "\t------\t----------\n"; 
 cout << "    MRU\t"; 
 for (position = NonResidentQ.getQueue()->begin(); position != NonResidentQ.getQueue()->end(); 
++position) { 
  if (elementNum == (NonResidentQ.getSize()-1)) cout << "    LRU\t"; 
  else cout << "\t"; 
  cout << (*position).getPageNumber() << "\t"; 
  //cout << (*position).getHistValue() << "\n"; 
  cout << histogram[elementNum] << "\n"; 
  elementNum++; 
 } 
} 
 
void UsedPageQ::clearHistogram(void) 
{ 
 int index; 
 //int maxIndex = ResidentQ.getMaxSize() + NonResidentQ.getMaxSize(); 
 int maxIndex = DEFAULT_MAX_MEM_SIZE; 
 for (index = 0; index < maxIndex; index++) { 
  histogram[index] = 0; 
 } 
} 
 
void UsedPageQ::incHistogram(int index) 
{ 
 if (index >= DEFAULT_MAX_MEM_SIZE) { 
  if (debugModeUsed == DEBUG_2) cout << "ERROR: Histogram index out of bounds!\n"; 
  return; 
 } 
 histogram[index] += 1; 
} 
 
bool UsedPageQ::pagePresentInResidentQ(unsigned long int pageNumber) 
{ 
 bool pagePresent = false; 
 list<LRU_pageQ_entry>::iterator position; 
    for (position = ResidentQ.getQueue()->begin(); position != ResidentQ.getQueue()->end(); 
++position) { 
        if ((*position).getPageNumber() == pageNumber) { 
   pagePresent = true; 
   break; 
  } 
    } 
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 return pagePresent; 
} 
 
bool UsedPageQ::pagePresentInNonResidentQ(unsigned long int pageNumber) 
{ 
 bool pagePresent = false; 
 list<LRU_pageQ_entry>::iterator position; 
    for (position = NonResidentQ.getQueue()->begin(); position != NonResidentQ.getQueue()->end(); 
++position) { 
        if ((*position).getPageNumber() == pageNumber) { 
   pagePresent = true; 
   break; 
  } 
    } 
  
 return pagePresent; 
} 
 
long int UsedPageQ::getMRUPageNumber(void) 
{ 
 return (ResidentQ.getMRU_entry()).getPageNumber(); 
} 
 
int UsedPageQ::findHistogramIndex(unsigned long int pageNumber) 
{ 
 int index = DEFAULT_MAX_MEM_SIZE - 1; 
 list<LRU_pageQ_entry>::iterator position; 
 int elementNum = ResidentQ.getMaxSize(); 
 for (position = NonResidentQ.getQueue()->begin(); position != NonResidentQ.getQueue()->end(); 
++position) { 
  if ((*position).getPageNumber() == pageNumber) { 
   index = elementNum; 
   return index; 
  } 
  elementNum++; 
 } 
 if (debugModeUsed == DEBUG_2) cout << "ERROR: Histogram Index not found!\n"; 
 return index; 
} 
 
void UsedPageQ::decayHistogram(double decayValue) 
{ 
 int index; 
 int maxIndex = DEFAULT_MAX_MEM_SIZE; 
 for (index = 0; index < maxIndex; index++) { 
  histogram[index] = (double)histogram[index] * decayValue; 
 } 
} 
 
void UsedPageQ::printHistogram(void) 
{ 
 cout << "Used Page Queue Histogram:\n"; 
 int index; 
 int maxIndex = ResidentQ.getMaxSize() + NonResidentQ.getSize(); 
 for (index = 0; index < maxIndex; index++) { 
  cout << histogram[index] << endl; 
 } 
} 
 
int UsedPageQ::getHistogramEntry(int index) 
{ 
 if (index >= DEFAULT_MAX_MEM_SIZE) { 
  if (debugModeUsed >= DEBUG_2) cout << "ERROR: Histogram index out of bounds!\n"; 
  return -1; 
 } 
 return histogram[index]; 
} 
 
 

Prepaged Page Queue Class: PrepagedPageQ.h 
#include <string> 
#include <iostream> 
#include <fstream> 
#include <vector> 
#include <queue> 
#include <list> 
#include <map> 
#include <math.h> 
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#include "main.h" 
#ifndef LRU_PAGEQ_H_ 
#include "LRU_pageQ.h" 
#endif //LRU_PAGEQ_H_ 
 
using namespace std; 
 
class PrepagedPageQ { 
private: 
 int consumedAlloc; 
 int targetAlloc; 
 LRU_pageQ ResidentQ; 
 LRU_pageQ NonResidentQ; 
 LRU_pageQ DegreeQ; 
 int histogram[DEFAULT_MAX_MEM_SIZE]; 
 int degreeHistogram[DEFAULT_MAX_DEGREE + 2]; 
 
public: 
 PrepagedPageQ(); 
 PrepagedPageQ(int newTargetAlloc); 
 
 void setTargetAlloc(int newTargetAlloc); 
 
 int getConsumedAlloc(void); 
 int getTargetAlloc(void); 
 
 LRU_pageQ_entry referencePage(unsigned long int pageNumber); 
 
 void addPage(unsigned long int newPage); 
 
 void evictPage(void); 
 
 void printQueueEntries(void); 
 void printResidentQueueEntries(void); 
 
 void clearHistogram(void); 
 void clearDegreeHistogram(void); 
 void incHistogram(int index); 
 void decayHistogram(double decayValue); 
 void printHistogram(void); 
 int getHistogramEntry(int index); 
 
 bool pagePresentInQ(unsigned long int pageNumber); 
 
 void removeResidentPage(unsigned long int pageNumber); 
 void removeNonResidentPage(unsigned long int pageNumber); 
 
 void updateDegreeHistogram(unsigned long int pageNumber, int currentDegree); 
 void addDegreePage(unsigned long int newPage); 
 void incDegreeHistogram(int index); 
 int getDegreeHistogramEntry(int index); 
 void printDegreeQueue(int currentDegree); 
 int getDegreeQueueSize(void); 
}; 
 

Prepaged Page Queue Source: PrepagedPageQ.c 
#include "main.h" 
#include "PrepagedPageQ.h" 
 
int debugModePrepaged = DEBUG_MODE; 
 
PrepagedPageQ::PrepagedPageQ() 
{ 
 // Set Prepaged Target Allocation  
 targetAlloc = DEFAULT_PREPAGED_TARGET_ALLOC; 
 ResidentQ.setMaxSize(targetAlloc); 
 
 // Set Prepaged Consumed Allocation 
 consumedAlloc = 0; 
 
 clearHistogram(); 
 
 DegreeQ.setMaxSize(DEFAULT_MAX_DEGREE+2); 
} 
 
PrepagedPageQ::PrepagedPageQ(int newTargetAlloc) 
{ 
 // Set Prepaged Target Allocation  
 targetAlloc = newTargetAlloc; 
 ResidentQ.setMaxSize(targetAlloc); 
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 // Set Prepaged Consumed Allocation 
 consumedAlloc = 0; 
 
 clearHistogram(); 
 
 DegreeQ.setMaxSize(DEFAULT_MAX_DEGREE+2); 
} 
 
void PrepagedPageQ::setTargetAlloc(int newTargetAlloc) 
{ 
 int oldConsumedAlloc = getConsumedAlloc(); 
 
 if (newTargetAlloc > DEFAULT_MAX_PREPAGED_TARGET_ALLOC) targetAlloc = 
DEFAULT_MAX_PREPAGED_TARGET_ALLOC; 
 else if (newTargetAlloc < DEFAULT_MIN_PREPAGED_TARGET_ALLOC) targetAlloc = 
DEFAULT_MIN_PREPAGED_TARGET_ALLOC; 
 else targetAlloc = newTargetAlloc; 
 ResidentQ.setMaxSize(targetAlloc); 
 
 // If New Target Allocation is less than old consumed allocation, place extra pages into non-
resident queue 
 int elementNum; 
 int numOfPagesToRemove = 0; 
 if (newTargetAlloc < oldConsumedAlloc) { 
  numOfPagesToRemove = oldConsumedAlloc - newTargetAlloc; 
  for (elementNum = 0; elementNum < numOfPagesToRemove; ++elementNum) { 
   NonResidentQ.pushMRU(ResidentQ.popLRU().getPageNumber()); 
  } 
 } 
 
 // Reset Consumed Allocation 
 consumedAlloc = ResidentQ.getSize(); 
} 
 
int PrepagedPageQ::getConsumedAlloc(void) 
{ 
 // Refresh Consumed Allocation 
 consumedAlloc = ResidentQ.getSize(); 
 
 return consumedAlloc; 
} 
 
int PrepagedPageQ::getTargetAlloc(void) 
{ 
 return targetAlloc; 
} 
 
LRU_pageQ_entry PrepagedPageQ::referencePage(unsigned long int pageNumber) 
{ 
 LRU_pageQ_entry referencedPage; 
 bool pageHit = false; 
 
 // Check Resident Queue 
 int elementNum = 0; 
 list<LRU_pageQ_entry>::iterator position; 
 for (position = ResidentQ.getQueue()->begin(); position != ResidentQ.getQueue()->end(); 
++position) { 
  if ((*position).getPageNumber() == pageNumber) { 
   pageHit = true; 
   incHistogram(elementNum); 
   referencedPage = *position; 
   removeResidentPage(pageNumber); 
   return referencedPage; 
  } 
  else elementNum++; 
    } 
  
 // Check Non-Resident Queue (for purposes of updating histogram) 
 elementNum = targetAlloc; 
 for (position = NonResidentQ.getQueue()->begin(); position != NonResidentQ.getQueue()->end(); 
++position) { 
  if (elementNum >= DEFAULT_MAX_MEM_SIZE) break; 
  if ((*position).getPageNumber() == pageNumber) { 
   //cout << "Incrementing Prepage Histogram at " << elementNum << " for Non-Resident Page " 
<< (*position).getPageNumber() << endl; 
   incHistogram(elementNum); 
   break; 
  } 
  else elementNum++; 
    } 
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 // No page hit 
 referencedPage.setPageNumber(NULL); 
 
 return referencedPage; 
} 
 
void PrepagedPageQ::addPage(unsigned long int newPage) 
{ 
 // Check if already present in prepage queue 
 if (pagePresentInQ(newPage)) { 
  removeResidentPage(newPage); 
 } 
  
 // Check if Eviction is necessary 
 if ((ResidentQ.getSize() + 1) > targetAlloc) { //Evict LRU Page 
  evictPage(); 
 } 
 ResidentQ.pushMRU(newPage); 
 // Update Consumed Allocation 
 consumedAlloc = ResidentQ.getSize(); 
} 
 
void PrepagedPageQ::evictPage(void) 
{ 
 // Evict Page 
 // Add Evicted Page to NonResident Queue 
 NonResidentQ.pushMRU(ResidentQ.popLRU().getPageNumber()); 
 
 // Update Consumed Allocation 
 consumedAlloc = ResidentQ.getSize(); 
} 
 
void PrepagedPageQ::removeResidentPage(unsigned long int pageNumber) 
{ 
 list<LRU_pageQ_entry>::iterator position; 
    for (position = ResidentQ.getQueue()->begin(); position != ResidentQ.getQueue()->end(); 
++position) { 
        if ((*position).getPageNumber() == pageNumber) { 
   // Remove Page 
   ResidentQ.getQueue()->erase(position); 
   // Update Consumed Alloc 
   consumedAlloc = ResidentQ.getSize(); 
   return; 
  } 
    } 
} 
 
void PrepagedPageQ::removeNonResidentPage(unsigned long int pageNumber) 
{ 
 list<LRU_pageQ_entry>::iterator position; 
    for (position = NonResidentQ.getQueue()->begin(); position != NonResidentQ.getQueue()->end(); 
++position) { 
        if ((*position).getPageNumber() == pageNumber) { 
   // Remove Page 
   NonResidentQ.getQueue()->erase(position); 
   return; 
  } 
    } 
} 
 
void PrepagedPageQ::printQueueEntries(void) 
{ 
 cout << "Prepaged Page Queue:\n"; 
 cout << "Resident Queue:\n"; 
 cout << "Entry\tPage #\tHist Value\n"; 
 cout << "-----\t------\t----------\n"; 
  
 // Resident Queue Entries 
 int elementNum = 0; 
 list<LRU_pageQ_entry>::iterator position; 
    for (position = ResidentQ.getQueue()->begin(); position != ResidentQ.getQueue()->end(); 
++position) { 
  if (elementNum == 0) cout << elementNum + 1 << " MRU\t"; 
  else if (elementNum == (ResidentQ.getSize()-1)) cout << elementNum + 1 << " LRU\t"; 
  else cout << elementNum + 1 << "\t"; 
  cout << (*position).getPageNumber() << "\t"; 
  //cout << (*position).getHistValue() << "\n"; 
  cout << histogram[elementNum] << "\n"; 
  elementNum++; 
 } 
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 // NonResident Queue Entries 
 elementNum = targetAlloc; 
 cout << "Non-Resident Queue:\n"; 
 cout << "Entry\tPage #\tHist Value\n"; 
 cout << "-----\t------\t----------\n"; 
 for (position = NonResidentQ.getQueue()->begin(); position != NonResidentQ.getQueue()->end(); 
++position) { 
  if (elementNum == targetAlloc) cout << elementNum + 1 << " MRU\t"; 
  else if (elementNum == (targetAlloc + NonResidentQ.getSize() - 1)) cout << elementNum + 1 << " 
LRU\t"; 
  else cout << elementNum + 1 << "\t"; 
  cout << (*position).getPageNumber() << "\t"; 
  //cout << (*position).getHistValue() << "\n"; 
  if (elementNum < DEFAULT_MAX_MEM_SIZE) cout << histogram[elementNum] << "\n"; 
  else break; 
  elementNum++; 
 } 
} 
 
void PrepagedPageQ::printResidentQueueEntries(void) 
{ 
 cout << "Prepaged Page Queue:\n"; 
 cout << "Resident Queue:\n"; 
 cout << "Entry\tPage #\tHist Value\n"; 
 cout << "-----\t------\t----------\n"; 
  
 int elementNum = 0; 
 list<LRU_pageQ_entry>::iterator position; 
    for (position = ResidentQ.getQueue()->begin(); position != ResidentQ.getQueue()->end(); 
++position) { 
  if (elementNum == 0) cout << elementNum + 1 << " MRU\t"; 
  else if (elementNum == (ResidentQ.getSize()-1)) cout << elementNum + 1 << " LRU\t"; 
  else cout << elementNum + 1 << "\t"; 
  cout << (*position).getPageNumber() << "\t"; 
  //cout << (*position).getHistValue() << "\n"; 
  cout << histogram[elementNum] << "\n"; 
  elementNum++; 
 } 
} 
 
void PrepagedPageQ::clearHistogram(void) 
{ 
 int index; 
 for (index = 0; index < DEFAULT_MAX_MEM_SIZE; index++) { 
  histogram[index] = 0; 
 } 
} 
 
void PrepagedPageQ::clearDegreeHistogram(void) 
{ 
 int index; 
 for (index = 0; index < (DEFAULT_MAX_DEGREE + 2); index++) { 
  degreeHistogram[index] = 0; 
 } 
} 
 
void PrepagedPageQ::incHistogram(int index) 
{ 
 if (index >= DEFAULT_MAX_MEM_SIZE) { 
  if (debugModePrepaged == DEBUG_2) cout << "ERROR: Histogram index out of bounds!\n"; 
  return; 
 } 
 
 histogram[index] += 1; 
} 
 
void PrepagedPageQ::incDegreeHistogram(int index) 
{ 
 if (index > (DEFAULT_MAX_DEGREE + 1)) { 
  if (debugModePrepaged == DEBUG_2) cout << "ERROR: Degree histogram index out of bounds!\n"; 
  return; 
 } 
 
 degreeHistogram[index] += 1; 
} 
 
int PrepagedPageQ::getHistogramEntry(int index) 
{ 
 if (index >= DEFAULT_MAX_MEM_SIZE) { 
  if (debugModePrepaged == DEBUG_2) cout << "ERROR: Histogram index out of bounds!\n"; 
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  return -1; 
 } 
 
 return histogram[index]; 
} 
 
bool PrepagedPageQ::pagePresentInQ(unsigned long int pageNumber) 
{ 
 bool pagePresent = false; 
 list<LRU_pageQ_entry>::iterator position; 
    for (position = ResidentQ.getQueue()->begin(); position != ResidentQ.getQueue()->end(); 
++position) { 
        if ((*position).getPageNumber() == pageNumber) { 
   pagePresent = true; 
   break; 
  } 
    } 
  
 return pagePresent; 
} 
 
void PrepagedPageQ::decayHistogram(double decayValue) 
{ 
 int index; 
 for (index = 0; index < DEFAULT_MAX_MEM_SIZE; index++) { 
  histogram[index] = (double)histogram[index] * decayValue; //Truncation allowed 
 } 
} 
 
void PrepagedPageQ::printHistogram(void) 
{ 
 cout << "Prepaged Page Queue Histogram:\n"; 
 int index; 
 for (index = 0; index < targetAlloc; index++) { 
  cout << histogram[index] << endl; 
 } 
} 
 
void PrepagedPageQ::printDegreeQueue(int currentDegree) 
{ 
 cout << "Prepaged Degree Queue:\n"; 
 cout << "\tEntry\tHist\n"; 
 cout << "\t-----\t----\n"; 
 
 int index = 0; 
 list<LRU_pageQ_entry>::iterator position; 
    for (position = DegreeQ.getQueue()->begin(); position != DegreeQ.getQueue()->end(); ++position) 
{ 
  if (index > (currentDegree + 1)) break; 
  if (index == 0) cout << "MRU\t"; 
  else cout << "\t"; 
  cout << (*position).getPageNumber() << "\t" << degreeHistogram[index] << endl; 
  index++; 
 } 
} 
 
void PrepagedPageQ::updateDegreeHistogram(unsigned long int pageNumber, int currentDegree) 
{ 
 // Check Degree Queue 
 int elementNum = 0; 
 list<LRU_pageQ_entry>::iterator position; 
 for (position = DegreeQ.getQueue()->begin(); position != DegreeQ.getQueue()->end(); ++position) { 
  if (elementNum > (currentDegree + 1)) break; 
  else if ((*position).getPageNumber() == pageNumber) { 
   incDegreeHistogram(elementNum); 
  } 
  elementNum++; 
    } 
} 
 
void PrepagedPageQ::addDegreePage(unsigned long int newPage) 
{ 
 if ((DegreeQ.getSize() + 1) > DegreeQ.getMaxSize()) { //Evict LRU Page 
  DegreeQ.evictPage(); 
 } 
  
 DegreeQ.pushMRU(newPage); 
} 
 
int PrepagedPageQ::getDegreeHistogramEntry(int index) 
{ 
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 if (index > (DEFAULT_MAX_DEGREE + 1)) { 
  if (debugModePrepaged == DEBUG_2) cout << "ERROR: Degree histogram index out of bounds!\n"; 
  return 0; 
 } 
 
 return degreeHistogram[index]; 
} 
 
int PrepagedPageQ::getDegreeQueueSize(void) 
{ 
 return DegreeQ.getSize(); 
} 
 
 

Virtual Memory Management Unit Class: VirtualMMU.h 
#include <string> 
#include <iostream> 
#include <fstream> 
#include <vector> 
#include <queue> 
#include <list> 
#include <map> 
#include <math.h> 
 
#include "main.h" 
#include "UsedPageQ.h" 
#include "PrepagedPageQ.h" 
 
using namespace std; 
 
class VirtualMMU { 
private: 
 int MMSize;   // Size of Main Memory 
 int prepagedAlloc; // Max size of Prepaged Queue 
 int degree; 
 int predictionScheme; 
 int historySize; 
 UsedPageQ usedPageQ; 
 PrepagedPageQ prepagedPageQ; 
 
public: 
 // Prediction lists used to determine most effective prediction scheme 
 vector<unsigned long int> addressLocalPredictions; 
 vector<unsigned long int> recencyLocalPredictions; 
 vector<unsigned long int> stridePredictions; 
 vector<unsigned long int> hybridPredictions; 
 // Prediction histograms 
 int addressLocalHistogram[DEFAULT_MAX_DEGREE]; 
 int recencyLocalHistogram[DEFAULT_MAX_DEGREE]; 
 int strideHistogram[DEFAULT_MAX_DEGREE]; 
 int hybridHistogram[DEFAULT_MAX_DEGREE]; 
 
 // Global Variables 
 long int transfers; 
 double avg_transfer; 
 double transfer_rate; 
 
 VirtualMMU(); 
 VirtualMMU(int newMMSize, int newPrepagedAlloc, int newDegree, int newPredictionScheme); 
 
 void printVMMU(void); 
  
 void setMMSize(int newMMSize); 
 void setPrepagedAlloc(int newPrepagedAlloc); 
 void setDegree(int newDegree); 
 void setHistorySize(int newHistorySize); 
 
 int getMMSize(void); 
 int getPrepagedAlloc(void); 
 int getDegree(void); 
 int getHistorySize(void); 
 
 int incDegree(void); 
 int decDegree(void); 
 
 UsedPageQ * getUsedPageQ(void); 
 PrepagedPageQ * getPrepagedPageQ(void); 
 
 int handlePageRef(unsigned long int referencedPage, int preParamMode); 
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 vector<unsigned long int> generatePrepageList(unsigned long int referencedPage); 
 void printPrepageList(vector<unsigned long int> *prepageList); 
 void fetchPrepages(vector<unsigned long int> prepageList); 
 
 void updatePrepagedAlloc(void); 
 void updateDegree(void); 
 void updatePredictionScheme(void); 
 
 unsigned int calculateBenefit(int targetAlloc); 
 unsigned int calculateCost(int targetAlloc); 
 
 void initializePredictionHistograms(void); 
 void clearPredictionHistograms(void); 
 int calculateHistTotal(int histogram[]); 
 void updatePredictionHistograms(unsigned long int referencedPage); 
 void printPredictionHistograms(void); 
 void printPredictionLists(void); 
 
}; 
 
 

Virtual Memory Management Unit Source: VirtualMMU.c 
#include "main.h" 
#include "VirtualMMU.h" 
 
string predictionSchemes[] = {"Uninitialized","Address Local","Recency Local","Stride","Hybrid"}; 
 
// Global Variables 
int debugMode = DEBUG_MODE; 
int refNumber = 1; // Cummulative Reference Number 
int faultNumber = 1;// Cummulative Page Fault Number 
int decayPeriod = DEFAULT_DECAY_PERIOD;     // Period at which histograms are decayed 
int allocUpdatePeriod = DEFAULT_ALLOC_UPDATE_PERIOD; // Period at which the prepaged target 
allocation is updated 
double decayValue = (double)DEFAULT_DECAY_NUMERATOR/(double)DEFAULT_DECAY_DENOMINATOR; 
 
VirtualMMU::VirtualMMU() 
{ 
 MMSize = DEFAULT_MEM_SIZE; 
 prepagedAlloc = DEFAULT_PREPAGED_TARGET_ALLOC; 
 degree = DEFAULT_DEGREE; 
 predictionScheme = DEFAULT_PREDICTION_SCHEME; 
 
 usedPageQ.setMaxSize(MMSize - prepagedPageQ.getConsumedAlloc()); 
 usedPageQ.setMinSize(DEFAULT_MIN_USED_Q_SIZE); 
 prepagedPageQ.setTargetAlloc(prepagedAlloc); 
 
 initializePredictionHistograms(); 
 
 refNumber = 1; // Cummulative Reference Number 
 faultNumber = 1;// Cummulative Page Fault Number 
} 
 
VirtualMMU::VirtualMMU(int newMMSize, int newPrepagedAlloc, int newDegree, int newPredictionScheme) 
{ 
 MMSize = newMMSize; 
 prepagedAlloc = newPrepagedAlloc; 
 degree = newDegree; 
 predictionScheme = newPredictionScheme; 
 
 usedPageQ.setMaxSize(MMSize - prepagedPageQ.getConsumedAlloc()); 
 usedPageQ.setMinSize(DEFAULT_MIN_USED_Q_SIZE); 
 prepagedPageQ.setTargetAlloc(prepagedAlloc); 
 
 initializePredictionHistograms(); 
 
 refNumber = 1; // Cummulative Reference Number 
 faultNumber = 1;// Cummulative Page Fault Number 
} 
void VirtualMMU::printVMMU() 
{ 
 cout << "VMMU" << endl; 
 cout << "--------" << endl; 
 cout << "Main Memory Size: " << MMSize << endl; 
 cout << "Prepaged Allocation: " << prepagedAlloc << endl; 
 cout << "Degree: " << degree << endl; 
 cout << "Prediciton Scheme: " << predictionScheme << endl; 
 cout << "History Size: " << historySize << endl; 
 usedPageQ.printQueueEntries(); 
 cout << endl << endl; 
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 prepagedPageQ.printQueueEntries(); 
} 
void VirtualMMU::setMMSize(int newMMSize) 
{ 
 MMSize = newMMSize; 
 
 usedPageQ.setMaxSize(MMSize - prepagedPageQ.getConsumedAlloc()); 
} 
void VirtualMMU::setPrepagedAlloc(int newPrepagedAlloc) 
{ 
 if (newPrepagedAlloc > DEFAULT_MAX_PREPAGED_TARGET_ALLOC) { 
  prepagedAlloc = DEFAULT_MAX_PREPAGED_TARGET_ALLOC; 
 } 
 else if (newPrepagedAlloc < DEFAULT_MIN_PREPAGED_TARGET_ALLOC) { 
  prepagedAlloc = DEFAULT_MIN_PREPAGED_TARGET_ALLOC; 
 } 
 else { 
  prepagedAlloc = newPrepagedAlloc; 
 } 
 
 usedPageQ.setMaxSize(MMSize - prepagedPageQ.getConsumedAlloc()); 
 prepagedPageQ.setTargetAlloc(prepagedAlloc); 
} 
void VirtualMMU::setDegree(int newDegree) 
{ 
 degree = newDegree; 
} 
void VirtualMMU::setHistorySize(int newHistorySize) 
{ 
 historySize = newHistorySize; 
} 
int VirtualMMU::getMMSize(void) 
{ 
 return MMSize; 
} 
int VirtualMMU::getPrepagedAlloc(void) 
{ 
 return prepagedAlloc; 
} 
int VirtualMMU::getDegree(void) 
{ 
 return degree; 
} 
int VirtualMMU::incDegree(void) 
{ 
 int newDegree = degree + 1; 
 if (newDegree > DEFAULT_MAX_DEGREE) newDegree = DEFAULT_MAX_DEGREE; 
 return newDegree; 
} 
int VirtualMMU::decDegree(void) 
{ 
 int newDegree = degree - 1; 
 if (newDegree < DEFAULT_MIN_DEGREE) newDegree = DEFAULT_MIN_DEGREE; 
 return newDegree; 
} 
int VirtualMMU::getHistorySize(void) 
{ 
 return historySize; 
} 
 
UsedPageQ * VirtualMMU::getUsedPageQ(void) 
{ 
 return &usedPageQ; 
} 
 
PrepagedPageQ * VirtualMMU::getPrepagedPageQ(void) 
{ 
 return &prepagedPageQ; 
} 
 
int VirtualMMU::handlePageRef(unsigned long int referencedPage, int preParamMode) 
{ 
 if (debugMode == DEBUG_2) { 
  cout << "----------------------------\n"; 
  cout << "Referencing Page #" << referencedPage << endl; 
  cout << "----------------------------\n"; 
 } 
 
 int refResult = PAGE_FAULT; 
 LRU_pageQ_entry prepagedPage; 
 vector<unsigned long int> prepageList; 
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 int prepageParameterMode = preParamMode; 
 
 // Check if page fault // 
 // Check Used Page Queue 
 if (usedPageQ.referencePage(referencedPage)) { 
  // Page hit in Used Page Queue, no further action required 
  if (debugMode == DEBUG_2) cout << "Page hit in Used Page Queue\n"; 
  refResult = PAGE_HIT; 
 } 
 else { // Check Prepaged Page Queue 
  prepagedPageQ.updateDegreeHistogram(referencedPage, degree); 
  updatePredictionHistograms(referencedPage); 
  prepagedPage = prepagedPageQ.referencePage(referencedPage); 
  usedPageQ.setMaxSize(MMSize - prepagedPageQ.getConsumedAlloc()); //Update Used Page Q MaxSize 
  // Check if page fault 
  if (prepagedPage.getPageNumber() == NULL) { // Page Fault in Prepaged Queue 
   // PAGE FAULT // 
   refResult = PAGE_FAULT; 
 
   // Generate Prepage List 
   prepageList = generatePrepageList(referencedPage); 
 
   // Add referenced page to Used Page Queue 
   usedPageQ.addPage(referencedPage); 
   ++transfers; 
 
   // Fetch Prepaged Pages 
   fetchPrepages(prepageList); 
 
   // Update Prepage Parameters 
   if (prepageParameterMode == DYNAMIC_PREPAGE_PARAMETERS || prepageParameterMode == 
DYNAMIC_PREPAGE_ALLOCATION) {  
    // Update Target Allocation 
    if ((faultNumber % allocUpdatePeriod) == 0) { 
     if (refNumber > DEFAULT_ALLOC_STARTUP_PERIOD) updatePrepagedAlloc(); 
    } 
   } 
 
   if (prepageParameterMode == DYNAMIC_PREPAGE_PARAMETERS || prepageParameterMode == 
DYNAMIC_PREDICTION_METHOD) {  
    // Update Prediction Scheme 
    updatePredictionScheme(); 
   } 
    
   if (prepageParameterMode == DYNAMIC_PREPAGE_PARAMETERS || prepageParameterMode == 
DYNAMIC_DEGREE) {  
    // Update Degree 
    if (debugMode == DEBUG_5) prepagedPageQ.printDegreeQueue(degree); 
    updateDegree(); 
   } 
 
   ++faultNumber; 
  } 
  else {          // Push referenced page into Used Queue 
   if (debugMode == DEBUG_2) { 
    cout << "Page hit in Prepaged Page Queue\n"; 
    cout << "Transferring page from Prepaged Page Queue to Used Page Queue\n"; 
   } 
 
   refResult = PAGE_HIT; 
   usedPageQ.addPage(prepagedPage.getPageNumber()); 
  } 
 } 
 
 if (debugMode == DEBUG_2) { 
  usedPageQ.printQueueEntries(); 
  cout << "\n\n"; 
  prepagedPageQ.printQueueEntries(); 
  cout << "\n\n"; 
 } 
 
 // Periodically Decay Histogram 
 if ((refNumber % decayPeriod) == 0) { 
  // Perform Decay 
  prepagedPageQ.decayHistogram(decayValue); 
  usedPageQ.decayHistogram(decayValue); 
 } 
 refNumber++; 
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 return refResult; 
} 
 
vector<unsigned long int> VirtualMMU::generatePrepageList(unsigned long int referencedPage) 
{ 
 if (debugMode == DEBUG_2) { 
  cout << "Generating Prepage List using " << predictionSchemes[predictionScheme] << " 
prediciton ... \n"; 
  cout << "Referenced page = " << referencedPage << endl; 
 } 
 vector<unsigned long int> prepageList; 
 vector<unsigned long int> degreeList; 
 int predictionNumber; 
 unsigned long int currentPrediction; 
 
 // Address Local Prediction // 
 vector<unsigned long int> addressLocalPredictionList; 
 vector<unsigned long int> addressLocalDegreeList; 
 for (predictionNumber = 1; predictionNumber <= (degree+2); predictionNumber++) { 
  // Make predicitons 
  if (predictionNumber == 1) currentPrediction = referencedPage + 1; 
  else { 
   if ((predictionNumber % 2) == 0) { //If Even Prediction Number 
    currentPrediction = currentPrediction - predictionNumber; 
   } 
   else {        //If Odd Prediction Number 
    currentPrediction = currentPrediction + predictionNumber; 
   } 
  } 
  //cout << "Adding prediction: " << currentPrediction << endl; 
  if (predictionNumber <= degree) addressLocalPredictionList.push_back(currentPrediction); 
  addressLocalDegreeList.push_back(currentPrediction); 
 } 
 addressLocalPredictions = addressLocalPredictionList; 
 
 // Recency Local Prediction // 
 vector<unsigned long int> recencyLocalPredictionList; 
 vector<unsigned long int> recencyLocalDegreeList; 
 for (predictionNumber = 1; predictionNumber <= (degree+2); predictionNumber++) { 
  if (predictionNumber <= degree) recencyLocalPredictionList.push_back(0); 
  recencyLocalDegreeList.push_back(0); 
 } 
 recencyLocalPredictions = recencyLocalPredictionList; 
 
 // Stride Prediction // 
 vector<unsigned long int> stridePredictionList; 
 vector<unsigned long int> strideDegreeList; 
 long int stride; 
 //calcualate stride 
 stride = referencedPage - usedPageQ.getMRUPageNumber(); 
 //make predictions 
 currentPrediction = referencedPage; 
 for (predictionNumber = 1; predictionNumber <= (degree+2); predictionNumber++) { 
  // Make predicitons 
  currentPrediction += stride; 
  if (predictionNumber <= degree) stridePredictionList.push_back(currentPrediction); 
  strideDegreeList.push_back(currentPrediction); 
 } 
 stridePredictions = stridePredictionList; 
 
 // Hybrid Prediction // 
 vector<unsigned long int> hybridPredictionList; 
 vector<unsigned long int> hybridDegreeList; 
 for (predictionNumber = 1; predictionNumber <= (degree+2); predictionNumber++) { 
  if (predictionNumber <= degree) hybridPredictionList.push_back(0); 
  hybridDegreeList.push_back(0); 
 } 
 hybridPredictions = hybridPredictionList; 
  
 // Set Page Prediction // 
 switch(predictionScheme) { 
  case PREDICTION_UNINITIALIZED: 
   break; 
  case PREDICTION_ADDRESS_LOCAL: 
   prepageList = addressLocalPredictionList; 
   degreeList = addressLocalDegreeList; 
   break; 
  case PREDICTION_RECENCY_LOCAL: 
   prepageList = recencyLocalPredictionList; 
   degreeList = recencyLocalDegreeList; 
   break; 
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  case PREDICTION_STRIDE: 
   prepageList = stridePredictionList; 
   degreeList = strideDegreeList; 
   break; 
  case PREDICTION_HYBRID: 
   prepageList = hybridPredictionList; 
   degreeList = hybridDegreeList; 
   break; 
  default: 
   ; 
 } 
 
 // Add degreeList to Degree Queue 
 vector<unsigned long int>::iterator predictionNum; 
 predictionNum = degreeList.end(); 
 --predictionNum; 
 int predNumber; 
    for (predNumber = (degree+2); predNumber > 0; --predNumber) { 
  //cout << "Adding " << *predictionNum << " to degree list\n"; 
  prepagedPageQ.addDegreePage(*predictionNum);  
 
  if (predictionNum == degreeList.begin()) { 
   break; 
  } 
  else { 
   --predictionNum; 
  } 
 } 
 
 // Check if predicted pages are already in main memory 
    for (predictionNum = prepageList.begin(); predictionNum != prepageList.end(); ++predictionNum) { 
        if (usedPageQ.pagePresentInResidentQ(*predictionNum) || 
prepagedPageQ.pagePresentInQ(*predictionNum)) { 
   // Page is present in Main Mem, remove from prepageList 
   if (debugMode == DEBUG_2) cout << "Erasing prediction: " << *predictionNum << endl; 
   prepageList.erase(predictionNum); 
   --predictionNum; 
  } 
 } 
 
 printPrepageList(&prepageList); 
 return prepageList; 
} 
void VirtualMMU::printPrepageList(vector<unsigned long int> *prepageList) 
{ 
 if (debugMode == DEBUG_2) { 
  cout << "Prepage List:\n"; 
  cout << "Prediciton List size = " << (*prepageList).size() << endl; 
 } 
 vector<unsigned long int>::iterator predictionNum; 
 int predictionNumber = 1; 
    for (predictionNum = (*prepageList).begin(); predictionNum != (*prepageList).end(); 
++predictionNum) { 
        if (debugMode == DEBUG_2) cout << predictionNumber << ": " << *predictionNum << endl; 
  predictionNumber++; 
 } 
 
 if (debugMode == DEBUG_2) cout << "Front = " << (*prepageList).front() << endl; 
} 
void VirtualMMU::fetchPrepages(vector<unsigned long int> prepageList) 
{ 
 vector<unsigned long int>::iterator predictionNum; 
 predictionNum = prepageList.end(); 
 --predictionNum; 
 int predNumber; 
    for (predNumber = degree; predNumber > 0; --predNumber) { 
         
  // Add page to Prepaged Page Q 
  prepagedPageQ.addPage(*predictionNum); 
  ++transfers; 
 
  // Remove page from Non-Resident Queue if present 
  prepagedPageQ.removeNonResidentPage(*predictionNum); 
 
  if (predictionNum == prepageList.begin()) { 
   break; 
  } 
  else { 
   --predictionNum; 
  } 
 } 
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 // Update Used Page Queue Max Size 
 usedPageQ.setMaxSize(MMSize - prepagedPageQ.getConsumedAlloc()); 
} 
void VirtualMMU::updatePrepagedAlloc(void) 
{ 
 int newPrepagedAlloc = getPrepagedAlloc(); 
 int tempPrepagedAlloc; 
 int currentNetReduction = 0; 
 int maxNetReduction = 0; 
 int currentPrepagedAlloc = getPrepagedAlloc(); 
 if (debugMode == DEBUG_1) cout << "Old Prepaged Allocation: " << prepagedAlloc << endl; 
 
 // Determine new prepage allocation 
 unsigned int benefit = 0; 
 unsigned int cost = 0; 
 for (tempPrepagedAlloc = 0; tempPrepagedAlloc < (MMSize - usedPageQ.getMinSize()); 
++tempPrepagedAlloc) { 
  currentNetReduction = calculateBenefit(tempPrepagedAlloc) - calculateCost(tempPrepagedAlloc); 
  if (currentNetReduction > maxNetReduction) { 
   maxNetReduction = currentNetReduction; 
   newPrepagedAlloc = tempPrepagedAlloc; 
  } 
 } 
  
 setPrepagedAlloc(newPrepagedAlloc); 
 if (debugMode == DEBUG_4) cout << "Setting prepaged allocation to: " << prepagedAlloc << endl; 
 //if (debugMode == DEBUG_4) { 
 // usedPageQ.printHistogram(); 
 // prepagedPageQ.printHistogram(); 
 //} 
 if (debugMode == DEBUG_1) cout << "New Prepaged Allocation: " << prepagedAlloc << endl; 
} 
void VirtualMMU::updatePredictionScheme(void) 
{ 
 int tempPredictionScheme = predictionScheme; 
 if (debugMode == DEBUG_1) cout << "Old Prediction Scheme: " << 
predictionSchemes[predictionScheme] << endl; 
 
 // Determine new prediction scheme 
 int mostEffectivePrediciton = predictionScheme; 
 int maxTotal = 0; 
 int currentTotal = 0; 
 currentTotal = calculateHistTotal(addressLocalHistogram); 
 if (currentTotal > maxTotal) { 
  maxTotal = currentTotal; 
  mostEffectivePrediciton = PREDICTION_ADDRESS_LOCAL; 
 } 
 currentTotal = calculateHistTotal(recencyLocalHistogram); 
 if (currentTotal > maxTotal) { 
  maxTotal = currentTotal; 
  mostEffectivePrediciton = PREDICTION_RECENCY_LOCAL; 
 } 
 currentTotal = calculateHistTotal(strideHistogram); 
 if (currentTotal > maxTotal) { 
  maxTotal = currentTotal; 
  mostEffectivePrediciton = PREDICTION_STRIDE; 
 } 
 currentTotal = calculateHistTotal(hybridHistogram); 
 if (currentTotal > maxTotal) { 
  maxTotal = currentTotal; 
  mostEffectivePrediciton = PREDICTION_HYBRID; 
 } 
  
 predictionScheme = mostEffectivePrediciton; 
 
 if (predictionScheme != tempPredictionScheme){ 
  if (debugMode == DEBUG_8) { 
   cout << "Old Prediction Scheme: " << predictionSchemes[tempPredictionScheme] << endl; 
   cout << "New Prediction Scheme: " << predictionSchemes[predictionScheme] << endl; 
 
   printPredictionHistograms(); 
   //printPredictionLists(); 
  } 
 } 
 
 clearPredictionHistograms(); 
} 
void VirtualMMU::updateDegree(void)  
{ 
 int oldDegree = degree; 
 if (debugMode == DEBUG_1) cout << "Old Degree: " << oldDegree << endl; 
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 // Get Histogram Entires for Current and Next Degree in Degree Queue 
 int valAtCurrentDegree = prepagedPageQ.getDegreeHistogramEntry(degree-1); 
 if (debugMode == DEBUG_1) cout << "Histogram value at current degree: " << valAtCurrentDegree << 
endl; 
 int valAtDegreePlusOne = prepagedPageQ.getDegreeHistogramEntry(degree); 
 if (debugMode == DEBUG_1) cout << "Histogram value at current degree + 1: " << valAtDegreePlusOne 
<< endl; 
 int valAtDegreePlusTwo = prepagedPageQ.getDegreeHistogramEntry(degree+1); 
 if (debugMode == DEBUG_1) cout << "Histogram value at current degree + 2: " << valAtDegreePlusTwo 
<< endl; 
 
 // Determine New Degree 
 if (valAtDegreePlusTwo > 0) { 
  degree = incDegree(); 
  degree = incDegree(); 
 } 
 else if (valAtDegreePlusOne > 0) degree = incDegree(); 
 else if (valAtCurrentDegree == 0) degree = decDegree(); 
  
 if (debugMode == DEBUG_5) { 
  if (degree != oldDegree) { 
   cout << "New Degree: " << degree << endl; 
   prepagedPageQ.printDegreeQueue(oldDegree); 
   cout << endl; 
  } 
 } 
 if (debugMode == DEBUG_1) cout << "New Degree: " << degree << endl; 
 
 prepagedPageQ.clearDegreeHistogram(); 
} 
unsigned int VirtualMMU::calculateBenefit(int targetAlloc) 
{ 
 unsigned int benefit = 0; 
  
 int index; 
 
 for (index = 0; index < targetAlloc; ++index) { 
  benefit += prepagedPageQ.getHistogramEntry(index); 
 } 
 
 return benefit; 
} 
unsigned int VirtualMMU::calculateCost(int targetAlloc) 
{ 
 unsigned int cost = 0; 
  
 int index; 
 
 for (index = (DEFAULT_MEM_SIZE - targetAlloc); index < DEFAULT_MEM_SIZE; ++index) { 
  cost += usedPageQ.getHistogramEntry(index); 
 } 
 
 return cost; 
} 
void VirtualMMU::initializePredictionHistograms(void) 
{ 
 int index; 
 for (index = 0; index < DEFAULT_MAX_DEGREE; index++) { 
  addressLocalHistogram[index] = 0; 
  recencyLocalHistogram[index] = 0; 
  strideHistogram[index] = 0; 
  hybridHistogram[index] = 0; 
 } 
} 
void VirtualMMU::clearPredictionHistograms(void) 
{ 
 int index; 
 for (index = 0; index < degree; index++) { 
  addressLocalHistogram[index] = 0; 
  recencyLocalHistogram[index] = 0; 
  strideHistogram[index] = 0; 
  hybridHistogram[index] = 0; 
 } 
} 
int VirtualMMU::calculateHistTotal(int histogram[]) 
{ 
 int total = 0; 
 
 int index; 
 for (index = 0; index < degree; index++) { 
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  total += histogram[index]; 
 } 
 
 return total; 
} 
void VirtualMMU::updatePredictionHistograms(unsigned long int referencedPage) 
{ 
 int predictionNum = 1; 
 vector<unsigned long int>::iterator prediction; 
 for (prediction = addressLocalPredictions.begin(); prediction != addressLocalPredictions.end(); 
++prediction) { 
  if (predictionNum > degree) break; 
  else if (*prediction == referencedPage) { 
   addressLocalHistogram[predictionNum - 1] += 1; 
  } 
  else predictionNum++; 
    } 
 
 predictionNum = 1; 
 for (prediction = recencyLocalPredictions.begin(); prediction != recencyLocalPredictions.end(); 
++prediction) { 
  if (predictionNum > degree) break; 
  else if (*prediction == referencedPage) { 
   recencyLocalHistogram[predictionNum - 1] += 1; 
  } 
  else predictionNum++; 
    } 
 
 predictionNum = 1; 
 for (prediction = stridePredictions.begin(); prediction != stridePredictions.end(); ++prediction) 
{ 
  if (predictionNum > degree) break; 
  else if (*prediction == referencedPage) { 
   strideHistogram[predictionNum - 1] += 1; 
  } 
  else predictionNum++; 
    } 
 
 predictionNum = 1; 
 for (prediction = hybridPredictions.begin(); prediction != hybridPredictions.end(); ++prediction) 
{ 
  if (predictionNum > degree) break; 
  else if (*prediction == referencedPage) { 
   hybridHistogram[predictionNum - 1] += 1; 
  } 
  else predictionNum++; 
    } 
} 
void VirtualMMU::printPredictionHistograms() 
{ 
 int index; 
 
 cout << "Address Local Prediction Histogram:\n"; 
 for (index = 0; index < degree; index++) { 
  cout << addressLocalHistogram[index] << endl; 
 } 
 cout << endl; 
 
 cout << "Recency Local Prediction Histogram:\n"; 
 for (index = 0; index < degree; index++) { 
  cout << recencyLocalHistogram[index] << endl; 
 } 
 cout << endl; 
 
 cout << "Stride Prediction Histogram:\n"; 
 for (index = 0; index < degree; index++) { 
  cout << strideHistogram[index] << endl; 
 } 
 cout << endl; 
 
 cout << "Hybrid Prediction Histogram:\n"; 
 for (index = 0; index < degree; index++) { 
  cout << hybridHistogram[index] << endl; 
 } 
 cout << endl; 
 
} 
void VirtualMMU::printPredictionLists() 
{ 
 int index; 
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 cout << "Address Local Prediction Histogram:\n"; 
 for (index = 0; index < degree; index++) { 
  cout << addressLocalPredictions[index] << endl; 
 } 
 cout << endl; 
 
 cout << "Recency Local Prediction Histogram:\n"; 
 for (index = 0; index < degree; index++) { 
  cout << recencyLocalPredictions[index] << endl; 
 } 
 cout << endl; 
 
 cout << "Stride Prediction Histogram:\n"; 
 for (index = 0; index < degree; index++) { 
  cout << stridePredictions[index] << endl; 
 } 
 cout << endl; 
 
 cout << "Hybrid Prediction Histogram:\n"; 
 for (index = 0; index < degree; index++) { 
  cout << hybridPredictions[index] << endl; 
 } 
 cout << endl; 
 
} 


