

Dynamically Adaptive Prepaging for Effective

Virtual Memory Management

Dean Morrison
Dept. of Electrical and Computer Engineering

University of Florida
dean8201@ufl.edu

12/06/2006

EEL 6892 – Virtual Computers
Acting Supervisor, Dr. Renato J. Figueiredo

Abstract

Demand prepaging, an extension to the widely
employed method of demand paging, is a concept
designed to reduce page faults in a system
implementing virtual memory by prefetching pages
speculated to be referenced in the near future in
addition to pages that have already been referenced.
Doing so exploits high disk bandwidths while
attempting to avoid high disk latencies.

Although studies have shown that demand
prepaging is generally not beneficial, other more
recent studies have been able to demonstrate
significant page fault reductions using dynamic
prepage parameters as opposed to static [4]. There
are several major parameters associated with demand
prepaging however, and to date there are no studies
which evaluate the performance of a completely
dynamic set of these parameters.

In this paper, I propose and evaluate a
Dynamically Adaptive Prepaging (DAP) scheme in
which all major demand prepaging parameters are
dynamically modulated to changes in reference stream
trends and phases. My proposed DAP policies attempt
to reduce page faults by exploiting high disk
bandwidths.

I evaluate my proposed system through simulation,
using a custom trace-driven simulator developed in
C++. Various uni-programmed memory reference
traces were simulated. My evaluation shows a
potentially significant reduction in page faults for the
simulated traces.

1. Introduction
ITH processor and main memory speeds
increasing ever more rapidly, the gap between

storage disks and memory is growing wider every day.
As this gap grows larger, so does the latency associated
with the handling of page faults – an event in which a
virtual memory reference translates to a physical page
not currently located in physical memory. This
increasing latency is why reducing virtual memory
page faults is a growing interest.

Demand paging, a concept as old as virtual memory
itself, is a technique for implementing virtual memory
in which only demanded pages are fetched from the
backing store into physical memory. An extension to
this technique is the concept of demand prepaging
which was proposed as a means for reducing page
faults. Just as instruction prefetching is used in
processor pipelines to maximize pipeline utilization, so
is demand prepaging used to reduce disk accesses
caused by page faults. With demand prepaging, the
O/S (or VMM) is permitted to fetch extra pages in
addition to the demanded page. If the prepaged pages
are referenced relatively soon after being fetched, the
demand prepaging system successfully averted
additional disk accesses.

The effectiveness of demand prepaging relies on
the fact that the bulk of the delay associated with
retrieving a page from disk storage is due to the latency
of the disk access (typically 1 to 10 ms). The transfer
delay – the time required to transmit the page from the
backing store into physical memory – is significantly
smaller (on the order of tenths of a millisecond).

W

Morrison 2

Therefore, the additional delay caused by “piggy-
backing" the transfer of extra pages along with the
demanded page can be considered negligible. Since
disk bandwidths have been improving at a greater rate
(approximately 20% per year) than disk latencies
(approximately 5% per year), it is clear that reducing
the number of page faults is more important than
reducing the number of pages transferred between disk
and main memory.

1.1 Demand Prepaging
As previously mentioned, demand prepaging is an

extension to demand paging that allows extra pages to
be fetched into main memory along with the demanded
page. There are several parameters associated with
demand prepaging, the most important of which (and
those that will be analyzed in this paper) are:
• Prepage Memory Allocation: The number of main

memory page frames to be allocated for prepaged
pages – pages that are fetched along with the page
whose reference cause a page fault.

• Prepage Degree: The number of additional pages
to fetch along with the page whose reference
caused a page fault.

• Prepage Prediction Method: The method used to
predict pages that are most likely to be referenced
in the near future and should therefore be
candidates for prepaging.

It is intuitive that there exists an optimum
configuration of these parameters that will minimize
page faults.

The concern with applying prepaging techniques to
virtual memory management, however, is the
(somewhat likely) possibility of causing more page
faults than would occur in a system that does not use
prepaging. This, along with obvious drawbacks of
increased kernel complexity and strain on disk
bandwidth, are factors which must be overcome in
order to benefit from the application of prepaging.

Many prepaging techniques have been suggested,
from the simple One Block Lookahead (OBL) policy
[1] to the somewhat more complex OBL/k policy
proposed by Horspool and Huberman [3]. Until
recently, the problem with most of the suggested
prepaging techniques is simply that they fail to
substantially reduce page faults over a broad range of
workloads. Kaplan et al. [4] propose a means to
dynamically adapt prepaging policies in order to
accommodate various workloads. This was done by
dynamically adjusting prepage memory allocation, or
what they refer to as target allocation or prepaged
allocation.

1.2 Dynamically Adaptive Prepaging (DAP)
Although dynamically adjusting prepaged

allocation will surely help the O/S (or VMM) adapt to
changes in memory reference behavior, it fails to fully
exploit the mutual relationship between all of the
prepaged parameters. This is why I propose to design
and evaluate more advanced methods for dynamically
adapting not only prepage memory allocation, but
prepage degree and prediction as well. It is reasonable
to believe there should exist a combination of these
three parameters that optimizes the performance
(minimizes page faults) of a virtual memory
management system. The challenge lies in developing
methods to adjust these parameters in order to adapt to
changing memory reference behavior without incurring
an unacceptable overhead in the process.

2. Background and Related Work
It is important to understand the consequences of

prepaging and the adjustment of its parameters on the
efficacy of virtual memory management before trying
to optimize it. The following section will discuss the
various costs and benefits of different prepaging
strategies.

2.1 Prepaging: Costs and Benefits
In this paper, I will refer to pages that are resident

in main memory as a result of being referenced by the
memory management unit as used pages. Pages that
are resident but have not yet been referenced are called
prepaged pages.

Prepaging is beneficial only if pages that are
prepaged are referenced before being evicted. If
evicted having never been referenced, the prepaged
page only occupied a main memory page frame which
could have been better used by a used page. This
means that prepaging is harmful only if prepaged pages
displace used pages that, under a non-prepaging
system, would have been re-referenced before being
evicted. So, one could characterize the cost of
prepaging as the number of references to pages that are
not resident under the given prepaging policy but
would have been resident had prepaging not been used.
Then, the benefit of prepaging is the number of
references to prepaged pages that would not have been
resident without prepaging.

2.1.1 Prepage Allocation
As previously mentioned, prepage allocation is the

number of main memory page frames to allocate to
prepaged pages. The allocation of main memory page
frames between used and prepaged pages is a source of
contention that will be managed by the O/S (or VMM).

Morrison 3

The two extremes of prepage allocation lead to
associated costs and benefits. If prepage allocation is
too high, less memory is allocated to used pages which
could result in an increase in page faults. If it is too
low, this reduces the effectiveness of prepaging
altogether.

2.1.2 Prepage Degree
Prepage degree is the number of additional pages to

fetch along with the demanded page when handling a
page fault. If the degree is too low, the effectiveness of
prepaged page prediction is reduced. If the degree is
too high, however, previously prepaged pages may be
evicted before ever being referenced in order to make
room for the large amount of new prepaged pages.
Recall that prepaging is beneficial only if pages that are
prepaged are referenced before being evicted.
Therefore, a high prepage degree may reduce the
potential for prepaging to be beneficial.

2.2 Previous Research in Prepaging
Many papers evaluate the benefits of demand

prepaging. It is important to review their findings
before attempting to develop new, more effective
methods.

2.2.1 One Block Lookahead (OBL)
Perhaps the earliest and most minimal prepaging

concept was Joseph’s One Block Lookahead (OBL)
policy [1]. Under this policy, if a reference to page p
causes a page fault, page p+1 will be fetched along
with page p if it is not already resident in main
memory. The main purpose of such a policy was to
exploit spatial locality in memory pages.

Joseph also suggested loading prepaged pages into
the LRU position of the resident page queue, as a way
to avoid evicting used pages before prepaged pages. In
doing so, however, the benefits of prepaging were
minimized since a prepaged page must be used prior to
the next page fault in order not to be evicted. It is no
surprise that experiments with OBL yielded little to no
benefit.

Smith [2] modified OBL such that pages p and p+1
are placed in the first and second positions of the LRU
queue. This essentially amounts to a prepaging policy
with a prepaged allocation of 50%. This relatively
high prepaged allocation is most likely why this policy
increased page faults more often than not.

2.2.2 OBL/k
Horspool and Huberman [3] proposed a more

complex extension to OBL in which prepaged pages
advanced towards eviction at a rate k. This bias toward
preserving used pages proved effective as they were
able to demonstrate a modest reduction in page faults.

2.2.3 Adaptive Caching
Kaplan et al. [4] proposed a means to dynamically

adapt prepaging policies in order to accommodate
various workloads. This was done by adjusting
prepage memory allocation, or what they refer to as
target allocation. The optimum target allocation is
determined by a cost-benefit analysis done for all
possible target allocations. Prepaged allocation costs
and benefits are generated through the use of
histograms that track the references to each individual
position in the LRU page queue.

This work is essentially the basis for my research.
My proposal extends their concept of a dynamic target
allocation to a more adaptive design in which all
prepage parameters are dynamic.

3. Design and Implementation
Since DAP is an extension to demand prepaging, all

designs are targeted for O/S kernels (or VMMs). The
implementations of these designs should therefore be
as efficient as possible in order to minimize any
associated overhead.

3.1.1 Basic Data Structures
In order to implement the concept of dynamic

prepage parameters, and even the concept of prepaging
itself, several basic data structures are necessary. The
first of which is called a Used Page Queue (see Figure
3.1). This queue is used to maintain the page numbers
of used pages, both resident (pages that are currently
loaded in main memory) and non-resident (pages that
exist on the backing store only). For prepaged pages, a
similar queue, called the Prepaged Page Queue, is
required (see Figure 3.2). The sum of the number of
resident entries in both queues is equal to the number
of page frames in main memory, since each entry
contains the page number of a page frame in main
memory.

When considering the prepaged page queue, it is
useful to make a distinction between prepaged
allocation, or target allocation as we will refer to it
from now on, and consumed allocation. Consumed
allocation is the number of main memory page frames
within the prepaged allocation that are actually being
consumed by prepaged pages. It would be
counterproductive if we did not allow used pages to
populate unused prepaged page frames, despite the fact
that those frames are within the prepaged memory
allocation. It is for this reason that we distinguish
between target and consumed allocation, so that used
pages can populate the remainder of page frames
between the consumed and target allocations.

Morrison 4

Figure 3.1: Used Page Queue

Figure 3.2: Prepaged Page Queue

Both of these queues have hit histograms

corresponding to each of their entries. When a page
resident in either queue is referenced, the
corresponding histogram entry will be incremented.
These histograms will be used later to enable the
optimization of prepage parameters.

Both queues will also be maintained in a least
recently used (LRU) ordering. Admittedly, this
ordering is impractical with respect to implementation
(in hardware) and overhead (in software). For the
purposes of this project, however, it will be used to
simplify page replacement.

To handle a page reference, the used page queue is
scanned to determine if the demanded page is resident.
If so, the hit histogram element corresponding to the
queue position in which the page number resides will
be incremented and the page will be promoted to the
most recently used (MRU) position of the queue. If the
demanded page is not resident in the used page queue,

the prepaged page queue is then checked. If the
demanded page is resident in this queue, the hit
histogram element corresponding to the queue position
in which the page number resides will be incremented.
Then the page will be evicted from the prepaged page
queue and promoted to the MRU position of the used
page queue. If the demanded page is not resident in the
prepaged page queue, a page fault has occurred.

As part of handling a page fault, the demanded
page along with additional prepaged pages are fetched
from disk into main memory. The demanded page
number is inserted into the MRU position of the used
page queue. If by adding a page reference to the used
queue it exceeds its allocation (defined as the
difference between the total number of main memory
page frames and the prepaged consumed allocation),
the LRU page reference of the queue is evicted into the
non-resident section of the queue as to reflect the
eviction of that page from main memory.

Likewise, all prepaged page numbers fetched from
disk are placed in the MRU positions of the prepaged
page queue. If by adding these page references to the
queue the prepaged target allocation is exceeded, the
appropriate number of references are evicted into the
non-resident section of the queue, just as the pages they
reference are evicted from main memory.

3.1.2 Dynamic Prepaged Allocation
Just as costs and benefits were considered when

evaluating the efficacy of prepaging, so too should they
be taken into account when trying to optimize prepage
allocation. Kaplan et al. [4] proposed a method for
calculating the cost and benefit of all possible target
allocations as a means for determining which is
optimum. This method will be used as part of my
proposed DAP system for adapting prepaged
allocation.

The cost of a certain target allocation can be
defined as the number of page faults that would have
occurred had that specific allocation been used. The
benefit of a particular target allocation can be defined
as the number of page faults that would have been
averted if that allocation were implemented. The hit
histograms of each queue can be used to calculate these
costs and benefits. Assuming a main memory size of m
page frames, and a target allocation t, the cost and
benefit of this allocation are defined as follows:

Morrison 5

A net reduction in misses can then be calculated as
the difference between the benefit and cost of a
particular target allocation. The optimum target
allocation is finally defined as the allocation that
produces the maximum net reduction in misses, as seen
below. This entire process is depicted in Figure 3.3.

As programs are executed and page references

accumulate, it is clear that the hit histograms will
saturate in the sense that their values will no longer
reflect the “current” behavior or phase of a program.
Since these histogram values are an integral part of
optimizing prepage allocation, they must be
conditioned such that they are more reflective of a
program’s recent behavior. Kaplan et al. [4] avoided
histogram saturation by periodically decaying all
entries by a constant value λ, 0 < λ < 1, such that a
histogram entry after decay would equal its value
before decay times the decay value. Surprisingly, their

analysis found that the value of the decay variable had
little to no effect on performance.

Both the cost-benefit analysis and the histogram
decay are computationally intensive. The only way to
minimize the overhead associated with these actions is
to hide it by performing the computations during the
disk accesses associated with the handling of a page
fault. Since disk latency is many orders of magnitude
higher than processor clock cycles, these calculations
should not present any additional latency if carried out
while pages are being fetched from the backing store.
However, this does not imply that these processes do
not require efficient implementation. Other tasks can
be scheduled during disk accesses, such as execution of
different threads in the processor, while waiting on the
demanded page to be loaded. Another way to
minimize the overhead of the dynamic prepage
allocation calculations is to force the parameter to be
updated less often. Instead of updating prepage
allocation upon every page fault, updates can be
performed on a much longer period, thereby reducing
the computational overhead.

Figure 3.3: Prepage Allocation Cost-Benefit Analysis

Morrison 6

3.1.3 Dynamic Degree
The degree of prepaging is a parameter that is

closely related to the method used to predict prepages.
If prepaged pages are being referenced soon after being
fetched, than the prediction method is performing
effectively. If this is the case, it would be most
beneficial if prepage degree is high, so that more pages
can be prepaged, and more page faults can be avoided.
Conversely, if prepage prediction is not effective, the
optimum prepage degree would be relatively low so as
to minimize wasteful memory consumption.

In DAP, this relationship is exploited in order to
optimize prepaging degree. To do so, a new data
structure called the Degree Queue is required (see
Figure 3.4). This is a simple three-entry queue with a
corresponding hit histogram. For a degree d, the dth,
(d+1)th, and (d+2)th prepage predictions are stored in
the degree queue after every page fault. It is important
to note that although prepage page prediction numbers
d+1 and d+2 are stored in this queue, the page which
those predictions reference are not actually loaded into
physical memory.

Figure 3.4: Degree Queue

The degree queue hit histogram enables the system

to determine whether prepaging additional pages under
the current prediction method would be beneficial. If
the histogram shows there were references to prepage
page prediction number d+2, then the degree will be
promoted to d+2. Likewise, if prediction number d+1
was referenced, the degree will be incremented by one.
Otherwise, if the dth prepage page prediction was
referenced, than the degree is left unchanged. If none
of these predictions were referenced since the last page
fault, then the degree can actually be decremented,
since the current prediction method is not performing
accurately. Figure 3.5 depicts this algorithm for
dynamically adapting prepage degree.

Pre-defined, static minimum and maximum prepage
degrees should also be implemented in order to avoid
what could be considered runaway adaptation, a
scenario in which the degree is constantly incremented
or decremented to the eventual detriment of the system.

Figure 3.5: Dynamic Optimization of Prepage Degree

Morrison 7

3.1.4 Dynamic Prepage Prediction
There are several prepage prediction schemes,

each performing better in different scenarios. Three
prediction methods are used in the proposed DAP
system:

1. Address-local Prediction: Predicts pages nearby

in the address space relative to the page being
demanded are likely to be referenced soon.

 Example: Referenced page number n

Predictions: n + 1, n - 1, n + 2, n - 2, . . .

2. Recency-local Prediction: Predicts pages nearby
in an LRU ordering to the page being demanded
are likely to be referenced soon.

 Example: Reference to page found at LRU queue

position p
Predictions: Pages found in LRU queue positions

p - 1, p + 1, p - 2, p + 2, . . .

3. Stride Prediction: Predicts pages located at a
constant stride in the address space from the page
in demand relative to the MRU page are likely to
be referenced soon.

 Example: Degree d, Referenced page number n,

MRU page queue entry p → stride s = n – p
Predictions: n + s, n + 2s, n + 3s, . . . , n + ds

In order to dynamically choose the optimum

prediction method, a new data structure must be
introduced. Figure 3.6 shows a Prediction Queue, a
queue which holds the prepage page predictions
associated with a prediction method. This queue also
has a corresponding hit histogram which will be used
to determine the optimum prediction method.

Figure 3.6: Prediction Queue

The optimum prediction method can be easily

defined as the method that predicted pages that resulted
in the most references. This optimization can be
implemented using the prediction queue hit histograms.
Whichever prediction method has the greatest sum of
hit histogram entries since the last page fault is the
optimum prediction method. Figure 3.7 depicts this
optimization process.

Figure 3.7: Dynamic Optimization of Prepage Prediction Method

Morrison 8

4. Simulation Methodology
To test and evaluate the efficacy of dynamically

adaptive prepaging, its policies must be applied to a
memory reference trace. The performance results
(page fault rate, disk transfers, etc.) may then be
compared to the performance of a completely static
demand prepaging policy. To enable such a
performance comparison, a trace-driven simulator was
developed in C++.

4.1 DAPsim
DAPsim is a trace-driven demand prepaging

simulator developed to enable the design, testing, and
evaluation of DAP concepts. DAPsim has the
following capabilities:

1. Maintains main memory page queues
2. Handles page references
3. Models dynamic prepage allocation, degree,

and prediction method
4. Accumulates performance statistic (page

faults, fault rate, reference trace
characteristics, hit/miss trace, disk transfers,
etc.)

The simulator reads through a memory reference trace,
handling each page reference one at a time. The state
of the prepaging system after handling every reference
is exactly that of a real-world implementation.

Figure 4.1: Page Reference Flow

Figures 4.1 and 4.2 show the flow of the DAPsim
simulator. To handle a page reference, the simulator
first checks if the reference is resident in the used page
queue. If so, the corresponding hit histogram entry is
incremented and the reference is promoted to the MRU
position of the queue. If the page reference is not
resident in the used queue, the prepage page queue is
checked. If the reference is resident in the prepaged
page queue, the corresponding hit histogram entry is
incremented and the reference is evicted from the
prepaged queue into the MRU position of the used
queue. If it is not resident, then a page fault has
occurred.

Figure 4.2: Page Fault Flow

To handle a page fault, DAPsim “fetches” the

demanded page along with several prepaged pages
from main memory. The reference to the demanded
page is placed in the MRU position of the used page
queue. The references to the prepaged pages are place
in the MRU positions of the prepaged page queue.
Then, the prepage parameters are updated according to
the previously described methods. Obviously, in the
real-world implementation of this system, prepage
parameters would be updated in parallel with the
accesses to the backing store so as to hide the
computational overhead. Since DAPsim does not

Morrison 9

directly simulate any cycle-accurate latencies, updating
prepage parameters immediately after fetching pages
from disk is an acceptable model of the system.

After prepage parameters are updated, several other
maintenance-related tasks are performed, such as
decaying hit histograms if necessary. Once this is
done, the next page reference in the memory trace is
handled, thus completing the cycle.

4.2 Simulation Methodology
In order to properly evaluate the performance of my

proposed DAP system, a broad range of memory
reference behavior must be tested. Simulations were
performed on several uni-programmed memory
reference traces over a range of main memory sizes.
The reference traces were gathered using the Etch
instrumentation tool on a Windows NT system. The
majority of the traces used are the same used by
Kaplan et al. [4] in their research on adaptive caching
for demand prepaging. The traces include a mix of
batch-style processes (gcc, compress), synthetic
processes (sawtooth, lu, mm16, and mm32), and
interactive, GUI processes (Acrobat Reader, Go,
Netscape Navigator, Photoshop, PowerPoint, and
Word). Table 4.1 shows reference trace details.

Table 4.1: Memory Reference Trace Descriptions

Trace Name Benchmark
Type Program Program Description

acroread Real Acrobat Reader / WinNT PDF viewer
cc1 Real Compiler Batch-style process

compress95 Real Compress Batch-style compression
sawtooth Synthetic Custom Sawtooth Sawtooth trace

go Real GO Interactive GUI process
lu Micro LU LU matrix decomposition

mm16 Micro Matrix Multiply (16x16) Matrix Multiply (16x16)
mm32 Micro Matrix Multiply (32x32) Matrix Multiply (32x32)

netscape Real Netscape / WinNT Web browser
powerpoint Real Power Point / WinNT Slide show developer

winword Real Word / WinNT Word processing

Trace Name Benchmark
Type Program Program Description

acroread Real Acrobat Reader / WinNT PDF viewer
cc1 Real Compiler Batch-style process

compress95 Real Compress Batch-style compression
sawtooth Synthetic Custom Sawtooth Sawtooth trace

go Real GO Interactive GUI process
lu Micro LU LU matrix decomposition

mm16 Micro Matrix Multiply (16x16) Matrix Multiply (16x16)
mm32 Micro Matrix Multiply (32x32) Matrix Multiply (32x32)

netscape Real Netscape / WinNT Web browser
powerpoint Real Power Point / WinNT Slide show developer

winword Real Word / WinNT Word processing

The use of such a variety of benchmarks was done
in an attempt to gauge performance over different
reference patterns. Figures 4.3 through 4.5 show the
variation in memory reference profiles used to evaluate
DAP performance. The memory reference profiles for
all the traces used in the evaluation process are located
in Appendix A.

Figure 4.3: Netscape Memory Reference Profile

Figure 4.4: Sawtooth Memory Reference Profile

Figure 4.5: LU Decomposition Memory Reference

Profile

Morrison 10

Different system configurations were simulated in
order to evaluate the performance relationships
between different prepage parameters as well as DAP
as a whole. Table 4.2 shows the different modes that
were simulated for each memory reference trace.
Obviously, DAP Mode is the mode which will be used
to evaluate the performance of my proposed DAP
concepts.

Table 4.2: Simulation Modes

4.3 System Settings
It is important to note the system settings used

during simulations. Table 4.3 shows the values of all
major system parameters. The values of these
parameters were defined after careful analysis of
empirical data obtained through simulation. Values
were chosen such that performance was optimized in
static parameter mode. This was done so that DAP
could be evaluated against a formidable control.

Table 4.3: System Settings

5. Simulation Results
Many useful statistics were gathered during

simulations, the most important of which, for the
purpose of a performance evaluation, are the quantity
of page faults and disk transfers. When comparing to a
demand prepaging policy with completely static
parameters, it is more useful to relate corresponding

statistics to determine whether or not the proposed
concepts offer any performance gains. Therefore, the
simulation results will be focused on two major
statistics, page fault reduction and page transfer
increase.

5.1 Page Fault Reduction
The ultimate goal of dynamically adaptive

prepaging is to reduce the page fault rate over a broad
range of workloads. Simulations were conducted on
the previously mentioned memory reference traces
over a range of main memory sizes in order to
determine page fault rates. Then, page faults rates for
the various simulation modes (see Table 4.2) were
compared to a control (Static Prepage Parameter
mode) in a statistic called page fault reduction. Page
fault reduction is computed as follows:

_
_ ,StaticMode Mode X

Mode X
StaticMode

PageFaultRate PageFaultRate
PageFaultReduction

PageFaultRate

where PageFaultReductionMode_X is the reduction in
page fault rate by Mode X in relation to Static Prepage
Parameter mode. Table 5.1 and Figure 5.1 show DAP
page fault reductions corresponding to each memory
reference trace.

Table 5.1: DAP Page Fault Reduction

Benchmark 500 1000 2000 5000 10000 Average
acroread -6.80% 5.46% 1.36% 0.91% 0.23%
cc1 5.32% 5.32% 11.70% 11.70% 8.51%
compress 9.26% 10.19% 12.96% 13.89% 11.57%
sawtooth 95.86% 97.64% 98.23% 97.52% 97.31%
go -36.78% -5.88% -5.88% -5.88% -13.61%
lu 74.55% 69.57% 69.57% 69.57% 69.57% 70.56%
mm16 62.69% 64.93% 64.93% 64.93% 64.37%
mm32 40.77% 16.69% 79.38% 79.62% 79.62% 59.22%
netscape -7.12% 7.10% 2.37% -1.08% 0.32%
powerpoint 2.96% 0.80% 0.00% 0.00% 0.94%
winword -5.45% 8.00% 4.53% 0.40% 2.39% 1.97%
Average 21.39% 25.44% 30.83% 30.14% 50.53% 31.66%

DAP Page Fault Reduction (per Main Mem. Size in Pages)Benchmark 500 1000 2000 5000 10000 Average
acroread -6.80% 5.46% 1.36% 0.91% 0.23%
cc1 5.32% 5.32% 11.70% 11.70% 8.51%
compress 9.26% 10.19% 12.96% 13.89% 11.57%
sawtooth 95.86% 97.64% 98.23% 97.52% 97.31%
go -36.78% -5.88% -5.88% -5.88% -13.61%
lu 74.55% 69.57% 69.57% 69.57% 69.57% 70.56%
mm16 62.69% 64.93% 64.93% 64.93% 64.37%
mm32 40.77% 16.69% 79.38% 79.62% 79.62% 59.22%
netscape -7.12% 7.10% 2.37% -1.08% 0.32%
powerpoint 2.96% 0.80% 0.00% 0.00% 0.94%
winword -5.45% 8.00% 4.53% 0.40% 2.39% 1.97%
Average 21.39% 25.44% 30.83% 30.14% 50.53% 31.66%

DAP Page Fault Reduction (per Main Mem. Size in Pages)

DAP Page Fault Rate Reduction

-40%

-20%

0%

20%

40%

60%

80%

100%

500 1000 2000 5000 10000

Main Memory Size (in pages)

Pa
ge

 F
au

lt
R

at
e

R
ed

uc
tio

n
(%

)

acroread
cc1
compress
sawtooth
go
lu
mm16
mm32
netscape
powerpoint
winword
Average

DAP Page Fault Rate Reduction

-40%

-20%

0%

20%

40%

60%

80%

100%

500 1000 2000 5000 10000

Main Memory Size (in pages)

Pa
ge

 F
au

lt
R

at
e

R
ed

uc
tio

n
(%

)

acroread
cc1
compress
sawtooth
go
lu
mm16
mm32
netscape
powerpoint
winword
Average

Figure 5.1: DAP Page Fault Reduction

The best reduction was is the sawtooth benchmark,

most likely because of its extremely predictable
memory references. On average, simulations showed a
32% reduction in page fault rate across all benchmarks.

Morrison 11

The majority of this reduction was in the synthetic and
micro benchmarks, again most likely because of the
predictability of their memory references. In real
benchmarks, the average page fault reduction was
between 1.5 and 4%, depending on the benchmarks
included in the average.

The other simulation modes showed a wide
variation of page fault reduction. Figures 5.2 through
5.4 show page fault reductions for each of these modes.
The highest average page fault reduction,
approximately 36%, was under dynamic degree mode.

DPA Page Fault Rate Reduction

-10%

-8%

-6%

-4%

-2%

0%

2%

4%

6%

8%

10%

500 1000 2000 5000 10000

Main Memory Size (in pages)

Pa
ge

 F
au

lt
R

at
e

R
ed

uc
tio

n
(%

)

acroread
cc1
compress
sawtooth
go
lu
mm16
mm32
netscape
powerpoint
winword
Average

DPA Page Fault Rate Reduction

-10%

-8%

-6%

-4%

-2%

0%

2%

4%

6%

8%

10%

500 1000 2000 5000 10000

Main Memory Size (in pages)

Pa
ge

 F
au

lt
R

at
e

R
ed

uc
tio

n
(%

)

acroread
cc1
compress
sawtooth
go
lu
mm16
mm32
netscape
powerpoint
winword
Average

Figure 5.2: DPA Page Fault Reduction

DD Page Fault Rate Reduction

-20%

0%

20%

40%

60%

80%

100%

500 1000 2000 5000 10000

Main Memory Size (in pages)

Pa
ge

 F
au

lt
R

at
e

R
ed

uc
tio

n
(%

)

acroread
cc1
compress
sawtooth
go
lu
mm16
mm32
netscape
powerpoint
winword
Average

DD Page Fault Rate Reduction

-20%

0%

20%

40%

60%

80%

100%

500 1000 2000 5000 10000

Main Memory Size (in pages)

Pa
ge

 F
au

lt
R

at
e

R
ed

uc
tio

n
(%

)

acroread
cc1
compress
sawtooth
go
lu
mm16
mm32
netscape
powerpoint
winword
Average

Figure 5.3: DD Page Fault Reduction

DPM Page Fault Rate Reduction

-50%

-40%

-30%

-20%

-10%

0%

10%

20%

30%

40%

500 1000 2000 5000 10000

Main Memory Size (in pages)

Pa
ge

 F
au

lt
R

at
e

R
ed

uc
tio

n
(%

) acroread
cc1
compress
sawtooth
go
lu
mm16
mm32
netscape
powerpoint
winword
Average

DPM Page Fault Rate Reduction

-50%

-40%

-30%

-20%

-10%

0%

10%

20%

30%

40%

500 1000 2000 5000 10000

Main Memory Size (in pages)

Pa
ge

 F
au

lt
R

at
e

R
ed

uc
tio

n
(%

) acroread
cc1
compress
sawtooth
go
lu
mm16
mm32
netscape
powerpoint
winword
Average

Figure 5.4: DPM Page Fault Reduction

5.2 Page Transfer Increase
Another important statistic that must be considered

when evaluating the efficacy of a prepaging scheme is
page transfers. It is obvious that demand prepaging
will lead to an increase in page transfers when
compared to demand paging. The question this
research aims to answer is whether dynamic demand
prepaging (namely my proposed dynamically adaptive
prepaging scheme) will likewise instigate an increase
in page transfers.

5.2.1 Total Page Transfers
It is useful to define a comparative statistic in order

to more easily evaluate the impact DAP has on page
transfers relative to a static demand prepaging scheme.
This new statistic, called page transfer increase, is
defined as follows:

_
_ ,Mode X StaticMode

Mode X
StaticMode

PageTransfers PageTransfers
PageTransferIncrease

PageTransfers

where PageTransferIncreaseMode_X is the percent
increase in page transfers of Mode X relative to static
demand prepaging.

Table 5.2 and Figure 5.5 show DAP page transfer
increases in all benchmarks over a range of memory
sizes. The average page transfer increase across all
benchmarks and memory sizes was approximately
20%. Again, the highest page transfer increases
happened to occur in the micro and synthetic
benchmarks. Among the real benchmarks, the average
page transfer increase was approximately 12%.

Table 5.2: DAP Page Transfer Increase

Benchmark 500 1000 2000 5000 10000 Average
acroread 8.79% -0.80% 2.35% 2.87% 2.37% 3.12%
cc1 15.10% 17.94% 12.69% 12.69% 14.61%
compress 34.54% 33.73% 30.32% 29.52% 32.03%
sawtooth
go 45.33% 15.38% 15.38% 15.38% 22.87%
lu 14.26% 23.27% 23.27% 23.27% 23.27% 21.47%
mm16 29.06% 27.08% 27.08% 27.08% 27.57%
mm32 34.88% 156.26% 35.93% 33.59% 33.59% 58.85%
netscape 12.91% 1.39% 5.18% 8.59% 7.02%
powerpoint -0.14% 0.59% 1.40% 1.25% 0.78%
winword 9.02% -2.52% 1.15% 4.51% 3.04%
Average 20.38% 27.23% 15.48% 15.88% 19.74% 19.74%

DAP Page Transfer Increase (per Main Memory Size in Pages)Benchmark 500 1000 2000 5000 10000 Average
acroread 8.79% -0.80% 2.35% 2.87% 2.37% 3.12%
cc1 15.10% 17.94% 12.69% 12.69% 14.61%
compress 34.54% 33.73% 30.32% 29.52% 32.03%
sawtooth
go 45.33% 15.38% 15.38% 15.38% 22.87%
lu 14.26% 23.27% 23.27% 23.27% 23.27% 21.47%
mm16 29.06% 27.08% 27.08% 27.08% 27.57%
mm32 34.88% 156.26% 35.93% 33.59% 33.59% 58.85%
netscape 12.91% 1.39% 5.18% 8.59% 7.02%
powerpoint -0.14% 0.59% 1.40% 1.25% 0.78%
winword 9.02% -2.52% 1.15% 4.51% 3.04%
Average 20.38% 27.23% 15.48% 15.88% 19.74% 19.74%

DAP Page Transfer Increase (per Main Memory Size in Pages)

DAP Page Transfer Increase

-10%

0%

10%

20%

30%

40%

50%

500 1000 2000 5000 10000

Main Memory Size (in pages)

Pa
ge

 T
ra

ns
fe

r I
nc

re
as

e
(%

)

acroread
cc1
compress
sawtooth
go
lu
mm16
mm32
netscape
powerpoint
winword
Average

DAP Page Transfer Increase

-10%

0%

10%

20%

30%

40%

50%

500 1000 2000 5000 10000

Main Memory Size (in pages)

Pa
ge

 T
ra

ns
fe

r I
nc

re
as

e
(%

)

acroread
cc1
compress
sawtooth
go
lu
mm16
mm32
netscape
powerpoint
winword
Average

Figure 5.5: DAP Page Transfer Increase

Morrison 12

5.2.2 Average Page Transfers
Perhaps a more significant statistic is the increase

in page transfers per page fault. This metric is
certainly expected to be higher relative to a simple
demand paging scheme, but how does a dynamic
demand prepaging system compare to a static one?
Table 5.3 and Figure 5.6 show average increases in
page transfers per page fault under DAP for a variety
of benchmarks, over a range of memory sizes. Page
transfers per page fault increased by an average of 4.32
pages per fault across all benchmarks and memory
sizes. Again, the bulk of this increase was seen in the
micro and synthetic benchmarks. Among the real
benchmarks, the average increase in page transfers per
page fault was approximately 0.70. Average page
transfers per page fault in static demand prepaging was
calculated to be 4.77, whereas the average for DAP
was 9.72.

Table 5.3: DAP Increase in Page Transfers
per Page Fault

Benchmark 500 1000 2000 5000 10000 Average
acroread 0.10 0.26 0.20 0.21 0.19
cc1 1.05 1.19 1.34 1.34 1.23
compress 2.23 2.25 2.29 2.32 2.27
sawtooth
go 0.32 0.45 0.45 0.45 0.42
lu 14.21 12.44 12.44 12.44 12.89
mm16 10.17 10.84 10.84 10.84 10.67
mm32 5.67 8.44 22.61 22.46 14.80
netscape 0.27 0.47 0.41 0.39 0.38
powerpoint 0.16 0.08 0.08 0.07 0.10
winword 0.17 0.31 0.31 0.26 0.26
Average 3.43 3.67 5.10 5.08 4.32

DAP Average Page Transfer Increase
(per Main Memory Size in Pages)Benchmark 500 1000 2000 5000 10000 Average

acroread 0.10 0.26 0.20 0.21 0.19
cc1 1.05 1.19 1.34 1.34 1.23
compress 2.23 2.25 2.29 2.32 2.27
sawtooth
go 0.32 0.45 0.45 0.45 0.42
lu 14.21 12.44 12.44 12.44 12.89
mm16 10.17 10.84 10.84 10.84 10.67
mm32 5.67 8.44 22.61 22.46 14.80
netscape 0.27 0.47 0.41 0.39 0.38
powerpoint 0.16 0.08 0.08 0.07 0.10
winword 0.17 0.31 0.31 0.26 0.26
Average 3.43 3.67 5.10 5.08 4.32

DAP Average Page Transfer Increase
(per Main Memory Size in Pages)

DAP Average Page Transfer Increase

0

5

10

15

20

500 1000 2000 5000 10000

Main Memory Size (in pages)

A
vg

 P
ag

e
Tr

an
sf

er
 In

cr
ea

se

(p
ag

es
/fa

ul
t)

acroread
cc1
compress
sawtooth
go
lu
mm16
mm32
netscape
powerpoint
winword
Average

DAP Average Page Transfer Increase

0

5

10

15

20

500 1000 2000 5000 10000

Main Memory Size (in pages)

A
vg

 P
ag

e
Tr

an
sf

er
 In

cr
ea

se

(p
ag

es
/fa

ul
t)

acroread
cc1
compress
sawtooth
go
lu
mm16
mm32
netscape
powerpoint
winword
Average

Figure 5.6: DAP Increase in Page Transfers

per Page Fault

6. Evaluation
The simulation data presented in the previous

section show two main results: 1) that the proposed
DAP policies reduced average page fault rates across a

variety of memory reference traces, and 2) DAP also
leads to an increase in page transfers, specifically
average page transfer rates. In order to evaluate the
performance of DAP, both of these results must be
weighed against each other.

6.1.1 Page Fault Reduction vs. Page Transfer
Increase

In a direct comparison, the 32% reduction in page
faults outweighs the 20% increase in page transfers by
a significant amount. This comparison can be
misleading if not properly examined. Although an
increase in page transfers, in general, degrades
performance, the increases seen in DAP can mostly be
attributed to an increase in average page transfer rate
(average page transfers per page fault). So, although
page transfers have increased, page faults have
decreased. In fact, page transfers per page fault
increased by an average of 4.32 pages, or
approximately 104% relative to static demand
prepaging. This means that DAP requires
approximately 100% more disk bandwidth than static
demand prepaging.

Although this may seem alarming, one must
consider and compare the implications of decreased
disk latency at the expense of increased bandwidth
utilization in order to fully evaluate the reported
results. As previously mentioned, disk bandwidths are
increase at about four times the rate in which disk
latencies are decreasing on a year-by-year basis. This
means that reductions in disk access events should be
weighed more heavily than increased utilization of disk
bandwidth in a comparative evaluation of performance
enhancement. It is important to note, however, that the
effect of an increase in average page transfer rate on
disk latency is highly dependant on the degree in which
pages can be clustered on the disk. Page clustering on
storage disks is a widely researched topic that will not
be explored in this paper.

6.1.2 The Effects of Main Memory Size
As Figure 5.1 shows, the average page fault

reduction across all benchmarks increased, to an extent,
with main memory size. It is intuitive that page faults
are likely to decrease under any paging policy as main
memory size increases. It is not so intuitive, however,
that page fault reduction – a measure of the degree to
which page faults are reduced relative to a static
prepaging policy – increases with main memory size,
as was shown. It is undoubtedly a desirable result
nonetheless.

Just as desirable of an attribute of DAP is the fact
that no such trend exists with average page transfer
increase. As Figure 5.5 shows, average page transfer
increase did not grow with main memory size.

Morrison 13

6.1.3 Overall Performance
The overall performance of my proposed DAP

scheme met my expectations. It was evident that the
prepage parameters were being dynamically adapted to
exploit trace predictability and resource state. Figures
6.1 and 6.2 show an example of DAP’s demonstrated
ability to adapt to trends in the memory reference
stream. In Figure 6.1, a constant density of page faults
can be observed throughout the execution of the
sawtooth reference trace. In Figure 6.2, however, DAP
is successfully able to adapt its prepage parameters to
reduce page faults. In fact, page fault reduction only
increases as the trace continues to execute.

As previously mentioned, the average page fault
reduction for real benchmarks was observed to be
approximately 1.5%. This includes the go memory
trace in which DAP actually caused an increase in page

faults. The go benchmark had an average page fault
rate of 4.275 × 10-5 faults per reference under static
demand prepaging, but an average of 4.863 × 10-5
under DAP, an increase of 13.74%. The go benchmark
was the only benchmark used in this project in which
the application of DAP actually increased the average
page fault rate. This demonstrates DAP’s potential for
an undesired impact on virtual memory management.

Despite this anomalous increase in page faults, a
1.5% average reduction in page fault rate should not be
considered insignificant. When page references can
reach practically endless numbers, during the indefinite
execution of one or many workloads, an average page
fault rate reduction of 1.5% translates to a substantial
enhancement.

Figure 6.1: Memory Reference Trace Results under Static Parameter Mode

Morrison 14

Figure 6.2: Memory Reference Trace Results under DAP

7. Conclusion
The target environment for dynamically adaptive

prepaging is not one with a single executing program,
however. So, in a sense, the simulations performed on
uni-programmed memory reference traces fail to
demonstrate (at least directly) any potential benefits
DAP concepts would present in a more real-world
scenario of multi-programmed or VM workloads. In
fact, the simulation results seem to show a correlation
between memory reference trace range and average
page fault rate reduction that might suggest that DAP
would not perform as well in multi-programmed
environments.

Table 5.1 shows that DAP results in an average
page fault rate reduction of 1.97% for the winword
benchmark, yet only a 0.32% average reduction for the
netscape trace, a trace with a larger range of memory
references. Since it is likely that multi-programmed
and VM workloads would have a much higher
reference range relative to a uni-programmed
workload, this data suggests that, if this trend is
maintained, DAP-induced page fault rate reduction

would not be nearly as significant in the multi-
programmed and VM environments.

Despite what empirical data might suggest, the
significant performance enhancements seen in the
simulation results warrant a further investigation into
DAP’s performance with multi-programmed and VM
workloads. Although DAP increases average page
transfer rates, this can be effectively neglected with
increasing disk bandwidths. What is not negligible is
the reduction in page fault-induced disk accesses
enabled by dynamically adaptive prepaging. Avoiding
even the smallest amount of disk accesses provides
significant performance enhancement.

Finally, it is in my judgment that the overhead and
complexity associated with the necessary kernel-level
DAP implementations do not negate the benefits of the
reduction in disk accesses. Still, more efficient
implementations would of course be favorable.

Morrison 15

8. Future Work
The results of this research have not only shown

the costs and benefits of dynamically adaptive
prepaging, they have also provided insight into what
may be necessary for more effective concepts. The
following are areas for possible expansion to the
concept of DAP in an effort for a more effective
prepaging system.

8.1 Degeneration–resistant Adaptation
Perhaps the most detrimental consequence of

dynamically adaptive prepaging is its potential to
degenerate performance relative to a static demand
prepaging (or demand paging) scheme. If safeguards
could somehow be integrated into a DAP scheme that
would limit, if not eliminate, the potential for
performance degradation, then such a scheme would be
vastly superior to any current proposals.

Such a scheme is, to a certain extent,
counterproductive. For it is the vary attributes of the
system that are made dynamic to provide the potential
for performance improvement that also provide the
potential for degradation. Still, it seems viable to
develop a dynamic prepaging scheme that at least
limits the potential for performance degeneration while

still maintaining the benefits of dynamic parameter
adaptation.

8.2 Compulsory Fault Prevention
The simulation results presented in this paper

show that a significant portion of the page faults under
a dynamically adaptive prepaging scheme (or any
paging scheme for that matter) are compulsory – page
faults that occurred because the demanded pages had
never been referenced prior to the fault. Figure 8.1
shows the DAP page fault trace for the winword
benchmark. Notice the preponderance of page faults
near the start of the trace simulation.

Cache hierarchies mitigate such misses through
prefetching, or the fetching of cache blocks prior to
being referenced in anticipation that they soon will be.
This concept is somewhat similar to that of prepaging.
Prepaging differs from prefetching in a slight but
significant detail however. Prepaging is conceptually a
reactionary tactic, whereas prefetching is more
proactive. Although the incredibly high latency of disk
accesses makes a compelling argument against any sort
of proactive prepaging policy, the potential for a
significant reduction in page faults is reason enough for
at least a cursory feasibility analysis.

Figure 8.1: winword Page Reference Trace

Morrison 16

9. References

[1] M. Joseph. An analysis of paging and program

behavior. Computer Journal, 13:48-54, 1970.
[2] A. J. Smith. Sequential program prefetching in

memory hierarchies. IEEE Computer,
11(12):7-21, Dec. 1978.

[3] R. N. Horspool and R. M. Huberman.
Analysis and development of demand
prepaging policies. Journal of Systems and
Software, 7:183-194, 1987.

[4] S. F. Kaplan, L. A. McGeoch, and M. F. Cole.
Adaptive caching for demand prepaging. In
Proceedings of the third international
symposium on Memory management, 2002.

[5] P. Zhou, V. Pandey, J. Sundaresan, A.
Raghuraman, Y. Zhou, and S. Kumar.
Dynamic Tracking of Page Miss Ratio Curve
for Memory Management. ACM SIGARCH
Computer Architecture News, 2004

[6] D. C. Lee, P. J. Crowley, J. L. Baer, T. E.
Anderson, and B. N. Bershad. Execution
characteristics of desktop applications on
Windows NT. In 25th Annual International
Symposium on Computer Architecture. IEEE
Computer Society Press, 1998.

[7] Wikipedia contributors, 'Demand paging',
Wikipedia, The Free Encyclopedia, 14 August
2006, 14:44 UTC,
<http://en.wikipedia.org/w/index.php?title=De
mand_paging&oldid=69591315> [accessed 5
October 2006]

Morrison 17

Appendix A – Memory Reference Profiles

acroread Memory Reference Profile:

cc1 Memory Reference Profile:

Morrison Appendix A 18

compress95 Memory Reference Profile:

sawtooth Memory Reference Profile:

go Memory Reference Profile:

Morrison Appendix A 19

lu Memory Reference Profile:

mm16 Memory Reference Profile:

mm32 Memory Reference Profile:

Morrison Appendix A 20

netscape Memory Reference Profile:

powerpoint Memory Reference Profile:

winword Memory Reference Profile:

Morrison 21

Appendix B – DAPsim Source Code

LRU Page Queue Entry Class: LRU_pageQ_entry.h
#include <string>
#include <iostream>
#include <fstream>
#include <vector>
#include <queue>
#include <list>
#include <map>
#include <math.h>

#include "main.h"

using namespace std;

class LRU_pageQ_entry {
private:
 unsigned long int pageNumber;
 int lruValue;
 bool resident;
 //int histValue;

public:
 LRU_pageQ_entry();
 LRU_pageQ_entry(unsigned long int newPageNumber, int newLruValue, bool newResidency);

 void setPageNumber(unsigned long int newPageNumber);
 void setLRUValue(int newLruValue);
 void setResidency(bool newResidency);
 //void setHistValue(int newHistValue);

 unsigned long int getPageNumber(void);
 int getLRUValue(void);
 bool getResidency(void);
 //int getHistValue(void);

 //void incHistValue(void);

};

LRU Page Queue Entry Source: LRU_pageQ_entry.c
#include "main.h"
#include "LRU_pageQ_entry.h"

LRU_pageQ_entry::LRU_pageQ_entry()
{
 pageNumber = 0;
 lruValue = 0;
 resident = true;
 //histValue = 0;
}
LRU_pageQ_entry::LRU_pageQ_entry(unsigned long int newPageNumber, int newLruValue, bool
newResidency)
{
 pageNumber = newPageNumber;
 lruValue = newLruValue;
 resident = newResidency;
 //histValue = newHistValue;
}
void LRU_pageQ_entry::setPageNumber(unsigned long int newPageNumber)
{
 pageNumber = newPageNumber;
}
void LRU_pageQ_entry::setLRUValue(int newLruValue)
{
 lruValue = newLruValue;
}
void LRU_pageQ_entry::setResidency(bool newResidency)
{
 resident = newResidency;
}
unsigned long int LRU_pageQ_entry::getPageNumber(void)
{
 return pageNumber;
}

Morrison Appendix B 22

int LRU_pageQ_entry::getLRUValue(void)
{
 return lruValue;
}
bool LRU_pageQ_entry::getResidency(void)
{
 return resident;
}

LRU Page Queue Class: LRU_pageQ.h
#ifndef LRU_PAGEQ_H_
#define LRU_PAGEQ_H_

#include <string>
#include <iostream>
#include <fstream>
#include <vector>
#include <queue>
#include <list>
#include <map>
#include <math.h>

#include "main.h"
#include "LRU_pageQ_entry.h"

using namespace std;

class LRU_pageQ {
private:
 int size;
 int maxSize;
 list<LRU_pageQ_entry> queue;
 LRU_pageQ_entry LRU_entry;
 LRU_pageQ_entry MRU_entry;

public:
 LRU_pageQ();
 LRU_pageQ(int newMaxSize);

 void setMaxSize(int newMaxSize);

 int getSize(void);
 int getMaxSize(void);
 LRU_pageQ_entry getLRU_entry(void);
 LRU_pageQ_entry getMRU_entry(void);

 void pushMRU(unsigned long int newPage);
 LRU_pageQ_entry popLRU(void);

 //bool referenceUsedPage(long int pageNumber);
 //LRU_pageQ_entry referencePrepagedPage(long int pageNumber);

 void addUsedPage(unsigned long int newPage);
 void addPrepagedPage(unsigned long int newPage);

 void evictPage(void);

 list<LRU_pageQ_entry> * getQueue(void);

 bool pagePresentInQ(unsigned long int pageNumber);
};

#endif

LRU Page Queue Source: LRU_pageQ.c
#include "main.h"
#include "LRU_pageQ.h"

LRU_pageQ::LRU_pageQ()
{
 size = 0;
 maxSize = DEFAULT_MAX_MEM_SIZE;
}
LRU_pageQ::LRU_pageQ(int newMaxSize)
{
 size = 0;
 maxSize = newMaxSize;
}

Morrison Appendix B 23

void LRU_pageQ::setMaxSize(int newMaxSize)
{
 maxSize = newMaxSize;
}
int LRU_pageQ::getSize(void)
{
 size = queue.size();
 return size;
}
int LRU_pageQ::getMaxSize(void)
{
 return maxSize;
}
LRU_pageQ_entry LRU_pageQ::getLRU_entry(void)
{
 return queue.back();
}
LRU_pageQ_entry LRU_pageQ::getMRU_entry(void)
{
 return queue.front();
}
void LRU_pageQ::pushMRU(unsigned long int newPage)
{
 if ((queue.size() + 1) > maxSize) return;
 LRU_pageQ_entry newEntry;
 newEntry.setPageNumber(newPage);
 newEntry.setLRUValue(0);
 newEntry.setResidency(true);
 //newEntry.setHistValue(0);
 queue.push_front(newEntry);

 // record new queue size
 size = queue.size();
}
LRU_pageQ_entry LRU_pageQ::popLRU(void)
{
 LRU_pageQ_entry LRUentry = queue.back();
 queue.pop_back();

 // record new queue size
 size = queue.size();

 return LRUentry;
}
void LRU_pageQ::evictPage(void)
{
 popLRU();

 // record new queue size
 size = queue.size();
}
list<LRU_pageQ_entry> * LRU_pageQ::getQueue(void)
{
 return &queue;
}
bool LRU_pageQ::pagePresentInQ(unsigned long int pageNumber)
{
 bool pagePresent = false;
 list<LRU_pageQ_entry>::iterator position;
 for (position = queue.begin(); position != queue.end(); ++position) {
 if ((*position).getPageNumber() == pageNumber) {
 pagePresent = true;
 break;
 }
 }

 return pagePresent;
}

Used Page Queue Class: UsedPageQ.h
#include <string>
#include <iostream>
#include <fstream>
#include <vector>
#include <queue>
#include <list>
#include <map>
#include <math.h>

#include "main.h"

Morrison Appendix B 24

#ifndef LRU_PAGEQ_H_
#include "LRU_pageQ.h"
#endif //LRU_PAGEQ_H_

using namespace std;

class UsedPageQ {
private:
 int size;
 int maxSize;
 int minSize;
 LRU_pageQ ResidentQ;
 LRU_pageQ NonResidentQ;
 int histogram[DEFAULT_MAX_MEM_SIZE];

public:
 UsedPageQ();

 void setMaxSize(int newMaxSize);
 void setMinSize(int newMinSize);

 int getSize(void);
 int getMaxSize(void);
 int getMinSize(void);

 bool referencePage(unsigned long int pageNumber);

 void addPage(unsigned long int newPage);

 void evictPage(void);
 void removeNonResidentPage(unsigned long int pageNumber);

 void printQueueEntries(void);

 void clearHistogram(void);
 void incHistogram(int index);
 int findHistogramIndex(unsigned long int pageNumber);
 void printHistogram(void);
 void decayHistogram(double decayValue);
 int getHistogramEntry(int index);

 bool pagePresentInResidentQ(unsigned long int pageNumber);
 bool pagePresentInNonResidentQ(unsigned long int pageNumber);

 long int getMRUPageNumber(void);
};

Used Page Queue Source: UsedPageQ.c
#include "main.h"
#include "UsedPageQ.h"

int debugModeUsed = DEBUG_MODE;

UsedPageQ::UsedPageQ()
{
 size = 0;
 maxSize = DEFAULT_MAX_MEM_SIZE;
 ResidentQ.setMaxSize(maxSize);
 NonResidentQ.setMaxSize(DEFAULT_MAX_MEM_SIZE);
 clearHistogram();
}

void UsedPageQ::setMaxSize(int newMaxSize)
{
 int currentSize = getSize();
 maxSize = newMaxSize;
 ResidentQ.setMaxSize(maxSize);
 //if (debugModeUsed == DEBUG_4) cout << "Used Queue Max Size set to: " << ResidentQ.getMaxSize()
<< endl;

 // If New Max Size is less than old, remove extra pages
 int elementNum;
 int numOfPagesToRemove = 0;
 if (newMaxSize < currentSize) {
 numOfPagesToRemove = currentSize - newMaxSize;
 for (elementNum = 0; elementNum < numOfPagesToRemove; ++elementNum) {
 NonResidentQ.pushMRU((ResidentQ.popLRU()).getPageNumber());
 }
 }

Morrison Appendix B 25

}

void UsedPageQ::setMinSize(int newMinSize)
{
 minSize = newMinSize;
}

int UsedPageQ::getSize(void)
{
 size = ResidentQ.getSize();
 return size;
}

int UsedPageQ::getMaxSize(void)
{
 return maxSize;
}

int UsedPageQ::getMinSize(void)
{
 return minSize;
}

bool UsedPageQ::referencePage(unsigned long int pageNumber)
{
 bool pageHit = false; // Default = Page Fault

 int elementNum = 0;
 LRU_pageQ_entry entryReferenced;
 list<LRU_pageQ_entry>::iterator position;
 for (position = ResidentQ.getQueue()->begin(); position != ResidentQ.getQueue()->end();
++position) {
 if ((*position).getPageNumber() == pageNumber) {
 pageHit = true;
 incHistogram(elementNum);
 break;
 }
 elementNum++;
 }
 // If pageNumber not in Resident Queue, mark as Page Fault
 if (!pageHit) {
 // Check Non-Resident Queue for page
 elementNum = maxSize;
 for (position = NonResidentQ.getQueue()->begin(); position != NonResidentQ.getQueue()->end();
++position) {
 if ((*position).getPageNumber() == pageNumber) {
 incHistogram(elementNum);
 removeNonResidentPage((*position).getPageNumber());
 break;
 }
 elementNum++;
 }

 return pageHit;
 }

 entryReferenced = *position;
 ResidentQ.getQueue()->erase(position);
 ResidentQ.getQueue()->push_front(entryReferenced);

 return pageHit;
}

void UsedPageQ::addPage(unsigned long int newPage)
{
 // Check if Eviction is necessary
 if ((ResidentQ.getSize() + 1) > maxSize) {
 //Evict LRU Page
 evictPage();
 }
 ResidentQ.pushMRU(newPage);
 // Update size
 size = ResidentQ.getSize();
}

void UsedPageQ::evictPage(void)
{
 LRU_pageQ_entry evictedPage = ResidentQ.popLRU();
 size = ResidentQ.getSize();
 NonResidentQ.pushMRU(evictedPage.getPageNumber());
}

Morrison Appendix B 26

void UsedPageQ::removeNonResidentPage(unsigned long int pageNumber)
{
 list<LRU_pageQ_entry>::iterator position;
 for (position = NonResidentQ.getQueue()->begin(); position != NonResidentQ.getQueue()->end();
++position) {
 if ((*position).getPageNumber() == pageNumber) {
 // Remove Page
 NonResidentQ.getQueue()->erase(position);
 return;
 }
 }
}

void UsedPageQ::printQueueEntries(void)
{
 cout << "Used Page Queue:\n";
 cout << "Resident Queue:\n";
 cout << "\tPage #\tHist Value\n";
 cout << "\t------\t----------\n";

 int elementNum = 0;
 list<LRU_pageQ_entry>::iterator position;
 for (position = ResidentQ.getQueue()->begin(); position != ResidentQ.getQueue()->end();
++position) {
 if (elementNum == 0) cout << " MRU\t";
 else if (elementNum == (ResidentQ.getSize()-1)) cout << " LRU\t";
 else cout << "\t";
 cout << (*position).getPageNumber() << "\t";
 //cout << (*position).getHistValue() << "\n";
 cout << histogram[elementNum] << "\n";
 elementNum++;
 }

 //elementNum = ResidentQ.getSize() + 1;
 elementNum = maxSize;
 cout << "Non-Resident Queue:\n";
 cout << "\tPage #\tHist Value\n";
 cout << "\t------\t----------\n";
 cout << " MRU\t";
 for (position = NonResidentQ.getQueue()->begin(); position != NonResidentQ.getQueue()->end();
++position) {
 if (elementNum == (NonResidentQ.getSize()-1)) cout << " LRU\t";
 else cout << "\t";
 cout << (*position).getPageNumber() << "\t";
 //cout << (*position).getHistValue() << "\n";
 cout << histogram[elementNum] << "\n";
 elementNum++;
 }
}

void UsedPageQ::clearHistogram(void)
{
 int index;
 //int maxIndex = ResidentQ.getMaxSize() + NonResidentQ.getMaxSize();
 int maxIndex = DEFAULT_MAX_MEM_SIZE;
 for (index = 0; index < maxIndex; index++) {
 histogram[index] = 0;
 }
}

void UsedPageQ::incHistogram(int index)
{
 if (index >= DEFAULT_MAX_MEM_SIZE) {
 if (debugModeUsed == DEBUG_2) cout << "ERROR: Histogram index out of bounds!\n";
 return;
 }
 histogram[index] += 1;
}

bool UsedPageQ::pagePresentInResidentQ(unsigned long int pageNumber)
{
 bool pagePresent = false;
 list<LRU_pageQ_entry>::iterator position;
 for (position = ResidentQ.getQueue()->begin(); position != ResidentQ.getQueue()->end();
++position) {
 if ((*position).getPageNumber() == pageNumber) {
 pagePresent = true;
 break;
 }
 }

Morrison Appendix B 27

 return pagePresent;
}

bool UsedPageQ::pagePresentInNonResidentQ(unsigned long int pageNumber)
{
 bool pagePresent = false;
 list<LRU_pageQ_entry>::iterator position;
 for (position = NonResidentQ.getQueue()->begin(); position != NonResidentQ.getQueue()->end();
++position) {
 if ((*position).getPageNumber() == pageNumber) {
 pagePresent = true;
 break;
 }
 }

 return pagePresent;
}

long int UsedPageQ::getMRUPageNumber(void)
{
 return (ResidentQ.getMRU_entry()).getPageNumber();
}

int UsedPageQ::findHistogramIndex(unsigned long int pageNumber)
{
 int index = DEFAULT_MAX_MEM_SIZE - 1;
 list<LRU_pageQ_entry>::iterator position;
 int elementNum = ResidentQ.getMaxSize();
 for (position = NonResidentQ.getQueue()->begin(); position != NonResidentQ.getQueue()->end();
++position) {
 if ((*position).getPageNumber() == pageNumber) {
 index = elementNum;
 return index;
 }
 elementNum++;
 }
 if (debugModeUsed == DEBUG_2) cout << "ERROR: Histogram Index not found!\n";
 return index;
}

void UsedPageQ::decayHistogram(double decayValue)
{
 int index;
 int maxIndex = DEFAULT_MAX_MEM_SIZE;
 for (index = 0; index < maxIndex; index++) {
 histogram[index] = (double)histogram[index] * decayValue;
 }
}

void UsedPageQ::printHistogram(void)
{
 cout << "Used Page Queue Histogram:\n";
 int index;
 int maxIndex = ResidentQ.getMaxSize() + NonResidentQ.getSize();
 for (index = 0; index < maxIndex; index++) {
 cout << histogram[index] << endl;
 }
}

int UsedPageQ::getHistogramEntry(int index)
{
 if (index >= DEFAULT_MAX_MEM_SIZE) {
 if (debugModeUsed >= DEBUG_2) cout << "ERROR: Histogram index out of bounds!\n";
 return -1;
 }
 return histogram[index];
}

Prepaged Page Queue Class: PrepagedPageQ.h
#include <string>
#include <iostream>
#include <fstream>
#include <vector>
#include <queue>
#include <list>
#include <map>
#include <math.h>

Morrison Appendix B 28

#include "main.h"
#ifndef LRU_PAGEQ_H_
#include "LRU_pageQ.h"
#endif //LRU_PAGEQ_H_

using namespace std;

class PrepagedPageQ {
private:
 int consumedAlloc;
 int targetAlloc;
 LRU_pageQ ResidentQ;
 LRU_pageQ NonResidentQ;
 LRU_pageQ DegreeQ;
 int histogram[DEFAULT_MAX_MEM_SIZE];
 int degreeHistogram[DEFAULT_MAX_DEGREE + 2];

public:
 PrepagedPageQ();
 PrepagedPageQ(int newTargetAlloc);

 void setTargetAlloc(int newTargetAlloc);

 int getConsumedAlloc(void);
 int getTargetAlloc(void);

 LRU_pageQ_entry referencePage(unsigned long int pageNumber);

 void addPage(unsigned long int newPage);

 void evictPage(void);

 void printQueueEntries(void);
 void printResidentQueueEntries(void);

 void clearHistogram(void);
 void clearDegreeHistogram(void);
 void incHistogram(int index);
 void decayHistogram(double decayValue);
 void printHistogram(void);
 int getHistogramEntry(int index);

 bool pagePresentInQ(unsigned long int pageNumber);

 void removeResidentPage(unsigned long int pageNumber);
 void removeNonResidentPage(unsigned long int pageNumber);

 void updateDegreeHistogram(unsigned long int pageNumber, int currentDegree);
 void addDegreePage(unsigned long int newPage);
 void incDegreeHistogram(int index);
 int getDegreeHistogramEntry(int index);
 void printDegreeQueue(int currentDegree);
 int getDegreeQueueSize(void);
};

Prepaged Page Queue Source: PrepagedPageQ.c
#include "main.h"
#include "PrepagedPageQ.h"

int debugModePrepaged = DEBUG_MODE;

PrepagedPageQ::PrepagedPageQ()
{
 // Set Prepaged Target Allocation
 targetAlloc = DEFAULT_PREPAGED_TARGET_ALLOC;
 ResidentQ.setMaxSize(targetAlloc);

 // Set Prepaged Consumed Allocation
 consumedAlloc = 0;

 clearHistogram();

 DegreeQ.setMaxSize(DEFAULT_MAX_DEGREE+2);
}

PrepagedPageQ::PrepagedPageQ(int newTargetAlloc)
{
 // Set Prepaged Target Allocation
 targetAlloc = newTargetAlloc;
 ResidentQ.setMaxSize(targetAlloc);

Morrison Appendix B 29

 // Set Prepaged Consumed Allocation
 consumedAlloc = 0;

 clearHistogram();

 DegreeQ.setMaxSize(DEFAULT_MAX_DEGREE+2);
}

void PrepagedPageQ::setTargetAlloc(int newTargetAlloc)
{
 int oldConsumedAlloc = getConsumedAlloc();

 if (newTargetAlloc > DEFAULT_MAX_PREPAGED_TARGET_ALLOC) targetAlloc =
DEFAULT_MAX_PREPAGED_TARGET_ALLOC;
 else if (newTargetAlloc < DEFAULT_MIN_PREPAGED_TARGET_ALLOC) targetAlloc =
DEFAULT_MIN_PREPAGED_TARGET_ALLOC;
 else targetAlloc = newTargetAlloc;
 ResidentQ.setMaxSize(targetAlloc);

 // If New Target Allocation is less than old consumed allocation, place extra pages into non-
resident queue
 int elementNum;
 int numOfPagesToRemove = 0;
 if (newTargetAlloc < oldConsumedAlloc) {
 numOfPagesToRemove = oldConsumedAlloc - newTargetAlloc;
 for (elementNum = 0; elementNum < numOfPagesToRemove; ++elementNum) {
 NonResidentQ.pushMRU(ResidentQ.popLRU().getPageNumber());
 }
 }

 // Reset Consumed Allocation
 consumedAlloc = ResidentQ.getSize();
}

int PrepagedPageQ::getConsumedAlloc(void)
{
 // Refresh Consumed Allocation
 consumedAlloc = ResidentQ.getSize();

 return consumedAlloc;
}

int PrepagedPageQ::getTargetAlloc(void)
{
 return targetAlloc;
}

LRU_pageQ_entry PrepagedPageQ::referencePage(unsigned long int pageNumber)
{
 LRU_pageQ_entry referencedPage;
 bool pageHit = false;

 // Check Resident Queue
 int elementNum = 0;
 list<LRU_pageQ_entry>::iterator position;
 for (position = ResidentQ.getQueue()->begin(); position != ResidentQ.getQueue()->end();
++position) {
 if ((*position).getPageNumber() == pageNumber) {
 pageHit = true;
 incHistogram(elementNum);
 referencedPage = *position;
 removeResidentPage(pageNumber);
 return referencedPage;
 }
 else elementNum++;
 }

 // Check Non-Resident Queue (for purposes of updating histogram)
 elementNum = targetAlloc;
 for (position = NonResidentQ.getQueue()->begin(); position != NonResidentQ.getQueue()->end();
++position) {
 if (elementNum >= DEFAULT_MAX_MEM_SIZE) break;
 if ((*position).getPageNumber() == pageNumber) {
 //cout << "Incrementing Prepage Histogram at " << elementNum << " for Non-Resident Page "
<< (*position).getPageNumber() << endl;
 incHistogram(elementNum);
 break;
 }
 else elementNum++;
 }

Morrison Appendix B 30

 // No page hit
 referencedPage.setPageNumber(NULL);

 return referencedPage;
}

void PrepagedPageQ::addPage(unsigned long int newPage)
{
 // Check if already present in prepage queue
 if (pagePresentInQ(newPage)) {
 removeResidentPage(newPage);
 }

 // Check if Eviction is necessary
 if ((ResidentQ.getSize() + 1) > targetAlloc) { //Evict LRU Page
 evictPage();
 }
 ResidentQ.pushMRU(newPage);
 // Update Consumed Allocation
 consumedAlloc = ResidentQ.getSize();
}

void PrepagedPageQ::evictPage(void)
{
 // Evict Page
 // Add Evicted Page to NonResident Queue
 NonResidentQ.pushMRU(ResidentQ.popLRU().getPageNumber());

 // Update Consumed Allocation
 consumedAlloc = ResidentQ.getSize();
}

void PrepagedPageQ::removeResidentPage(unsigned long int pageNumber)
{
 list<LRU_pageQ_entry>::iterator position;
 for (position = ResidentQ.getQueue()->begin(); position != ResidentQ.getQueue()->end();
++position) {
 if ((*position).getPageNumber() == pageNumber) {
 // Remove Page
 ResidentQ.getQueue()->erase(position);
 // Update Consumed Alloc
 consumedAlloc = ResidentQ.getSize();
 return;
 }
 }
}

void PrepagedPageQ::removeNonResidentPage(unsigned long int pageNumber)
{
 list<LRU_pageQ_entry>::iterator position;
 for (position = NonResidentQ.getQueue()->begin(); position != NonResidentQ.getQueue()->end();
++position) {
 if ((*position).getPageNumber() == pageNumber) {
 // Remove Page
 NonResidentQ.getQueue()->erase(position);
 return;
 }
 }
}

void PrepagedPageQ::printQueueEntries(void)
{
 cout << "Prepaged Page Queue:\n";
 cout << "Resident Queue:\n";
 cout << "Entry\tPage #\tHist Value\n";
 cout << "-----\t------\t----------\n";

 // Resident Queue Entries
 int elementNum = 0;
 list<LRU_pageQ_entry>::iterator position;
 for (position = ResidentQ.getQueue()->begin(); position != ResidentQ.getQueue()->end();
++position) {
 if (elementNum == 0) cout << elementNum + 1 << " MRU\t";
 else if (elementNum == (ResidentQ.getSize()-1)) cout << elementNum + 1 << " LRU\t";
 else cout << elementNum + 1 << "\t";
 cout << (*position).getPageNumber() << "\t";
 //cout << (*position).getHistValue() << "\n";
 cout << histogram[elementNum] << "\n";
 elementNum++;
 }

Morrison Appendix B 31

 // NonResident Queue Entries
 elementNum = targetAlloc;
 cout << "Non-Resident Queue:\n";
 cout << "Entry\tPage #\tHist Value\n";
 cout << "-----\t------\t----------\n";
 for (position = NonResidentQ.getQueue()->begin(); position != NonResidentQ.getQueue()->end();
++position) {
 if (elementNum == targetAlloc) cout << elementNum + 1 << " MRU\t";
 else if (elementNum == (targetAlloc + NonResidentQ.getSize() - 1)) cout << elementNum + 1 << "
LRU\t";
 else cout << elementNum + 1 << "\t";
 cout << (*position).getPageNumber() << "\t";
 //cout << (*position).getHistValue() << "\n";
 if (elementNum < DEFAULT_MAX_MEM_SIZE) cout << histogram[elementNum] << "\n";
 else break;
 elementNum++;
 }
}

void PrepagedPageQ::printResidentQueueEntries(void)
{
 cout << "Prepaged Page Queue:\n";
 cout << "Resident Queue:\n";
 cout << "Entry\tPage #\tHist Value\n";
 cout << "-----\t------\t----------\n";

 int elementNum = 0;
 list<LRU_pageQ_entry>::iterator position;
 for (position = ResidentQ.getQueue()->begin(); position != ResidentQ.getQueue()->end();
++position) {
 if (elementNum == 0) cout << elementNum + 1 << " MRU\t";
 else if (elementNum == (ResidentQ.getSize()-1)) cout << elementNum + 1 << " LRU\t";
 else cout << elementNum + 1 << "\t";
 cout << (*position).getPageNumber() << "\t";
 //cout << (*position).getHistValue() << "\n";
 cout << histogram[elementNum] << "\n";
 elementNum++;
 }
}

void PrepagedPageQ::clearHistogram(void)
{
 int index;
 for (index = 0; index < DEFAULT_MAX_MEM_SIZE; index++) {
 histogram[index] = 0;
 }
}

void PrepagedPageQ::clearDegreeHistogram(void)
{
 int index;
 for (index = 0; index < (DEFAULT_MAX_DEGREE + 2); index++) {
 degreeHistogram[index] = 0;
 }
}

void PrepagedPageQ::incHistogram(int index)
{
 if (index >= DEFAULT_MAX_MEM_SIZE) {
 if (debugModePrepaged == DEBUG_2) cout << "ERROR: Histogram index out of bounds!\n";
 return;
 }

 histogram[index] += 1;
}

void PrepagedPageQ::incDegreeHistogram(int index)
{
 if (index > (DEFAULT_MAX_DEGREE + 1)) {
 if (debugModePrepaged == DEBUG_2) cout << "ERROR: Degree histogram index out of bounds!\n";
 return;
 }

 degreeHistogram[index] += 1;
}

int PrepagedPageQ::getHistogramEntry(int index)
{
 if (index >= DEFAULT_MAX_MEM_SIZE) {
 if (debugModePrepaged == DEBUG_2) cout << "ERROR: Histogram index out of bounds!\n";

Morrison Appendix B 32

 return -1;
 }

 return histogram[index];
}

bool PrepagedPageQ::pagePresentInQ(unsigned long int pageNumber)
{
 bool pagePresent = false;
 list<LRU_pageQ_entry>::iterator position;
 for (position = ResidentQ.getQueue()->begin(); position != ResidentQ.getQueue()->end();
++position) {
 if ((*position).getPageNumber() == pageNumber) {
 pagePresent = true;
 break;
 }
 }

 return pagePresent;
}

void PrepagedPageQ::decayHistogram(double decayValue)
{
 int index;
 for (index = 0; index < DEFAULT_MAX_MEM_SIZE; index++) {
 histogram[index] = (double)histogram[index] * decayValue; //Truncation allowed
 }
}

void PrepagedPageQ::printHistogram(void)
{
 cout << "Prepaged Page Queue Histogram:\n";
 int index;
 for (index = 0; index < targetAlloc; index++) {
 cout << histogram[index] << endl;
 }
}

void PrepagedPageQ::printDegreeQueue(int currentDegree)
{
 cout << "Prepaged Degree Queue:\n";
 cout << "\tEntry\tHist\n";
 cout << "\t-----\t----\n";

 int index = 0;
 list<LRU_pageQ_entry>::iterator position;
 for (position = DegreeQ.getQueue()->begin(); position != DegreeQ.getQueue()->end(); ++position)
{
 if (index > (currentDegree + 1)) break;
 if (index == 0) cout << "MRU\t";
 else cout << "\t";
 cout << (*position).getPageNumber() << "\t" << degreeHistogram[index] << endl;
 index++;
 }
}

void PrepagedPageQ::updateDegreeHistogram(unsigned long int pageNumber, int currentDegree)
{
 // Check Degree Queue
 int elementNum = 0;
 list<LRU_pageQ_entry>::iterator position;
 for (position = DegreeQ.getQueue()->begin(); position != DegreeQ.getQueue()->end(); ++position) {
 if (elementNum > (currentDegree + 1)) break;
 else if ((*position).getPageNumber() == pageNumber) {
 incDegreeHistogram(elementNum);
 }
 elementNum++;
 }
}

void PrepagedPageQ::addDegreePage(unsigned long int newPage)
{
 if ((DegreeQ.getSize() + 1) > DegreeQ.getMaxSize()) { //Evict LRU Page
 DegreeQ.evictPage();
 }

 DegreeQ.pushMRU(newPage);
}

int PrepagedPageQ::getDegreeHistogramEntry(int index)
{

Morrison Appendix B 33

 if (index > (DEFAULT_MAX_DEGREE + 1)) {
 if (debugModePrepaged == DEBUG_2) cout << "ERROR: Degree histogram index out of bounds!\n";
 return 0;
 }

 return degreeHistogram[index];
}

int PrepagedPageQ::getDegreeQueueSize(void)
{
 return DegreeQ.getSize();
}

Virtual Memory Management Unit Class: VirtualMMU.h
#include <string>
#include <iostream>
#include <fstream>
#include <vector>
#include <queue>
#include <list>
#include <map>
#include <math.h>

#include "main.h"
#include "UsedPageQ.h"
#include "PrepagedPageQ.h"

using namespace std;

class VirtualMMU {
private:
 int MMSize; // Size of Main Memory
 int prepagedAlloc; // Max size of Prepaged Queue
 int degree;
 int predictionScheme;
 int historySize;
 UsedPageQ usedPageQ;
 PrepagedPageQ prepagedPageQ;

public:
 // Prediction lists used to determine most effective prediction scheme
 vector<unsigned long int> addressLocalPredictions;
 vector<unsigned long int> recencyLocalPredictions;
 vector<unsigned long int> stridePredictions;
 vector<unsigned long int> hybridPredictions;
 // Prediction histograms
 int addressLocalHistogram[DEFAULT_MAX_DEGREE];
 int recencyLocalHistogram[DEFAULT_MAX_DEGREE];
 int strideHistogram[DEFAULT_MAX_DEGREE];
 int hybridHistogram[DEFAULT_MAX_DEGREE];

 // Global Variables
 long int transfers;
 double avg_transfer;
 double transfer_rate;

 VirtualMMU();
 VirtualMMU(int newMMSize, int newPrepagedAlloc, int newDegree, int newPredictionScheme);

 void printVMMU(void);

 void setMMSize(int newMMSize);
 void setPrepagedAlloc(int newPrepagedAlloc);
 void setDegree(int newDegree);
 void setHistorySize(int newHistorySize);

 int getMMSize(void);
 int getPrepagedAlloc(void);
 int getDegree(void);
 int getHistorySize(void);

 int incDegree(void);
 int decDegree(void);

 UsedPageQ * getUsedPageQ(void);
 PrepagedPageQ * getPrepagedPageQ(void);

 int handlePageRef(unsigned long int referencedPage, int preParamMode);

Morrison Appendix B 34

 vector<unsigned long int> generatePrepageList(unsigned long int referencedPage);
 void printPrepageList(vector<unsigned long int> *prepageList);
 void fetchPrepages(vector<unsigned long int> prepageList);

 void updatePrepagedAlloc(void);
 void updateDegree(void);
 void updatePredictionScheme(void);

 unsigned int calculateBenefit(int targetAlloc);
 unsigned int calculateCost(int targetAlloc);

 void initializePredictionHistograms(void);
 void clearPredictionHistograms(void);
 int calculateHistTotal(int histogram[]);
 void updatePredictionHistograms(unsigned long int referencedPage);
 void printPredictionHistograms(void);
 void printPredictionLists(void);

};

Virtual Memory Management Unit Source: VirtualMMU.c
#include "main.h"
#include "VirtualMMU.h"

string predictionSchemes[] = {"Uninitialized","Address Local","Recency Local","Stride","Hybrid"};

// Global Variables
int debugMode = DEBUG_MODE;
int refNumber = 1; // Cummulative Reference Number
int faultNumber = 1;// Cummulative Page Fault Number
int decayPeriod = DEFAULT_DECAY_PERIOD; // Period at which histograms are decayed
int allocUpdatePeriod = DEFAULT_ALLOC_UPDATE_PERIOD; // Period at which the prepaged target
allocation is updated
double decayValue = (double)DEFAULT_DECAY_NUMERATOR/(double)DEFAULT_DECAY_DENOMINATOR;

VirtualMMU::VirtualMMU()
{
 MMSize = DEFAULT_MEM_SIZE;
 prepagedAlloc = DEFAULT_PREPAGED_TARGET_ALLOC;
 degree = DEFAULT_DEGREE;
 predictionScheme = DEFAULT_PREDICTION_SCHEME;

 usedPageQ.setMaxSize(MMSize - prepagedPageQ.getConsumedAlloc());
 usedPageQ.setMinSize(DEFAULT_MIN_USED_Q_SIZE);
 prepagedPageQ.setTargetAlloc(prepagedAlloc);

 initializePredictionHistograms();

 refNumber = 1; // Cummulative Reference Number
 faultNumber = 1;// Cummulative Page Fault Number
}

VirtualMMU::VirtualMMU(int newMMSize, int newPrepagedAlloc, int newDegree, int newPredictionScheme)
{
 MMSize = newMMSize;
 prepagedAlloc = newPrepagedAlloc;
 degree = newDegree;
 predictionScheme = newPredictionScheme;

 usedPageQ.setMaxSize(MMSize - prepagedPageQ.getConsumedAlloc());
 usedPageQ.setMinSize(DEFAULT_MIN_USED_Q_SIZE);
 prepagedPageQ.setTargetAlloc(prepagedAlloc);

 initializePredictionHistograms();

 refNumber = 1; // Cummulative Reference Number
 faultNumber = 1;// Cummulative Page Fault Number
}
void VirtualMMU::printVMMU()
{
 cout << "VMMU" << endl;
 cout << "--------" << endl;
 cout << "Main Memory Size: " << MMSize << endl;
 cout << "Prepaged Allocation: " << prepagedAlloc << endl;
 cout << "Degree: " << degree << endl;
 cout << "Prediciton Scheme: " << predictionScheme << endl;
 cout << "History Size: " << historySize << endl;
 usedPageQ.printQueueEntries();
 cout << endl << endl;

Morrison Appendix B 35

 prepagedPageQ.printQueueEntries();
}
void VirtualMMU::setMMSize(int newMMSize)
{
 MMSize = newMMSize;

 usedPageQ.setMaxSize(MMSize - prepagedPageQ.getConsumedAlloc());
}
void VirtualMMU::setPrepagedAlloc(int newPrepagedAlloc)
{
 if (newPrepagedAlloc > DEFAULT_MAX_PREPAGED_TARGET_ALLOC) {
 prepagedAlloc = DEFAULT_MAX_PREPAGED_TARGET_ALLOC;
 }
 else if (newPrepagedAlloc < DEFAULT_MIN_PREPAGED_TARGET_ALLOC) {
 prepagedAlloc = DEFAULT_MIN_PREPAGED_TARGET_ALLOC;
 }
 else {
 prepagedAlloc = newPrepagedAlloc;
 }

 usedPageQ.setMaxSize(MMSize - prepagedPageQ.getConsumedAlloc());
 prepagedPageQ.setTargetAlloc(prepagedAlloc);
}
void VirtualMMU::setDegree(int newDegree)
{
 degree = newDegree;
}
void VirtualMMU::setHistorySize(int newHistorySize)
{
 historySize = newHistorySize;
}
int VirtualMMU::getMMSize(void)
{
 return MMSize;
}
int VirtualMMU::getPrepagedAlloc(void)
{
 return prepagedAlloc;
}
int VirtualMMU::getDegree(void)
{
 return degree;
}
int VirtualMMU::incDegree(void)
{
 int newDegree = degree + 1;
 if (newDegree > DEFAULT_MAX_DEGREE) newDegree = DEFAULT_MAX_DEGREE;
 return newDegree;
}
int VirtualMMU::decDegree(void)
{
 int newDegree = degree - 1;
 if (newDegree < DEFAULT_MIN_DEGREE) newDegree = DEFAULT_MIN_DEGREE;
 return newDegree;
}
int VirtualMMU::getHistorySize(void)
{
 return historySize;
}

UsedPageQ * VirtualMMU::getUsedPageQ(void)
{
 return &usedPageQ;
}

PrepagedPageQ * VirtualMMU::getPrepagedPageQ(void)
{
 return &prepagedPageQ;
}

int VirtualMMU::handlePageRef(unsigned long int referencedPage, int preParamMode)
{
 if (debugMode == DEBUG_2) {
 cout << "----------------------------\n";
 cout << "Referencing Page #" << referencedPage << endl;
 cout << "----------------------------\n";
 }

 int refResult = PAGE_FAULT;
 LRU_pageQ_entry prepagedPage;
 vector<unsigned long int> prepageList;

Morrison Appendix B 36

 int prepageParameterMode = preParamMode;

 // Check if page fault //
 // Check Used Page Queue
 if (usedPageQ.referencePage(referencedPage)) {
 // Page hit in Used Page Queue, no further action required
 if (debugMode == DEBUG_2) cout << "Page hit in Used Page Queue\n";
 refResult = PAGE_HIT;
 }
 else { // Check Prepaged Page Queue
 prepagedPageQ.updateDegreeHistogram(referencedPage, degree);
 updatePredictionHistograms(referencedPage);
 prepagedPage = prepagedPageQ.referencePage(referencedPage);
 usedPageQ.setMaxSize(MMSize - prepagedPageQ.getConsumedAlloc()); //Update Used Page Q MaxSize
 // Check if page fault
 if (prepagedPage.getPageNumber() == NULL) { // Page Fault in Prepaged Queue
 // PAGE FAULT //
 refResult = PAGE_FAULT;

 // Generate Prepage List
 prepageList = generatePrepageList(referencedPage);

 // Add referenced page to Used Page Queue
 usedPageQ.addPage(referencedPage);
 ++transfers;

 // Fetch Prepaged Pages
 fetchPrepages(prepageList);

 // Update Prepage Parameters
 if (prepageParameterMode == DYNAMIC_PREPAGE_PARAMETERS || prepageParameterMode ==
DYNAMIC_PREPAGE_ALLOCATION) {
 // Update Target Allocation
 if ((faultNumber % allocUpdatePeriod) == 0) {
 if (refNumber > DEFAULT_ALLOC_STARTUP_PERIOD) updatePrepagedAlloc();
 }
 }

 if (prepageParameterMode == DYNAMIC_PREPAGE_PARAMETERS || prepageParameterMode ==
DYNAMIC_PREDICTION_METHOD) {
 // Update Prediction Scheme
 updatePredictionScheme();
 }

 if (prepageParameterMode == DYNAMIC_PREPAGE_PARAMETERS || prepageParameterMode ==
DYNAMIC_DEGREE) {
 // Update Degree
 if (debugMode == DEBUG_5) prepagedPageQ.printDegreeQueue(degree);
 updateDegree();
 }

 ++faultNumber;
 }
 else { // Push referenced page into Used Queue
 if (debugMode == DEBUG_2) {
 cout << "Page hit in Prepaged Page Queue\n";
 cout << "Transferring page from Prepaged Page Queue to Used Page Queue\n";
 }

 refResult = PAGE_HIT;
 usedPageQ.addPage(prepagedPage.getPageNumber());
 }
 }

 if (debugMode == DEBUG_2) {
 usedPageQ.printQueueEntries();
 cout << "\n\n";
 prepagedPageQ.printQueueEntries();
 cout << "\n\n";
 }

 // Periodically Decay Histogram
 if ((refNumber % decayPeriod) == 0) {
 // Perform Decay
 prepagedPageQ.decayHistogram(decayValue);
 usedPageQ.decayHistogram(decayValue);
 }
 refNumber++;

Morrison Appendix B 37

 return refResult;
}

vector<unsigned long int> VirtualMMU::generatePrepageList(unsigned long int referencedPage)
{
 if (debugMode == DEBUG_2) {
 cout << "Generating Prepage List using " << predictionSchemes[predictionScheme] << "
prediciton ... \n";
 cout << "Referenced page = " << referencedPage << endl;
 }
 vector<unsigned long int> prepageList;
 vector<unsigned long int> degreeList;
 int predictionNumber;
 unsigned long int currentPrediction;

 // Address Local Prediction //
 vector<unsigned long int> addressLocalPredictionList;
 vector<unsigned long int> addressLocalDegreeList;
 for (predictionNumber = 1; predictionNumber <= (degree+2); predictionNumber++) {
 // Make predicitons
 if (predictionNumber == 1) currentPrediction = referencedPage + 1;
 else {
 if ((predictionNumber % 2) == 0) { //If Even Prediction Number
 currentPrediction = currentPrediction - predictionNumber;
 }
 else { //If Odd Prediction Number
 currentPrediction = currentPrediction + predictionNumber;
 }
 }
 //cout << "Adding prediction: " << currentPrediction << endl;
 if (predictionNumber <= degree) addressLocalPredictionList.push_back(currentPrediction);
 addressLocalDegreeList.push_back(currentPrediction);
 }
 addressLocalPredictions = addressLocalPredictionList;

 // Recency Local Prediction //
 vector<unsigned long int> recencyLocalPredictionList;
 vector<unsigned long int> recencyLocalDegreeList;
 for (predictionNumber = 1; predictionNumber <= (degree+2); predictionNumber++) {
 if (predictionNumber <= degree) recencyLocalPredictionList.push_back(0);
 recencyLocalDegreeList.push_back(0);
 }
 recencyLocalPredictions = recencyLocalPredictionList;

 // Stride Prediction //
 vector<unsigned long int> stridePredictionList;
 vector<unsigned long int> strideDegreeList;
 long int stride;
 //calcualate stride
 stride = referencedPage - usedPageQ.getMRUPageNumber();
 //make predictions
 currentPrediction = referencedPage;
 for (predictionNumber = 1; predictionNumber <= (degree+2); predictionNumber++) {
 // Make predicitons
 currentPrediction += stride;
 if (predictionNumber <= degree) stridePredictionList.push_back(currentPrediction);
 strideDegreeList.push_back(currentPrediction);
 }
 stridePredictions = stridePredictionList;

 // Hybrid Prediction //
 vector<unsigned long int> hybridPredictionList;
 vector<unsigned long int> hybridDegreeList;
 for (predictionNumber = 1; predictionNumber <= (degree+2); predictionNumber++) {
 if (predictionNumber <= degree) hybridPredictionList.push_back(0);
 hybridDegreeList.push_back(0);
 }
 hybridPredictions = hybridPredictionList;

 // Set Page Prediction //
 switch(predictionScheme) {
 case PREDICTION_UNINITIALIZED:
 break;
 case PREDICTION_ADDRESS_LOCAL:
 prepageList = addressLocalPredictionList;
 degreeList = addressLocalDegreeList;
 break;
 case PREDICTION_RECENCY_LOCAL:
 prepageList = recencyLocalPredictionList;
 degreeList = recencyLocalDegreeList;
 break;

Morrison Appendix B 38

 case PREDICTION_STRIDE:
 prepageList = stridePredictionList;
 degreeList = strideDegreeList;
 break;
 case PREDICTION_HYBRID:
 prepageList = hybridPredictionList;
 degreeList = hybridDegreeList;
 break;
 default:
 ;
 }

 // Add degreeList to Degree Queue
 vector<unsigned long int>::iterator predictionNum;
 predictionNum = degreeList.end();
 --predictionNum;
 int predNumber;
 for (predNumber = (degree+2); predNumber > 0; --predNumber) {
 //cout << "Adding " << *predictionNum << " to degree list\n";
 prepagedPageQ.addDegreePage(*predictionNum);

 if (predictionNum == degreeList.begin()) {
 break;
 }
 else {
 --predictionNum;
 }
 }

 // Check if predicted pages are already in main memory
 for (predictionNum = prepageList.begin(); predictionNum != prepageList.end(); ++predictionNum) {
 if (usedPageQ.pagePresentInResidentQ(*predictionNum) ||
prepagedPageQ.pagePresentInQ(*predictionNum)) {
 // Page is present in Main Mem, remove from prepageList
 if (debugMode == DEBUG_2) cout << "Erasing prediction: " << *predictionNum << endl;
 prepageList.erase(predictionNum);
 --predictionNum;
 }
 }

 printPrepageList(&prepageList);
 return prepageList;
}
void VirtualMMU::printPrepageList(vector<unsigned long int> *prepageList)
{
 if (debugMode == DEBUG_2) {
 cout << "Prepage List:\n";
 cout << "Prediciton List size = " << (*prepageList).size() << endl;
 }
 vector<unsigned long int>::iterator predictionNum;
 int predictionNumber = 1;
 for (predictionNum = (*prepageList).begin(); predictionNum != (*prepageList).end();
++predictionNum) {
 if (debugMode == DEBUG_2) cout << predictionNumber << ": " << *predictionNum << endl;
 predictionNumber++;
 }

 if (debugMode == DEBUG_2) cout << "Front = " << (*prepageList).front() << endl;
}
void VirtualMMU::fetchPrepages(vector<unsigned long int> prepageList)
{
 vector<unsigned long int>::iterator predictionNum;
 predictionNum = prepageList.end();
 --predictionNum;
 int predNumber;
 for (predNumber = degree; predNumber > 0; --predNumber) {

 // Add page to Prepaged Page Q
 prepagedPageQ.addPage(*predictionNum);
 ++transfers;

 // Remove page from Non-Resident Queue if present
 prepagedPageQ.removeNonResidentPage(*predictionNum);

 if (predictionNum == prepageList.begin()) {
 break;
 }
 else {
 --predictionNum;
 }
 }

Morrison Appendix B 39

 // Update Used Page Queue Max Size
 usedPageQ.setMaxSize(MMSize - prepagedPageQ.getConsumedAlloc());
}
void VirtualMMU::updatePrepagedAlloc(void)
{
 int newPrepagedAlloc = getPrepagedAlloc();
 int tempPrepagedAlloc;
 int currentNetReduction = 0;
 int maxNetReduction = 0;
 int currentPrepagedAlloc = getPrepagedAlloc();
 if (debugMode == DEBUG_1) cout << "Old Prepaged Allocation: " << prepagedAlloc << endl;

 // Determine new prepage allocation
 unsigned int benefit = 0;
 unsigned int cost = 0;
 for (tempPrepagedAlloc = 0; tempPrepagedAlloc < (MMSize - usedPageQ.getMinSize());
++tempPrepagedAlloc) {
 currentNetReduction = calculateBenefit(tempPrepagedAlloc) - calculateCost(tempPrepagedAlloc);
 if (currentNetReduction > maxNetReduction) {
 maxNetReduction = currentNetReduction;
 newPrepagedAlloc = tempPrepagedAlloc;
 }
 }

 setPrepagedAlloc(newPrepagedAlloc);
 if (debugMode == DEBUG_4) cout << "Setting prepaged allocation to: " << prepagedAlloc << endl;
 //if (debugMode == DEBUG_4) {
 // usedPageQ.printHistogram();
 // prepagedPageQ.printHistogram();
 //}
 if (debugMode == DEBUG_1) cout << "New Prepaged Allocation: " << prepagedAlloc << endl;
}
void VirtualMMU::updatePredictionScheme(void)
{
 int tempPredictionScheme = predictionScheme;
 if (debugMode == DEBUG_1) cout << "Old Prediction Scheme: " <<
predictionSchemes[predictionScheme] << endl;

 // Determine new prediction scheme
 int mostEffectivePrediciton = predictionScheme;
 int maxTotal = 0;
 int currentTotal = 0;
 currentTotal = calculateHistTotal(addressLocalHistogram);
 if (currentTotal > maxTotal) {
 maxTotal = currentTotal;
 mostEffectivePrediciton = PREDICTION_ADDRESS_LOCAL;
 }
 currentTotal = calculateHistTotal(recencyLocalHistogram);
 if (currentTotal > maxTotal) {
 maxTotal = currentTotal;
 mostEffectivePrediciton = PREDICTION_RECENCY_LOCAL;
 }
 currentTotal = calculateHistTotal(strideHistogram);
 if (currentTotal > maxTotal) {
 maxTotal = currentTotal;
 mostEffectivePrediciton = PREDICTION_STRIDE;
 }
 currentTotal = calculateHistTotal(hybridHistogram);
 if (currentTotal > maxTotal) {
 maxTotal = currentTotal;
 mostEffectivePrediciton = PREDICTION_HYBRID;
 }

 predictionScheme = mostEffectivePrediciton;

 if (predictionScheme != tempPredictionScheme){
 if (debugMode == DEBUG_8) {
 cout << "Old Prediction Scheme: " << predictionSchemes[tempPredictionScheme] << endl;
 cout << "New Prediction Scheme: " << predictionSchemes[predictionScheme] << endl;

 printPredictionHistograms();
 //printPredictionLists();
 }
 }

 clearPredictionHistograms();
}
void VirtualMMU::updateDegree(void)
{
 int oldDegree = degree;
 if (debugMode == DEBUG_1) cout << "Old Degree: " << oldDegree << endl;

Morrison Appendix B 40

 // Get Histogram Entires for Current and Next Degree in Degree Queue
 int valAtCurrentDegree = prepagedPageQ.getDegreeHistogramEntry(degree-1);
 if (debugMode == DEBUG_1) cout << "Histogram value at current degree: " << valAtCurrentDegree <<
endl;
 int valAtDegreePlusOne = prepagedPageQ.getDegreeHistogramEntry(degree);
 if (debugMode == DEBUG_1) cout << "Histogram value at current degree + 1: " << valAtDegreePlusOne
<< endl;
 int valAtDegreePlusTwo = prepagedPageQ.getDegreeHistogramEntry(degree+1);
 if (debugMode == DEBUG_1) cout << "Histogram value at current degree + 2: " << valAtDegreePlusTwo
<< endl;

 // Determine New Degree
 if (valAtDegreePlusTwo > 0) {
 degree = incDegree();
 degree = incDegree();
 }
 else if (valAtDegreePlusOne > 0) degree = incDegree();
 else if (valAtCurrentDegree == 0) degree = decDegree();

 if (debugMode == DEBUG_5) {
 if (degree != oldDegree) {
 cout << "New Degree: " << degree << endl;
 prepagedPageQ.printDegreeQueue(oldDegree);
 cout << endl;
 }
 }
 if (debugMode == DEBUG_1) cout << "New Degree: " << degree << endl;

 prepagedPageQ.clearDegreeHistogram();
}
unsigned int VirtualMMU::calculateBenefit(int targetAlloc)
{
 unsigned int benefit = 0;

 int index;

 for (index = 0; index < targetAlloc; ++index) {
 benefit += prepagedPageQ.getHistogramEntry(index);
 }

 return benefit;
}
unsigned int VirtualMMU::calculateCost(int targetAlloc)
{
 unsigned int cost = 0;

 int index;

 for (index = (DEFAULT_MEM_SIZE - targetAlloc); index < DEFAULT_MEM_SIZE; ++index) {
 cost += usedPageQ.getHistogramEntry(index);
 }

 return cost;
}
void VirtualMMU::initializePredictionHistograms(void)
{
 int index;
 for (index = 0; index < DEFAULT_MAX_DEGREE; index++) {
 addressLocalHistogram[index] = 0;
 recencyLocalHistogram[index] = 0;
 strideHistogram[index] = 0;
 hybridHistogram[index] = 0;
 }
}
void VirtualMMU::clearPredictionHistograms(void)
{
 int index;
 for (index = 0; index < degree; index++) {
 addressLocalHistogram[index] = 0;
 recencyLocalHistogram[index] = 0;
 strideHistogram[index] = 0;
 hybridHistogram[index] = 0;
 }
}
int VirtualMMU::calculateHistTotal(int histogram[])
{
 int total = 0;

 int index;
 for (index = 0; index < degree; index++) {

Morrison Appendix B 41

 total += histogram[index];
 }

 return total;
}
void VirtualMMU::updatePredictionHistograms(unsigned long int referencedPage)
{
 int predictionNum = 1;
 vector<unsigned long int>::iterator prediction;
 for (prediction = addressLocalPredictions.begin(); prediction != addressLocalPredictions.end();
++prediction) {
 if (predictionNum > degree) break;
 else if (*prediction == referencedPage) {
 addressLocalHistogram[predictionNum - 1] += 1;
 }
 else predictionNum++;
 }

 predictionNum = 1;
 for (prediction = recencyLocalPredictions.begin(); prediction != recencyLocalPredictions.end();
++prediction) {
 if (predictionNum > degree) break;
 else if (*prediction == referencedPage) {
 recencyLocalHistogram[predictionNum - 1] += 1;
 }
 else predictionNum++;
 }

 predictionNum = 1;
 for (prediction = stridePredictions.begin(); prediction != stridePredictions.end(); ++prediction)
{
 if (predictionNum > degree) break;
 else if (*prediction == referencedPage) {
 strideHistogram[predictionNum - 1] += 1;
 }
 else predictionNum++;
 }

 predictionNum = 1;
 for (prediction = hybridPredictions.begin(); prediction != hybridPredictions.end(); ++prediction)
{
 if (predictionNum > degree) break;
 else if (*prediction == referencedPage) {
 hybridHistogram[predictionNum - 1] += 1;
 }
 else predictionNum++;
 }
}
void VirtualMMU::printPredictionHistograms()
{
 int index;

 cout << "Address Local Prediction Histogram:\n";
 for (index = 0; index < degree; index++) {
 cout << addressLocalHistogram[index] << endl;
 }
 cout << endl;

 cout << "Recency Local Prediction Histogram:\n";
 for (index = 0; index < degree; index++) {
 cout << recencyLocalHistogram[index] << endl;
 }
 cout << endl;

 cout << "Stride Prediction Histogram:\n";
 for (index = 0; index < degree; index++) {
 cout << strideHistogram[index] << endl;
 }
 cout << endl;

 cout << "Hybrid Prediction Histogram:\n";
 for (index = 0; index < degree; index++) {
 cout << hybridHistogram[index] << endl;
 }
 cout << endl;

}
void VirtualMMU::printPredictionLists()
{
 int index;

Morrison Appendix B 42

 cout << "Address Local Prediction Histogram:\n";
 for (index = 0; index < degree; index++) {
 cout << addressLocalPredictions[index] << endl;
 }
 cout << endl;

 cout << "Recency Local Prediction Histogram:\n";
 for (index = 0; index < degree; index++) {
 cout << recencyLocalPredictions[index] << endl;
 }
 cout << endl;

 cout << "Stride Prediction Histogram:\n";
 for (index = 0; index < degree; index++) {
 cout << stridePredictions[index] << endl;
 }
 cout << endl;

 cout << "Hybrid Prediction Histogram:\n";
 for (index = 0; index < degree; index++) {
 cout << hybridPredictions[index] << endl;
 }
 cout << endl;

}

