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Abstract

Demand prepaging, an extension to the widely
employed method of demand paging, is a concept
designed to reduce page faults in a system
implementing virtual memory by prefetching pages
speculated to be referenced in the near future in
addition to pages that have already been referenced.
Doing so exploits high disk bandwidths while
attempting to avoid high disk latencies.

Although  studies have shown that demand
prepaging is generally not beneficial, other more
recent studies have been able to demonstrate
significant page fault reductions wusing dynamic
prepage parameters as opposed to static [4]. There
are several major parameters associated with demand
prepaging however, and to date there are no studies
which evaluate the performance of a completely
dynamic set of these parameters.

In this paper, [ propose and evaluate a
Dynamically Adaptive Prepaging (DAP) scheme in
which all major demand prepaging parameters are
dynamically modulated to changes in reference stream
trends and phases. My proposed DAP policies attempt
to reduce page faults by exploiting high disk
bandwidths.

I evaluate my proposed system through simulation,
using a custom trace-driven simulator developed in
C++.  Various uni-programmed memory reference
traces were simulated. My evaluation shows a
potentially significant reduction in page faults for the
simulated traces.

1. Introduction

ITH processor and main memory speeds
Wincreasing ever more rapidly, the gap between
storage disks and memory is growing wider every day.
As this gap grows larger, so does the latency associated
with the handling of page faults — an event in which a
virtual memory reference translates to a physical page
not currently located in physical memory. This
increasing latency is why reducing virtual memory
page faults is a growing interest.

Demand paging, a concept as old as virtual memory
itself, is a technique for implementing virtual memory
in which only demanded pages are fetched from the
backing store into physical memory. An extension to
this technique is the concept of demand prepaging
which was proposed as a means for reducing page
faults. Just as instruction prefetching is used in
processor pipelines to maximize pipeline utilization, so
is demand prepaging used to reduce disk accesses
caused by page faults. With demand prepaging, the
O/S (or VMM) is permitted to fetch extra pages in
addition to the demanded page. If the prepaged pages
are referenced relatively soon after being fetched, the
demand prepaging system successfully averted
additional disk accesses.

The effectiveness of demand prepaging relies on
the fact that the bulk of the delay associated with
retrieving a page from disk storage is due to the latency
of the disk access (typically 1 to 10 ms). The transfer
delay — the time required to transmit the page from the
backing store into physical memory — is significantly
smaller (on the order of tenths of a millisecond).
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Therefore, the additional delay caused by “piggy-
backing" the transfer of extra pages along with the
demanded page can be considered negligible. Since
disk bandwidths have been improving at a greater rate
(approximately 20% per year) than disk latencies
(approximately 5% per year), it is clear that reducing
the number of page faults is more important than
reducing the number of pages transferred between disk
and main memory.

1.1 Demand Prepaging

As previously mentioned, demand prepaging is an
extension to demand paging that allows extra pages to
be fetched into main memory along with the demanded
page. There are several parameters associated with
demand prepaging, the most important of which (and
those that will be analyzed in this paper) are:

o Prepage Memory Allocation: The number of main
memory page frames to be allocated for prepaged
pages — pages that are fetched along with the page
whose reference cause a page fault.

o Prepage Degree: The number of additional pages
to fetch along with the page whose reference
caused a page fault.

o Prepage Prediction Method: The method used to
predict pages that are most likely to be referenced
in the near future and should therefore be
candidates for prepaging.

It is intuitive that there exists an optimum
configuration of these parameters that will minimize
page faults.

The concern with applying prepaging techniques to
virtual memory management, however, is the
(somewhat likely) possibility of causing more page
faults than would occur in a system that does not use
prepaging. This, along with obvious drawbacks of
increased kernel complexity and strain on disk
bandwidth, are factors which must be overcome in
order to benefit from the application of prepaging.

Many prepaging techniques have been suggested,
from the simple One Block Lookahead (OBL) policy
[1] to the somewhat more complex OBL/k policy
proposed by Horspool and Huberman [3]. Until
recently, the problem with most of the suggested
prepaging techniques is simply that they fail to
substantially reduce page faults over a broad range of
workloads. Kaplan et al. [4] propose a means to
dynamically adapt prepaging policies in order to
accommodate various workloads. This was done by
dynamically adjusting prepage memory allocation, or
what they refer to as target allocation or prepaged
allocation.

1.2 Dynamically Adaptive Prepaging (DAP)

Although  dynamically  adjusting  prepaged
allocation will surely help the O/S (or VMM) adapt to
changes in memory reference behavior, it fails to fully
exploit the mutual relationship between all of the
prepaged parameters. This is why I propose to design
and evaluate more advanced methods for dynamically
adapting not only prepage memory allocation, but
prepage degree and prediction as well. It is reasonable
to believe there should exist a combination of these
three parameters that optimizes the performance
(minimizes page faults) of a virtual memory
management system. The challenge lies in developing
methods to adjust these parameters in order to adapt to
changing memory reference behavior without incurring
an unacceptable overhead in the process.

2. Background and Related Work

It is important to understand the consequences of
prepaging and the adjustment of its parameters on the
efficacy of virtual memory management before trying
to optimize it. The following section will discuss the
various costs and benefits of different prepaging
strategies.

2.1 Prepaging: Costs and Benefits

In this paper, I will refer to pages that are resident
in main memory as a result of being referenced by the
memory management unit as used pages. Pages that
are resident but have not yet been referenced are called
prepaged pages.

Prepaging is beneficial only if pages that are
prepaged are referenced before being evicted. If
evicted having never been referenced, the prepaged
page only occupied a main memory page frame which
could have been better used by a used page. This
means that prepaging is harmful only if prepaged pages
displace used pages that, under a non-prepaging
system, would have been re-referenced before being
evicted. So, one could characterize the cost of
prepaging as the number of references to pages that are
not resident under the given prepaging policy but
would have been resident had prepaging not been used.
Then, the benefit of prepaging is the number of
references to prepaged pages that would not have been
resident without prepaging.

2.1.1 Prepage Allocation

As previously mentioned, prepage allocation is the
number of main memory page frames to allocate to
prepaged pages. The allocation of main memory page
frames between used and prepaged pages is a source of
contention that will be managed by the O/S (or VMM).
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The two extremes of prepage allocation lead to
associated costs and benefits. If prepage allocation is
too high, less memory is allocated to used pages which
could result in an increase in page faults. If it is too
low, this reduces the effectiveness of prepaging
altogether.

2.1.2  Prepage Degree

Prepage degree is the number of additional pages to
fetch along with the demanded page when handling a
page fault. If the degree is too low, the effectiveness of
prepaged page prediction is reduced. If the degree is
too high, however, previously prepaged pages may be
evicted before ever being referenced in order to make
room for the large amount of new prepaged pages.
Recall that prepaging is beneficial only if pages that are
prepaged are referenced before being evicted.
Therefore, a high prepage degree may reduce the
potential for prepaging to be beneficial.

2.2 Previous Research in Prepaging

Many papers evaluate the benefits of demand
prepaging. It is important to review their findings
before attempting to develop new, more effective
methods.

2.2.1 One Block Lookahead (OBL)

Perhaps the earliest and most minimal prepaging
concept was Joseph’s One Block Lookahead (OBL)
policy [1]. Under this policy, if a reference to page p
causes a page fault, page p+1 will be fetched along
with page p if it is not already resident in main
memory. The main purpose of such a policy was to
exploit spatial locality in memory pages.

Joseph also suggested loading prepaged pages into
the LRU position of the resident page queue, as a way
to avoid evicting used pages before prepaged pages. In
doing so, however, the benefits of prepaging were
minimized since a prepaged page must be used prior to
the next page fault in order not to be evicted. It is no
surprise that experiments with OBL yielded little to no
benefit.

Smith [2] modified OBL such that pages p and p+1
are placed in the first and second positions of the LRU
queue. This essentially amounts to a prepaging policy
with a prepaged allocation of 50%. This relatively
high prepaged allocation is most likely why this policy
increased page faults more often than not.

2.2.2 OBL/k

Horspool and Huberman [3] proposed a more
complex extension to OBL in which prepaged pages
advanced towards eviction at a rate k. This bias toward
preserving used pages proved effective as they were
able to demonstrate a modest reduction in page faults.

2.2.3 Adaptive Caching

Kaplan et al. [4] proposed a means to dynamically
adapt prepaging policies in order to accommodate
various workloads. This was done by adjusting
prepage memory allocation, or what they refer to as
target allocation. The optimum target allocation is
determined by a cost-benefit analysis done for all
possible target allocations. Prepaged allocation costs
and benefits are generated through the use of
histograms that track the references to each individual
position in the LRU page queue.

This work is essentially the basis for my research.
My proposal extends their concept of a dynamic target
allocation to a more adaptive design in which all
prepage parameters are dynamic.

3. Design and Implementation

Since DAP is an extension to demand prepaging, all
designs are targeted for O/S kernels (or VMMs). The
implementations of these designs should therefore be
as efficient as possible in order to minimize any
associated overhead.

3.1.1 Basic Data Structures

In order to implement the concept of dynamic
prepage parameters, and even the concept of prepaging
itself, several basic data structures are necessary. The
first of which is called a Used Page Queue (see Figure
3.1). This queue is used to maintain the page numbers
of used pages, both resident (pages that are currently
loaded in main memory) and non-resident (pages that
exist on the backing store only). For prepaged pages, a
similar queue, called the Prepaged Page Queue, is
required (see Figure 3.2). The sum of the number of
resident entries in both queues is equal to the number
of page frames in main memory, since each entry
contains the page number of a page frame in main
memory.

When considering the prepaged page queue, it is
useful to make a distinction between prepaged
allocation, or target allocation as we will refer to it
from now on, and consumed allocation. Consumed
allocation is the number of main memory page frames
within the prepaged allocation that are actually being
consumed by prepaged pages. It would be
counterproductive if we did not allow used pages to
populate unused prepaged page frames, despite the fact
that those frames are within the prepaged memory
allocation. It is for this reason that we distinguish
between target and consumed allocation, so that used
pages can populate the remainder of page frames
between the consumed and target allocations.
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Figure 3.2: Prepaged Page Queue

Both of these queues have hit histograms
corresponding to each of their entries. When a page
resident in either queue is referenced, the
corresponding histogram entry will be incremented.
These histograms will be used later to enable the
optimization of prepage parameters.

Both queues will also be maintained in a least
recently used (LRU) ordering.  Admittedly, this
ordering is impractical with respect to implementation
(in hardware) and overhead (in software). For the
purposes of this project, however, it will be used to
simplify page replacement.

To handle a page reference, the used page queue is
scanned to determine if the demanded page is resident.
If so, the hit histogram element corresponding to the
queue position in which the page number resides will
be incremented and the page will be promoted to the
most recently used (MRU) position of the queue. If the
demanded page is not resident in the used page queue,

the prepaged page queue is then checked. If the
demanded page is resident in this queue, the hit
histogram element corresponding to the queue position
in which the page number resides will be incremented.
Then the page will be evicted from the prepaged page
queue and promoted to the MRU position of the used
page queue. If the demanded page is not resident in the
prepaged page queue, a page fault has occurred.

As part of handling a page fault, the demanded
page along with additional prepaged pages are fetched
from disk into main memory. The demanded page
number is inserted into the MRU position of the used
page queue. If by adding a page reference to the used
queue it exceeds its allocation (defined as the
difference between the total number of main memory
page frames and the prepaged consumed allocation),
the LRU page reference of the queue is evicted into the
non-resident section of the queue as to reflect the
eviction of that page from main memory.

Likewise, all prepaged page numbers fetched from
disk are placed in the MRU positions of the prepaged
page queue. If by adding these page references to the
queue the prepaged target allocation is exceeded, the
appropriate number of references are evicted into the
non-resident section of the queue, just as the pages they
reference are evicted from main memory.

3.1.2 Dynamic Prepaged Allocation

Just as costs and benefits were considered when
evaluating the efficacy of prepaging, so too should they
be taken into account when trying to optimize prepage
allocation. Kaplan et al. [4] proposed a method for
calculating the cost and benefit of all possible target
allocations as a means for determining which is

optimum.  This method will be used as part of my
proposed DAP system for adapting prepaged
allocation.

The cost of a certain target allocation can be
defined as the number of page faults that would have
occurred had that specific allocation been used. The
benefit of a particular target allocation can be defined
as the number of page faults that would have been
averted if that allocation were implemented. The hit
histograms of each queue can be used to calculate these
costs and benefits. Assuming a main memory size of m
page frames, and a target allocation #, the cost and
benefit of this allocation are defined as follows:

Cost(t) = Z UsedQueneHistogram]i]
1=

¢
Benefit(t)= ZP:'epagedeeneH istogramli|

i=1
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A net reduction in misses can then be calculated as
the difference between the benefit and cost of a
particular target allocation. The optimum target
allocation is finally defined as the allocation that
produces the maximum net reduction in misses, as seen
below. This entire process is depicted in Figure 3.3.

Targetdlloc. = argmax {Be;?qﬁ'l(t) - Cosr(r)}
t

As programs are executed and page references
accumulate, it is clear that the hit histograms will
saturate in the sense that their values will no longer
reflect the “current” behavior or phase of a program.
Since these histogram values are an integral part of
optimizing prepage allocation, they must be
conditioned such that they are more reflective of a
program’s recent behavior. Kaplan et al. [4] avoided
histogram saturation by periodically decaying all
entries by a constant value A, 0 < A < 1, such that a
histogram entry after decay would equal its value
before decay times the decay value. Surprisingly, their
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analysis found that the value of the decay variable had
little to no effect on performance.

Both the cost-benefit analysis and the histogram
decay are computationally intensive. The only way to
minimize the overhead associated with these actions is
to hide it by performing the computations during the
disk accesses associated with the handling of a page
fault. Since disk latency is many orders of magnitude
higher than processor clock cycles, these calculations
should not present any additional latency if carried out
while pages are being fetched from the backing store.
However, this does not imply that these processes do
not require efficient implementation. Other tasks can
be scheduled during disk accesses, such as execution of
different threads in the processor, while waiting on the
demanded page to be loaded. Another way to
minimize the overhead of the dynamic prepage
allocation calculations is to force the parameter to be
updated less often. Instead of updating prepage
allocation upon every page fault, updates can be
performed on a much longer period, thereby reducing
the computational overhead.

o
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o
9 Cost(t)
A
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1 25
=
@ Benefit(t)
o__ Y .

Figure 3.3: Prepage Allocation Cost-Benefit Analysis
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3.1.3 Dynamic Degree

The degree of prepaging is a parameter that is
closely related to the method used to predict prepages.
If prepaged pages are being referenced soon after being
fetched, than the prediction method is performing
effectively. If this is the case, it would be most
beneficial if prepage degree is high, so that more pages
can be prepaged, and more page faults can be avoided.
Conversely, if prepage prediction is not effective, the
optimum prepage degree would be relatively low so as
to minimize wasteful memory consumption.

In DAP, this relationship is exploited in order to
optimize prepaging degree. To do so, a new data
structure called the Degree Queue is required (see
Figure 3.4). This is a simple three-entry queue with a
corresponding hit histogram. For a degree d, the d",
(d+1)™, and (d+2)™ prepage predictions are stored in
the degree queue after every page fault. It is important
to note that although prepage page prediction numbers
d+1 and d+2 are stored in this queue, the page which
those predictions reference are not actually loaded into

physical memory.
Page
Fault

Degree Queue
Prediction #Degree+2 — T
Prediction #Degree+1 —

Prediction #Degree s ;' _ ves—*| Degree = Degree + 1
Clear Degree
Queue Hit
Histogram

7EE Degree = Degree + 2
NO
- 5

Prepage Page Degree Queue

3+ 2 10
1 o
ee o1

Figure 3.4: Degree Queue

The degree queue hit histogram enables the system
to determine whether prepaging additional pages under
the current prediction method would be beneficial. If
the histogram shows there were references to prepage
page prediction number d+2, then the degree will be
promoted to d+2. Likewise, if prediction number d+1
was referenced, the degree will be incremented by one.
Otherwise, if the d™ prepage page prediction was
referenced, than the degree is left unchanged. If none
of these predictions were referenced since the last page
fault, then the degree can actually be decremented,
since the current prediction method is not performing
accurately.  Figure 3.5 depicts this algorithm for
dynamically adapting prepage degree.

Pre-defined, static minimum and maximum prepage
degrees should also be implemented in order to avoid
what could be considered runaway adaptation, a
scenario in which the degree is constantly incremented
or decremented to the eventual detriment of the system.

Degree = Degree

Degree = Degree - 1

Figure 3.5: Dynamic Optimization of Prepage Degree
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3.1.4 Dynamic Prepage Prediction

There are several prepage prediction schemes,
each performing better in different scenarios. Three
prediction methods are used in the proposed DAP
system:

1. Address-local Prediction: Predicts pages nearby
in the address space relative to the page being
demanded are likely to be referenced soon.

Example: Referenced page number n
Predictions: n+1,n-1,n+2,n-2,...

2. Recency-local Prediction: Predicts pages nearby
in an LRU ordering to the page being demanded
are likely to be referenced soon.

Example: Reference to page found at LRU queue

position p

Predictions: Pages found in LRU queue positions
p-Lp+Lp-2,p+2,...

3. Stride Prediction: Predicts pages located at a
constant stride in the address space from the page
in demand relative to the MRU page are likely to
be referenced soon.

Example: Degree d, Referenced page number n,
MRU page queue entry p — stride s =n—p
Predictions: n+s,n+2s,n+3s,...,n+ds

Address-local

Address-local Prediction #Degree Prodiction Queus
Address-local Prediclion #Degree-1

Address-local Prediclion #Degree-2

Address-local Prediction #2

L7 e 1]
ol

- 10
— o1 .
=
Address-ocal Prediction #1 = IC'D‘
Recency-local
Predicti
Recency-ocal Prediction #Degree radition Queus 0
Recency-Jocal Predichion #Degree-1 : b
Recency-local Prediction #Degree-2 Pred y
= ?'q argmax {-} 7
: : ;. Wueue [i o Prediciton Method
Recency-local Prediction #2 o Fislog
Recency-local Prediction #1 — 0
Stride
Predicti
ride Prediction #Degree Eachltuan g1
ride Predichion #Degree-1 — 0
ride Prediction #Degree-2 g 1 Pred
Stride Prediction #2 ) :  (Histog
Siride Prediclion #1 — g 1

In order to dynamically choose the optimum
prediction method, a new data structure must be
introduced. Figure 3.6 shows a Prediction Queue, a
queue which holds the prepage page predictions
associated with a prediction method. This queue also
has a corresponding hit histogram which will be used
to determine the optimum prediction method.

Prepage Page Prediction
e Queue
Degree 10
1 D1" At

o 1 Freaiction

o1
10

Figure 3.6: Prediction Queue

2

The optimum prediction method can be easily
defined as the method that predicted pages that resulted
in the most references. This optimization can be
implemented using the prediction queue hit histograms.
Whichever prediction method has the greatest sum of
hit histogram entries since the last page fault is the
optimum prediction method. Figure 3.7 depicts this
optimization process.

Page
Fault

Figure 3.7: Dynamic Optimization of Prepage Prediction Method
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4. Simulation Methodology

To test and evaluate the efficacy of dynamically
adaptive prepaging, its policies must be applied to a
memory reference trace. The performance results
(page fault rate, disk transfers, etc.) may then be
compared to the performance of a completely static
demand prepaging policy. To enable such a
performance comparison, a trace-driven simulator was
developed in C++.

4.1 DAPsim

DAPsim 1is a trace-driven demand prepaging
simulator developed to enable the design, testing, and
evaluation of DAP concepts.  DAPsim has the
following capabilities:

1. Maintains main memory page queues

2. Handles page references

3. Models dynamic prepage allocation, degree,

and prediction method

4. Accumulates performance statistic (page
faults, fault  rate, reference trace
characteristics, hit/miss trace, disk transfers,
etc.)

The simulator reads through a memory reference trace,
handling each page reference one at a time. The state
of the prepaging system after handling every reference
is exactly that of a real-world implementation.

andle
Page |=
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(Used Page
Queue)

Increment
histogram entry.
Move page to MRU
YES position of Used
Page Queue
NO

Page Check
(Prepaged
Page Queue)

Y

Increment
histogram entry.
Evict page to MRU
position of Used
Page Queue

Figure 4.1: Page Reference Flow

Figures 4.1 and 4.2 show the flow of the DAPsim
simulator. To handle a page reference, the simulator
first checks if the reference is resident in the used page
queue. If so, the corresponding hit histogram entry is
incremented and the reference is promoted to the MRU
position of the queue. If the page reference is not
resident in the used queue, the prepage page queue is
checked. If the reference is resident in the prepaged
page queue, the corresponding hit histogram entry is
incremented and the reference is evicted from the
prepaged queue into the MRU position of the used

queue. If it is not resident, then a page fault has
occurred.
Page
Fault
Remove prepage Fetch prepaged
Generate pages that exist page(s) fram

Prepage — inUsed Page |——| Main Memory into
Page List Queue from Frepaged Page
Frepage List Queue

Fetch Pages
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Update
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Y

Histogram
Decay penod
reached?

Decay
Histograms

TINO

andle
Page
Ref

Figure 4.2: Page Fault Flow

To handle a page fault, DAPsim “fetches” the
demanded page along with several prepaged pages
from main memory. The reference to the demanded
page is placed in the MRU position of the used page
queue. The references to the prepaged pages are place
in the MRU positions of the prepaged page queue.
Then, the prepage parameters are updated according to
the previously described methods. Obviously, in the
real-world implementation of this system, prepage
parameters would be updated in parallel with the
accesses to the backing store so as to hide the
computational overhead. Since DAPsim does not
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directly simulate any cycle-accurate latencies, updating
prepage parameters immediately after fetching pages
from disk is an acceptable model of the system.

After prepage parameters are updated, several other
maintenance-related tasks are performed, such as
decaying hit histograms if necessary. Once this is
done, the next page reference in the memory trace is
handled, thus completing the cycle.

4.2 Simulation Methodology

In order to properly evaluate the performance of my
proposed DAP system, a broad range of memory
reference behavior must be tested. Simulations were
performed on several uni-programmed memory
reference traces over a range of main memory sizes.
The reference traces were gathered using the Etch
instrumentation tool on a Windows NT system. The
majority of the traces used are the same used by
Kaplan et al. [4] in their research on adaptive caching
for demand prepaging. The traces include a mix of
batch-style processes (gcc, compress), synthetic
processes (sawtooth, lu, mml6, and mm32), and
interactive, GUI processes (Acrobat Reader, Go,
Netscape Navigator, Photoshop, PowerPoint, and
Word). Table 4.1 shows reference trace details.

Table 4.1: Memory Reference Trace Descriptions

Trace Name Ber.llf::pn;ark Program Program Description
acroread Real Acrobat Reader / WinNT PDF viewer
ccl Real Compiler Batch-style process
compress95 Real Compress Batch-style compression
sawtooth Synthetic Custom Sawtooth Sawtooth trace
go Real GO Interactive GUI process
lu Micro LU LU matrix decomposition
mm16 Micro Matrix Multiply (16x16) | Matrix Multiply (16x16)
mm32 Micro Matrix Multiply (32x32) | Matrix Multiply (32x32)
netscape Real Netscape / WinNT Web browser
powerpoint Real Power Point / WinNT Slide show developer
winword Real Word / WinNT Word processing

The use of such a variety of benchmarks was done
in an attempt to gauge performance over different
reference patterns. Figures 4.3 through 4.5 show the
variation in memory reference profiles used to evaluate
DAP performance. The memory reference profiles for
all the traces used in the evaluation process are located
in Appendix A.
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Different system configurations were simulated in
order to evaluate the performance relationships
between different prepage parameters as well as DAP
as a whole. Table 4.2 shows the different modes that
were simulated for each memory reference trace.
Obviously, DAP Mode is the mode which will be used
to evaluate the performance of my proposed DAP

10

statistics to determine whether or not the proposed
concepts offer any performance gains. Therefore, the
simulation results will be focused on two major
statistics, page fault reduction and page transfer
increase.

5.1 Page Fault Reduction

concepts. The ultimate goal of dynamically adaptive

prepaging is to reduce the page fault rate over a broad

Table 4.2: Simulation Modes range of workloads. Simulations were conducted on

propage | pegree | Prediction the previously mentioned memory reference traces

Siatic Prepage Parameter Mode Stalic Stalic Static over a range of main memory sizes in order to
Dynamic Prepage Allocation (DPA) Mode | Dynamic |  Static Static determine page fault rates. Then, page faults rates for
Dynamic Degree (DD) Mode Static | Dynamic | Static the various simulation modes (see Table 4.2) were
Dynamic Prediction Method (DPM) Mode | Static Static Dynamic compared to a control (Static Prepage Parameter
DAP Mode Dynamic | Dynamic | Dynamic mode) in a statistic called page fault reduction. Page

fault reduction is computed as follows:
PagelaultRateg, g, PogeFouliRate,,,,
PageFaultRateg, ;...

where PageFaultReductiony,q. x is the reduction in
page fault rate by Mode X in relation to Static Prepage
Parameter mode. Table 5.1 and Figure 5.1 show DAP
page fault reductions corresponding to each memory
reference trace.

PageFavltReduction,;,

4.3 System Settings

It is important to note the system settings used
during simulations. Table 4.3 shows the values of all
major system parameters. The values of these
parameters were defined after careful analysis of
empirical data obtained through simulation. Values
were chosen such that performance was optimized in

static parameter mode. This was done so that DAP Table 5.1: DAP Page Fault Reduction

could be evaluated agalnst a formidable control. DAP Page Fault Reduction (per Main Mem. Size in Pages)
Benchmark| 500 1000 2000 5000 10000 | Average
. acroread -6.80% 5.46% 1.36% 0.91% 0.23%
Table 4.3: System Settings ocl 5320 5320 TT.70%[ 11 70% 8.51%
Earameter Value Unit compress 9.26% 10.19% 12.96% 13.89% 11.57%)|
sawtooth 95.86% 97.64% 98.23% 97.52% 97.31%
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— — mm32 40.77% 16.69% 79.38% 79.62% 79.62%]  59.22%)
inital Frepage Targel | o, 5 (PEE’:F'“;H’:SS) Queus Entries netscape A% 7A0%]  2.37%| _-1.08% 0.32%
PTG Mgﬁm B powerpoint 2.96% 0.80% 0.00% 0.00% 0.94%)
Target e we X(Page Frames) Queue Entries winword -5.45% 8.00% 4.53% 0.40% 2.39%|  1.97%
Prepage | Minimum Prepage Main Mem. Average 21.39% _ 25.44%| _ 30.83%| _ 30.14%| __50.53%|RAKIIA
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5. Simulation Results

Many useful statistics were gathered during Figure 5.1: DAP Page Fault Reduction

simulations, the most important of which, for the
purpose of a performance evaluation, are the quantity
of page faults and disk transfers. When comparing to a
demand prepaging policy with completely static
parameters, it is more useful to relate corresponding

The best reduction was is the sawrtooth benchmark,
most likely because of its extremely predictable
memory references. On average, simulations showed a
32% reduction in page fault rate across all benchmarks.
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The majority of this reduction was in the synthetic and
micro benchmarks, again most likely because of the
predictability of their memory references. In real
benchmarks, the average page fault reduction was
between 1.5 and 4%, depending on the benchmarks
included in the average.

The other simulation modes showed a wide
variation of page fault reduction. Figures 5.2 through
5.4 show page fault reductions for each of these modes.
The highest average page fault reduction,
approximately 36%, was under dynamic degree mode.

10% DPA Page Fault Rate Reduction
b
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5.2 Page Transfer Increase

Another important statistic that must be considered
when evaluating the efficacy of a prepaging scheme is
page transfers. It is obvious that demand prepaging
will lead to an increase in page transfers when
compared to demand paging. The question this
research aims to answer is whether dynamic demand
prepaging (namely my proposed dynamically adaptive
prepaging scheme) will likewise instigate an increase
in page transfers.

5.2.1 Total Page Transfers

It is useful to define a comparative statistic in order
to more easily evaluate the impact DAP has on page
transfers relative to a static demand prepaging scheme.
This new statistic, called page transfer increase, is
defined as follows:
PageTransfers,,,, , PageTransfersg .on

PageTransferlncrease,,,

s

PageTransfers.

where PageTransferlncreaseyoq x is the percent
increase in page transfers of Mode X relative to static
demand prepaging.

Table 5.2 and Figure 5.5 show DAP page transfer
increases in all benchmarks over a range of memory
sizes. The average page transfer increase across all
benchmarks and memory sizes was approximately
20%. Again, the highest page transfer increases
happened to occur in the micro and synthetic
benchmarks. Among the real benchmarks, the average
page transfer increase was approximately 12%.

Table 5.2: DAP Page Transfer Increase
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Figure 5.4: DPM Page Fault Reduction

DAP Page Transfer Increase (per Main Memory Size in Pages)
Benchmark| 500 1000 2000 5000 10000 | Average
acroread 8.79% -0.80% 2.35% 2.87% 2.37% 3.12%
ccl 15.10% 17.94% 12.69% 12.69% 14.61%)
compress 34.54% 33.73% 30.32% 29.52% 32.03%)|
sawtooth
go 45.33% 15.38% 15.38% 15.38% 22.87%
lu 14.26% 23.27% 23.27% 23.27% 23.27%| 21.47%
mm16 29.06% 27.08% 27.08% 27.08% 27.57%
mm32 34.88%| 156.26% 35.93% 33.59% 33.59%] 58.85%)
netscape 12.91% 1.39% 5.18% 8.59% 7.02%)|
powerpoint -0.14% 0.59% 1.40% 1.25% 0.78%)
winword 9.02% -2.52% 1.15% 4.51% 3.04%)
Average 20.38% 27.23% 15.48%)| 15.88%) 19.74% N NV
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Figure 5.5: DAP Page Transfer Increase
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5.2.2 Average Page Transfers

Perhaps a more significant statistic is the increase
in page transfers per page fault. This metric is
certainly expected to be higher relative to a simple
demand paging scheme, but how does a dynamic
demand prepaging system compare to a static one?
Table 5.3 and Figure 5.6 show average increases in
page transfers per page fault under DAP for a variety
of benchmarks, over a range of memory sizes. Page
transfers per page fault increased by an average of 4.32
pages per fault across all benchmarks and memory
sizes. Again, the bulk of this increase was seen in the
micro and synthetic benchmarks. Among the real
benchmarks, the average increase in page transfers per
page fault was approximately 0.70. Average page
transfers per page fault in static demand prepaging was
calculated to be 4.77, whereas the average for DAP
was 9.72.

Table 5.3: DAP Increase in Page Transfers
per Page Fault

DAP Average Page Transfer Increase
(per Main Memory Size in Pages)
Benchmark| 500 1000 2000 5000 10000 Average
acroread 0.10 0.26 0.20 0.21 0.19
ccl 1.05 1.19 1.34 1.34 1.23
compress 2.23 2.25 2.29 2.32 2.27
sawtooth
go 0.32 0.45 0.45 0.45 0.42
lu 14.21 12.44 12.44 12.44 12.89
mm16 10.17 10.84 10.84 10.84] 10.67,
mm32 5.67 8.44 22.61 22.46 14.80
netscape 0.27 0.47 0.41 0.39) 0.38
powerpoint 0.16 0.08 0.08 0.07, 0.10
winword 0.17 0.31 0.31 0.26 0.26
Average 3.43 3.67 5.10 5.08 =
DAP Average Page Transfer Increase
I l O acroread

@ 20 Occt

§ B compress
E = 15 4 O sawtooth
53

3 e

§ e Olu

=8 107 Emm16
e

24 B mm32
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é O powerpoint
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Figure 5.6: DAP Increase in Page Transfers
per Page Fault

6. Evaluation

The simulation data presented in the previous
section show two main results: 1) that the proposed
DAP policies reduced average page fault rates across a
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variety of memory reference traces, and 2) DAP also
leads to an increase in page transfers, specifically
average page transfer rates. In order to evaluate the
performance of DAP, both of these results must be
weighed against each other.

6.1.1 Page Fault Reduction vs.
Increase

In a direct comparison, the 32% reduction in page
faults outweighs the 20% increase in page transfers by
a significant amount.  This comparison can be
misleading if not properly examined. Although an
increase in page transfers, in general, degrades
performance, the increases seen in DAP can mostly be
attributed to an increase in average page transfer rate
(average page transfers per page fault). So, although
page transfers have increased, page faults have

Page Transfer

decreased. In fact, page transfers per page fault
increased by an average of 4.32 pages, or
approximately 104% relative to static demand
prepaging. This means that DAP requires

approximately 100% more disk bandwidth than static
demand prepaging.

Although this may seem alarming, one must
consider and compare the implications of decreased
disk latency at the expense of increased bandwidth
utilization in order to fully evaluate the reported
results. As previously mentioned, disk bandwidths are
increase at about four times the rate in which disk
latencies are decreasing on a year-by-year basis. This
means that reductions in disk access events should be
weighed more heavily than increased utilization of disk
bandwidth in a comparative evaluation of performance
enhancement. It is important to note, however, that the
effect of an increase in average page transfer rate on
disk latency is highly dependant on the degree in which
pages can be clustered on the disk. Page clustering on
storage disks is a widely researched topic that will not
be explored in this paper.

6.1.2 The Effects of Main Memory Size

As Figure 5.1 shows, the average page fault
reduction across all benchmarks increased, to an extent,
with main memory size. It is intuitive that page faults
are likely to decrease under any paging policy as main
memory size increases. It is not so intuitive, however,
that page fault reduction — a measure of the degree to
which page faults are reduced relative to a static
prepaging policy — increases with main memory size,
as was shown. It is undoubtedly a desirable result
nonetheless.

Just as desirable of an attribute of DAP is the fact
that no such trend exists with average page transfer
increase. As Figure 5.5 shows, average page transfer
increase did not grow with main memory size.
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6.1.3 Overall Performance

The overall performance of my proposed DAP
scheme met my expectations. It was evident that the
prepage parameters were being dynamically adapted to
exploit trace predictability and resource state. Figures
6.1 and 6.2 show an example of DAP’s demonstrated
ability to adapt to trends in the memory reference
stream. In Figure 6.1, a constant density of page faults
can be observed throughout the execution of the
sawtooth reference trace. In Figure 6.2, however, DAP
is successfully able to adapt its prepage parameters to
reduce page faults. In fact, page fault reduction only
increases as the trace continues to execute.

As previously mentioned, the average page fault
reduction for real benchmarks was observed to be
approximately 1.5%. This includes the go memory
trace in which DAP actually caused an increase in page
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faults. The go benchmark had an average page fault
rate of 4.275 x 107 faults per reference under static
demand prepaging, but an average of 4.863 x 107
under DAP, an increase of 13.74%. The go benchmark
was the only benchmark used in this project in which
the application of DAP actually increased the average
page fault rate. This demonstrates DAP’s potential for
an undesired impact on virtual memory management.

Despite this anomalous increase in page faults, a
1.5% average reduction in page fault rate should not be
considered insignificant. When page references can
reach practically endless numbers, during the indefinite
execution of one or many workloads, an average page
fault rate reduction of 1.5% translates to a substantial
enhancement.
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Figure 6.1: Memory Reference Trace Results under Static Parameter Mode
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7. Conclusion

The target environment for dynamically adaptive
prepaging is not one with a single executing program,
however. So, in a sense, the simulations performed on
uni-programmed memory reference traces fail to
demonstrate (at least directly) any potential benefits
DAP concepts would present in a more real-world
scenario of multi-programmed or VM workloads. In
fact, the simulation results seem to show a correlation
between memory reference trace range and average
page fault rate reduction that might suggest that DAP
would not perform as well in multi-programmed
environments.

Table 5.1 shows that DAP results in an average
page fault rate reduction of 1.97% for the winword
benchmark, yet only a 0.32% average reduction for the
netscape trace, a trace with a larger range of memory
references. Since it is likely that multi-programmed
and VM workloads would have a much higher
reference range relative to a uni-programmed
workload, this data suggests that, if this trend is
maintained, DAP-induced page fault rate reduction

would not be nearly as significant in the multi-
programmed and VM environments.

Despite what empirical data might suggest, the
significant performance enhancements seen in the
simulation results warrant a further investigation into
DAP’s performance with multi-programmed and VM
workloads. Although DAP increases average page
transfer rates, this can be effectively neglected with
increasing disk bandwidths. What is not negligible is
the reduction in page fault-induced disk accesses
enabled by dynamically adaptive prepaging. Avoiding
even the smallest amount of disk accesses provides
significant performance enhancement.

Finally, it is in my judgment that the overhead and
complexity associated with the necessary kernel-level
DAP implementations do not negate the benefits of the
reduction in disk accesses.  Still, more efficient
implementations would of course be favorable.
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8. Future Work

The results of this research have not only shown
the costs and benefits of dynamically adaptive
prepaging, they have also provided insight into what
may be necessary for more effective concepts. The
following are areas for possible expansion to the
concept of DAP in an effort for a more effective
prepaging system.

8.1 Degeneration—resistant Adaptation

Perhaps the most detrimental consequence of
dynamically adaptive prepaging is its potential to
degenerate performance relative to a static demand
prepaging (or demand paging) scheme. If safeguards
could somehow be integrated into a DAP scheme that
would limit, if not eliminate, the potential for
performance degradation, then such a scheme would be
vastly superior to any current proposals.

Such a scheme 1is, to a certain extent,
counterproductive. For it is the vary attributes of the
system that are made dynamic to provide the potential
for performance improvement that also provide the
potential for degradation. Still, it seems viable to
develop a dynamic prepaging scheme that at least
limits the potential for performance degeneration while

15

still maintaining the benefits of dynamic parameter
adaptation.

8.2 Compulsory Fault Prevention

The simulation results presented in this paper
show that a significant portion of the page faults under
a dynamically adaptive prepaging scheme (or any
paging scheme for that matter) are compulsory — page
faults that occurred because the demanded pages had
never been referenced prior to the fault. Figure 8.1
shows the DAP page fault trace for the winword
benchmark. Notice the preponderance of page faults
near the start of the trace simulation.

Cache hierarchies mitigate such misses through
prefetching, or the fetching of cache blocks prior to
being referenced in anticipation that they soon will be.
This concept is somewhat similar to that of prepaging.
Prepaging differs from prefetching in a slight but
significant detail however. Prepaging is conceptually a
reactionary tactic, whereas prefetching is more
proactive. Although the incredibly high latency of disk
accesses makes a compelling argument against any sort
of proactive prepaging policy, the potential for a
significant reduction in page faults is reason enough for
at least a cursory feasibility analysis.
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Appendix A — Memory Reference Profiles
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compress95 Memory Reference Profile:
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lu Memory Reference Profile:
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netscape Memory Reference Profile:
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powerpoint Memory Reference Profile:
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Appendix B — DAPsim Source Code

LRU Page Queue Entry Class: LRU pageQ entry.h

#i
#i
#i
#i
#i
#i
#i
#i

#i

ncl ude <string>
ncl ude <i ostreanr
ncl ude <fstreane
ncl ude <vector>
ncl ude <queue>
nclude <list>

ncl ude <map>

ncl ude <math. h>

ncl ude "main. h"

usi ng namespace std;

cl

ass LRU pageQ entry {

private:

unsi gned | ong int pageNunber;
int |ruVval ue;

bool resident;

/1int histVal ue;

publi c:

LRU pageQ entry();
LRU pageQ entry(unsigned | ong i nt newPageNunber, int

voi d set PageNunber (unsi gned | ong i nt newPageNunber);
voi d set LRWal ue(i nt newLruVal ue);

voi d set Resi dency(bool newResi dency);

//void setH stValue(int newH stVal ue);

unsi gned | ong int getPageNunber (void);
int getLRUval ue(void);

bool get Resi dency(void);

/1int getH stVal ue(void);

//void incH stVal ue(void);

LRU Page Queue Entry Source: LRU page(Q entry.c

#i
#i

ncl ude "main. h"
ncl ude "LRU pageQ entry. h"

LRU pageQ entry:: LRU pageQ entry()
{

}
LRU pageQ entry:: LRU pageQ entry(unsi gned | ong i nt newPageNunber,

pageNunmber = 0;
I ruval ue = 0;

resident = true;
/1 histValue = 0;

newResi dency)
{

}
voi d LRU pageQ entry:: set PageNunber (unsi gned | ong i nt newPageNunber)
{

pageNunber = newPageNunber ;
I ruval ue = newLruVal ue;
resi dent = newResi dency;

/1 hi st Val ue = newHi st Val ue;

pageNunber = newPageNunber ;

voi d LRU pageQ entry::set LRUVal ue(i nt newLruVal ue)

I ruval ue = newlLruVal ue;

}
voi d LRU pageQ entry:: set Resi dency(bool newResi dency)

resi dent = newResi dency;

}
unsigned long int LRU pageQ entry:: get PageNunber (voi d)

}

return pageNumber;

newLr uVal ue,

bool

newResi dency) ;

int newLruVal ue, bool
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int LRU pageQ entry::get LRUVal ue(voi d)
{

return | ruVal ue;

}
bool LRU pageQ entry:: get Resi dency(voi d)
{

return resident;

LRU Page Queue Class: LRU pageQ.h
#i fndef LRU_PAGEQ H_
#defi ne LRU_PAGEQ H_

#i ncl ude <string>
#i ncl ude <i ostrean»
#i ncl ude <fstreanr
#i ncl ude <vector>
#i ncl ude <queue>
#include <list>

#i ncl ude <map>

#i ncl ude <mat h. h>

#i ncl ude "main. h"
#i ncl ude "LRU pageQ entry. h"

usi ng nanmespace std;

class LRU pageQ {

private:
int size;
int naxSi ze;
i st<LRU pageQ entry> queue;
LRU pageQ entry LRU entry;
LRU pageQ entry MRU entry;

publi c:
LRU_pageQ() ;
LRU pageQ i nt newMaxSi ze) ;
voi d set MaxSi ze(i nt newVaxSi ze) ;
int getSize(void);
int get MaxSi ze(void);
LRU pageQ entry getLRU entry(void);
LRU pageQ entry get MRU entry(void);

voi d pushMRU(unsi gned | ong int newPage);
LRU pageQ entry popLRU(voi d);

/1 bool referenceUsedPage(l ong i nt pageNunber);
/1 LRU_pageQ entry referencePrepagedPage(l ong i nt pageNunber);

voi d addUsedPage(unsi gned | ong int newPage);
voi d addPrepagedPage(unsi gned | ong i nt newPage);

voi d evictPage(void);
Ii st<LRU pageQ entry> * get Queue(void);

bool pagePresent| nQunsigned |ong int pageNunber);
}

#endi f

LRU Page Queue Source: LRU pageQ.c
#i ncl ude "main. h"

#i ncl ude "LRU pageQ h"

LRU pageQ : LRU pageQ()

{

size = 0;
maxSi ze = DEFAULT_MAX_MEM Sl ZE;

}
LRU pageQ : LRU pageQ(i nt newVaxSi ze)
{

size = 0;
maxSi ze = newMaxSi ze;
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voi d LRU pageQ : set MaxSi ze(i nt newMaxSi ze)

maxSi ze = newMaxSi ze;
%nt LRU pageQ : get Si ze(voi d)

size = queue. size();
return size;

-

nt LRU pageQ : get MaxSi ze(voi d)
return naxSi ze,

RU pageQ entry LRU pageQ :getLRU entry(void)
return queue. back();

RU pageQ entry LRU pageQ : get MRU entry(void)
return queue.front();

oid LRU pageQ : pushMRU(unsi gned | ong i nt newPage)

AL A A e

if ((queue.size() + 1) > maxSize) return;
LRU pageQ entry newkntry;

newEnt ry. set PageNunber ( newPage) ;

newEnt ry. set LRUVal ue(0);

newEnt ry. set Resi dency(true);

/I newkEntry. set Hi st Val ue(0);

queue. push_front (newkEntry);

/'l record new queue size
size = queue. size();

}
LRU pageQ entry LRU pageQ : popLRU(voi d)

LRU pageQ entry LRUentry = queue. back();
queue. pop_back();

/'l record new queue size
size = queue. size();

return LRUentry;

}

voi d LRU pageQ : evi ct Page(voi d)
popLRY() ;

/'l record new queue size
size = queue. size();

}
li st<LRU pageQ entry> * LRU pageQ : get Queue(voi d)
{
return &queue;
}
bool LRU pageQ : pagePresent!| nQunsi gned | ong int pageNunber)
{
bool pagePresent = fal se;
list<LRU pageQ entry>::iterator position;
for (position = queue.begin(); position != queue.end(); ++position) {
if ((*position).getPageNunber() == pageNunber) {
pagePresent = true;
br eak;
}
}
return pagePresent;
}

Used Page Queue Class: UsedPageQ.h

#i ncl ude <string>
#i ncl ude <i ostrean»
#i ncl ude <fstreanr
#i ncl ude <vector>
#i ncl ude <queue>
#include <list>

#i ncl ude <map>

#i ncl ude <mat h. h>

#i ncl ude "main. h"
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#i f ndef LRU_PAGEQ H_
#i ncl ude "LRU pageQ h"
#endi f //LRU_PAGEQ H_

usi hg namespace std;

cl ass UsedPageQ {
private:

int size;

int naxSi ze;

int mnSize;

LRU pageQ Resi dentQ

LRU pageQ NonResi dent Q

i nt histogran{ DEFAULT_MAX_MEM SI ZE] ;

public:

}s

UsedPageQ() ;

voi d set MaxSi ze(i nt newvaxSi ze) ;
voi d setM nSi ze(i nt newM nSi ze) ;

int getSize(void);

int get MaxSi ze(void);

int getMnSize(void);

bool referencePage(unsigned | ong i nt pageNunber);

voi d addPage(unsi gned | ong int newPage);

voi d evictPage(void);

voi d renpveNonResi dent Page(unsi gned | ong i nt pageNunber);

voi d printQueueEntries(void);

voi d cl ear Hi st ogram void);

voi d incHi stogran(int index);

int findH stogram ndex(unsi gned |ong int pageNunber);
voi d printH stogram void);

voi d decayH st ogram(doubl e decayVal ue);

int getH stogranEntry(int index);

bool pagePresent | nResi dent Q unsigned |ong int pageNunber);
bool pagePresent | nNonResi dent unsi gned | ong i nt pageNunber);

I ong int get MRUPageNunber (voi d);

Used Page Queue Source: UsedPageQ.c
#i ncl ude "main. h"
#i ncl ude "UsedPageQ h"

int debugMbdeUsed = DEBUG_MCODE;

UsedPageQ : UsedPageQ()
{

voi

<<

size = 0;

maxSi ze = DEFAULT_MAX_MEM Sl ZE;

Resi dent Q set MaxSi ze( maxSi ze) ;

NonResi dent Q set MaxSi ze( DEFAULT_MAX_MEM Sl ZE) ;
cl ear Hi stogram();

d UsedPageQ : set MaxSi ze(i nt newaxSi ze)
int currentSize = getSize();

maxSi ze = newMaxSi ze;
Resi dent Q set MaxSi ze( maxSi ze) ;

/1if (debugMbdeUsed == DEBUG 4) cout << "Used Queue Max Size set to: " << ResidentQ get MaxSi ze()

endl ;

/1 1f New Max Size is less than old, renpve extra pages
int el ement Num
i nt nunf PagesToRenpve = O;
if (newaxSi ze < currentSize) {
nunCf PagesToRenove = currentSi ze - newMaxSi ze;
for (elenmentNum = 0; el enent Num < nunCf PagesToRenove;

++el enent Num) {

NonResi dent Q pushMRU( ( Resi dent Q popLRU()) . get PageNunber ());

}
}
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voi d UsedPageQ : setM nSi ze(i nt newM nSi ze)

}

m nSi ze = newM nSi ze;

int UsedPageQ : get Si ze(voi d)
{

size = ResidentQ getSize();
return size;

int UsedPageQ : get MaxSi ze(voi d)

}

return maxSi ze;

int UsedPageQ : get M nSi ze(voi d)

}

bool

return mnSize;

bool pageHit = fal se; /1 Default = Page Fault
int el ement Num = 0;

LRU pageQ entry entryReferenced;

li st<LRU pageQ entry>::iterator position;

for (position = ResidentQ getQeue()->begin();

++position) {

if ((*position).getPageNunber() ==

pageHit = true;
i ncHi st ogran(el ement Num ;
br eak;

el ement Numt+;
}
/1 |f pageNunber not in Resident Queue,
if (!pageHit) {
/1 Check Non-Resi dent Queue for page
el ement Num = maxSi ze;
for (position = NonResident Q get Queue()->begin();

++position) {

voi

voi

if ((*position).getPageNunber() ==
i ncHi st ogran(el ement Num ;

pageNunber) {

Appendix B

UsedPageQ : r ef erencePage(unsi gned | ong i nt pageNunber)

position !'= ResidentQ get Queue()->end();

mark as Page Fault

posi tion !'= NonResi dent Q get Queue()->end();

pageNunber) {

removeNonResi dent Page( (*posi ti on). get PageNunber ());

br eak;

el ement Numt+;

}

return pageHit;

}

entryRef erenced = *position;
Resi dent Q get Queue() - >erase(posi tion);
Resi dent Q get Queue()->push_front (entryReferenced);

return pageHit;

d UsedPageQ : addPage(unsi gned | ong int newPage)

/1 Check if Eviction is necessary

if ((ResidentQ getSize() + 1) > nmaxSize) {
/1 Evict LRU Page
evi ct Page();

Resi dent Q pushMRU( newPage) ;
/1 Update size
size = ResidentQ get Size();

d UsedPageQ : evi ct Page(voi d)
LRU pageQ entry evictedPage =

size = ResidentQ getSize();
NonResi dent Q pushMRU( evi ct edPage. get PageNurnber () ) ;

Resi dent Q popLRU() ;
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voi d UsedPageQ : renmoveNonResi dent Page(unsi gned | ong int pageNunber)

list<LRU pageQ entry>::iterator position;
for (position = NonResident Q get Queue()->begin(); position != NonResidentQ get Queue()->end();
++position) {
if ((*position).getPageNunber() == pageNunber) {
/'l Rermove Page
NonResi dent Q get Queue() - >er ase( posi ti on);

return;
}
}
voi d UsedPageQ : pri nt QueueEntri es(voi d)
{

cout << "Used Page Queue:\n";
cout << "Resident Queue:\n";

cout << "\tPage #\tH st Val ue\n";
cout << "\t------ R \n";

int el ementNum = 0;
list<LRU pageQ entry>::iterator position;
for (position = ResidentQ get Queue()->begin(); position != ResidentQ get Queue()->end();
++position) {

if (el ementNum == 0) cout << " MRUt";
else if (el ementNum == (ResidentQ getSize()-1)) cout << " LRAt";
el se cout << "\t";
cout << (*position).getPageNunber() << "\t";
//cout << (*position).getH stValue() << "\n";
cout << histogranfel enent Numji << "\n";
el ement Numt+;

}

/1 el ement Num = Resi dent Q get Si ze() + 1;
el enent Num = nmaxSi ze;
cout << "Non-Resident Queue:\n";
cout << "\tPage #\tHi st Value\n";
cout << "\t------ Vt--mmmm-- - \n";
cout << " MRUL";
for (position = NonResident Q get Queue()->begin(); position != NonResi dent Q get Queue()->end();
++position) {
if (el ement Num == (NonResi dentQ getSize()-1)) cout << " LRAt";
el se cout << "\t";
cout << (*position).getPageNunber() << "\t";
//cout << (*position).getH stValue() << "\n";
cout << histogranfel enent Numji << "\n";
el ement Numt+;
}
}

voi d UsedPageQ : cl ear Hi st ogram(voi d)

int index;
/1int maxl ndex = Resident Q get MaxSi ze() + NonResi dent Q get MaxSi ze();
int maxl ndex = DEFAULT_MAX_MEM SI ZE;
for (index = 0; index < maxlndex; index++) {
hi st ogranii ndex] = 0;

}
voi d UsedPageQ :incHi stogran(int index)

if (index >= DEFAULT_MAX_MEM SI ZE) {
if (debugMbdeUsed == DEBUG 2) cout << "ERROR Hi stogramindex out of bounds!\n";
return;

}
hi stogranfi ndex] += 1,

bool UsedPageQ : pagePresent | nResi dent unsi gned | ong i nt pageNunber)

bool pagePresent = fal se;
list<LRU pageQ entry>::iterator position;
for (position = ResidentQ getQueue()->begin(); position != ResidentQ get Qieue()->end();
++position) {
if ((*position).getPageNunber() == pageNunber) {
pagePresent = true;
br eak;
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return pagePresent;

}

bool UsedPageQ : pagePresent | nNonResi dent Q unsi gned | ong int pageNunber)
{
bool pagePresent = fal se;
list<LRU pageQ entry>::iterator position;
for (position = NonResidentQ get Queue()->begin(); position != NonResidentQ get Queue()->end();
++position) {
if ((*position).getPageNunber() == pageNunber) {
pagePresent = true;
br eak;
}
}

return pagePresent;

long int UsedPageQ : get MRUPageNumnber (voi d)

return (ResidentQ get MRU entry()). get PageNunber();
}

int UsedPageQ :findHi st ogran ndex(unsi gned | ong int pageNunber)
{

int index = DEFAULT_MAX_MEM SI ZE - 1,
list<LRU pageQ entry>::iterator position;
int el ement Num = Resi dent Q get MaxSi ze() ;
for (position = NonResident Q get Queue()->begin(); position != NonResidentQ get Queue()->end();
++posi tion)
if ((*position).getPageNunber() == pageNunber) {
i ndex = el enent Num
return index;

el ement Numt+;

}
if (debugMbdeUsed == DEBUG 2) cout << "ERROR Hi stogram Index not found!\n";
return index;

voi d UsedPageQ : decayHi st ogr an( doubl e decayVal ue)

int index;
int maxl ndex = DEFAULT_MAX_MEM SI ZE;
for (index = 0; index < maxlndex; index++) {
hi st ograni i ndex] = (doubl e)hi stogranfindex] * decayVal ue;

}
voi d UsedPageQ : print Hi st ogran(voi d)

cout << "Used Page Queue Hi stogram\n";
int index;
int maxl ndex = Resi dent Q get MaxSi ze() + NonResi dent Q get Si ze();
for (index = 0; index < maxlndex; index++) {
cout << histograniindex] << endl;
}

}
int UsedPageQ : get H stogranEntry(int index)

if (index >= DEFAULT_MAX_MEM S| ZE)
i f (debugMbdeUsed >= DEBUG 2) cout << "ERROR Histogram index out of bounds!\n";
return -1;

return histograniindex];

}

Prepaged Page Queue Class: PrepagedPageQ.h
#i ncl ude <string>

#lnclude <i ostreane

#i ncl ude <fstreanr

#i ncl ude <vector>

#i ncl ude <queue>

#include <list>

#i ncl ude <map>

#i ncl ude <mat h. h>
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#i ncl ude "main. h"

#i f ndef LRU_PAGEQ H_
#i ncl ude "LRU pageQ h"
#endi f //LRU_PAGEQ H_

usi hg namespace std;

cl ass PrepagedPageQ {
private:
int consunmedAl | oc;
int targetAll oc;
LRU pageQ Resi dentQ
LRU pageQ NonResi dent Q
LRU pageQ DegreeQ
i nt histograni{ DEFAULT_MAX_MEM SI ZE] ;
int degreeHi stogran{ DEFAULT_MAX_DEGREE + 2];

publi c:
PrepagedPageQ() ;
PrepagedPageQi nt newTarget Al | oc);

voi d set Target Al l oc(int newTarget Al loc);

int get ConsunedAl | oc(void);
int getTargetAlloc(void);

LRU pageQ entry referencePage(unsigned |ong int pageNunber);
voi d addPage(unsi gned | ong int newPage);
voi d evictPage(void);

voi d printQueueEntries(void);
voi d printResi dent QueueEntri es(void);

voi d cl ear Hi st ogram void);

voi d cl ear Degr eeHi st ogram(voi d);

voi d incH stogran(int index);

voi d decayH st ogram(doubl e decayVal ue);
voi d printH stogram void);

int getH stogramEntry(int index);

bool pagePresent|I nQunsigned |ong int pageNunber);

voi d renpveResi dent Page(unsi gned | ong int pageNunber);
voi d renpveNonResi dent Page(unsi gned | ong i nt pageNunber);

voi d updat eDegr eeH st ogran{unsi gned | ong i nt pageNunber, int currentDegree);
voi d addDegr eePage(unsi gned | ong int newPage);
voi d i ncDegreeH stogran(int index);
int getDegreeH stogramEntry(int index);
voi d printDegreeQueue(int currentDegree);
int getDegreeQueueSi ze(void);
}

Prepaged Page Queue Source: PrepagedPageQ.c
#i ncl ude "main. h"
#i ncl ude "PrepagedPageQ h"

i nt debugMbdePrepaged = DEBUG MODE;

Pr epagedPageQ : PrepagedPageq()

{
/1 Set Prepaged Target Allocation
target Al | oc = DEFAULT_PREPAGED TARGET ALLCC;
Resi dent Q set MaxSi ze(target Al l oc);

/'l Set Prepaged Consuned Allocation
consuredAl | oc = 0;

cl ear Hi st ogram();

Degr eeQ set MaxSi ze( DEFAULT_MAX_DEGREE+2) ;
}

Pr epagedPageQ : PrepagedPageQ i nt newTar get Al | oc)
/1 Set Prepaged Target Allocation

target Al l oc = newTar get Al | oc;
Resi dent Q set MaxSi ze(target Al l oc);
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/'l Set Prepaged Consuned Allocation
consunmedAl | oc = O;

cl ear Hi st ogram();

Degr eeQ set MaxSi ze( DEFAULT_MAX_DEGREE+2) ;

voi d PrepagedPageQ : set Target Al | oc(i nt newTarget Al | oc)
int ol dConsunedAl | oc = get ConsunedAl | oc();

if (newTarget Al l oc > DEFAULT_MAX PREPAGED TARGET_ALLQOC) targetAlloc =
DEFAULT_MAX_PREPAGED_TARGET_ALLCC;

else if (newTarget All oc < DEFAULT_M N_PREPAGED_TARGET_ALLOC) targetAll oc
DEFAULT_M N_PREPAGED_TARGET_ALLCC,

el se target All oc = newTarget Al |l oc;

Resi dent Q set MaxSi ze(target Al l oc);

/1 1f New Target Allocation is |less than old consumed allocation, place extra pages into non-

resi dent queue

int el ement Num

i nt nunf PagesToRenbve = O;

if (newTargetAlloc < ol dConsunedAl | oc) {
numf PagesToRenove = ol dConsunedAl | oc - newTar get Al | oc;
for (elenmentNum = 0; el ement Num < nunf PagesToRenove; ++el enent Num) {

NonResi dent Q pushMRU( Resi dent Q popLRU() . get PageNunber ());

}

}

/'l Reset Consuned Allocation
consunedAl | oc = Resi dent Q get Si ze();

}
int PrepagedPageQ : get ConsunedAl | oc(voi d)

/1 Refresh Consuned Allocation
consunmedAl | oc = Resident Q get Si ze();

return consunedAl | oc;

}
int PrepagedPageQ : get Target Al | oc(voi d)
{

return targetAll oc;

LRU pageQ entry PrepagedPageQ :referencePage(unsi gned | ong int pageNumber)
{

LRU pageQ entry referencedPage;
bool pageHit = fal se;

/'l Check Resident Queue
int el ement Num = 0;
list<LRU pageQ entry>::iterator position;

for (position = ResidentQ get Queue()->begin(); position != ResidentQ get Queue()->end();

++position) {
if ((*position).getPageNunber() == pageNunber) {
pageHit = true;
i ncHi st ogran(el ement Num ;
ref erencedPage = *position;
renmoveResi dent Page( pageNunber) ;
return referencedPage;

el se el enent Numt+;

}

/1 Check Non-Resident Queue (for purposes of updating histogram
el enent Num = target Al | oc;

for (position = NonResidentQ get Queue()->begin(); position != NonResi dentQ get Queue()->end();

++position) {
if (el ement Num >= DEFAULT_MAX_MEM SI ZE) br eak;
if ((*position).getPageNunber() == pageNunber) {
/lcout << "Incrementing Prepage Hi stogramat " << el enentNum << "
<< (*position).get PageNunber() << endl;
i ncHi st ogran(el ement Num ;
br eak;

el se el enent Numt+;

}

for

Non- Resi dent Page "
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/1 No page hit
ref erencedPage. set PageNunber ( NULL) ;

return referencedPage;

}
voi d PrepagedPageQ : addPage(unsi gned | ong i nt newPage)
{
/1 Check if already present in prepage queue
i f (pagePresent!| nQ(newPage))
r enoveResi dent Page( newPage) ;
}
/1 Check if Eviction is necessary
if ((ResidentQ getSize() + 1) > targetAlloc) { //Evict LRU Page
evi ct Page();
}
Resi dent Q pushMRU( newPage) ;
/'l Update Consumed Allocation
consunedAl | oc = Resi dent Q get Si ze();
}
voi d PrepagedPageQ : evi ct Page(voi d)
{
/'l Evict Page
/1 Add Evicted Page to NonResi dent Queue
NonResi dent Q pushMRU( Resi dent Q popLRU() . get PageNunber ());
/'l Update Consunmed Allocation
consunmedAl | oc = Resi dent Q get Si ze();
}

voi d PrepagedPageQ : renoveResi dent Page(unsi gned | ong i nt pageNunber)

list<LRU pageQ entry>::iterator position;
for (position = ResidentQ get Queue()->begin(); position != ResidentQ get Queue()->end();
++position) {
if ((*position).getPageNunber() == pageNunber) {
/! Rermove Page
Resi dent Q get Queue() - >er ase(posi tion);
/1 Update Consunmed Alloc
consunedAl | oc = Resi dent Q get Si ze();
return;

}
voi d PrepagedPageQ : renmoveNonResi dent Page(unsi gned | ong i nt pageNunber)

li st<LRU pageQ entry>::iterator position;
for (position = NonResidentQ get Queue()->begin(); position != NonResi dentQ get Queue()->end();
++position) {
if ((*position).getPageNunber() == pageNunber) {
/! Remove Page
NonResi dent Q get Queue() - >er ase( posi ti on);
return;

}
voi d PrepagedPageQ : pri nt QueueEntri es(voi d)
{

cout << "Prepaged Page Queue:\n";

cout << "Resident Queue:\n";

cout << "Entry\tPage #\ tH st Val ue\n";
cout << "----- Vt------ R R \n";

/1 Resident Queue Entries

int el ementNum = 0;

list<LRU pageQ entry>::iterator position;

for (position = ResidentQ get Queue()->begin(); position != ResidentQ get Queue()->end();
++position) {

if (elementNum == 0) cout << elenentNum+ 1 << " MRU1t";
else if (el ementNum == (ResidentQ getSize()-1)) cout << elementNum+ 1 << " LRWt";
el se cout << elenmentNum + 1 << "\t";
cout << (*position).getPageNunber() << "\t";
//cout << (*position).getH stValue() << "\n";
cout << histogranfel enent Numj << "\n";
el ement Numt+;
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/1 NonResi dent Queue Entries

el enent Num = target Al | oc;

cout << "Non-Resident Queue:\n";

cout << "Entry\tPage #\ tH st Value\n";

cout << "----- Vt------ R \n";

for (position = NonResidentQ get Queue()->begin(); position != NonResidentQ get Queue()->end();
++position) {

if (el ementNum == targetAlloc) cout << elementNum+ 1 << " MRU\t";

else if (el ementNum == (targetAlloc + NonResidentQ getSize() - 1)) cout << elementNum+ 1 << "

LRAt";
el se cout << elementNum + 1 << "\t";
cout << (*position).getPageNunber() << "\t";
//cout << (*position).getHistValue() << "\n";
if (el ement Num < DEFAULT_MAX_MEM S| ZE) cout << histogranfel ement Nunj << "\n";
el se break;
el ement Numt+;

}
}

voi d PrepagedPageQ : print Resi dent QueueEntri es(voi d)
{

cout << "Prepaged Page Queue:\n";

cout << "Resident Queue:\n";

cout << "Entry\tPage #\tH st Value\n";
cout << "----- Vt------ I \n";

int elementNum = O;
list<LRU pageQ entry>::iterator position;
for (position = ResidentQ getQueue()->begin(); position != ResidentQ get Qreue()->end();
++position) {
if (elementNum == 0) cout << elenmentNum+ 1 << " MRUt";
else if (el ement Num == (ResidentQ getSize()-1)) cout << elementNum+ 1 << " LRUt"
el se cout << elementNum + 1 << "\t";
cout << (*position).getPageNunber() << "\t"
//cout << (*position).getH stValue() << "\n";
cout << histogranfel enent Num << "\n";
el ement Numt+;
}
}

voi d PrepagedPageQ : cl ear Hi st ogran{voi d)
int index;
for (index = 0; index < DEFAULT_MAX_MEM Sl ZE; index++) {
hi st ogranii ndex] = O;
}
voi d PrepagedPageQ : cl ear Degr eeH st ogr an( voi d)
{
int index;
for (index = 0; index < (DEFAULT_MAX_DEGREE + 2); index++) {
degreeH stogranfindex] = 0;
}
}
voi d PrepagedPageQ :incHi stogram(int index)
if (index >= DEFAULT_MAX_MEM SI ZE) {

if (debugMbdePrepaged == DEBUG 2) cout << "ERROR Hi stogramindex out of bounds!\n";
return;

hi stogranfi ndex] += 1;

voi d PrepagedPageQ : i ncDegreeH stogran(int index)
if (index > (DEFAULT_MAX DEGREE + 1)) {

if (debugModePrepaged == DEBUG 2) cout << "ERROR Degree histogramindex out of bounds!\n";
return;

degreeH stogranfindex] += 1;
int PrepagedPageQ : get Hi stogranEntry(int index)

if (index >= DEFAULT_MAX_MEM SI ZE) {
i f (debugMbdePrepaged == DEBUG 2) cout << "ERROR Hi stogramindex out of bounds!\n";
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return -1;
return histograniindex];

bool PrepagedPageQ : pagePresent| nQ(unsi gned | ong int pageNunber)

bool pagePresent = fal se;
list<LRU pageQ entry>::iterator position;
for (position = ResidentQ get Queue()->begin(); position != ResidentQ get Queue()->end();
++position) {
if ((*position).getPageNunber() == pageNunber) {
pagePresent = true;

br eak;
}
}
return pagePresent;
}
voi d PrepagedPageQ : decayHi st ogran{doubl e decayVal ue)
{
int index;
for (index = 0; index < DEFAULT_MAX_MEM SI ZE; index++) {
hi st ogranii ndex] = (doubl e) hi stograniindex] * decayVal ue; // Truncation al |l owed
}
voi d PrepagedPageQ : print Hi st ogran{voi d)
{
cout << "Prepaged Page Queue Hi stogram\n";
int index;
for (index = 0; index < targetAlloc; index++) {
cout << histograniindex] << endl;
}
}
voi d PrepagedPageQ : pri nt DegreeQueue(i nt current Degree)
{
cout << "Prepaged Degree Queue:\n";
cout << "\tEntry\tH st\n";
cout << "\t----- \t----\n";
int index = 0;
li st<LRU pageQ entry>::iterator position;
for (position = DegreeQ get Queue()->begin(); position != DegreeQ getQueue()->end(); ++position)
{
if (index > (currentDegree + 1)) break;
if (index == 0) cout << "MRUt";
el se cout << "\t";
cout << (*position).getPageNunber() << "\t" << degreeHi stograniindex] << endl;
i ndex++;
}
}

voi d PrepagedPageQ : updat eDegr eeHi st ogran{unsi gned | ong i nt pageNunber, int currentDegree)

/'l Check Degree Queue
int el ement Num = 0;
li st<LRU pageQ entry>::iterator position;
for (position = DegreeQ get Queue()->begin(); position != DegreeQ getQueue()->end(); ++position) {
if (el ementNum > (currentDegree + 1)) break;
else if ((*position).getPageNunmber() == pageNunber) {
i ncDegr eeHi st ogr an( el ement Num ;

el ement Numt+;

}
voi d PrepagedPageQ : addDegr eePage(unsi gned | ong i nt newPage)
if ((DegreeQ getSize() + 1) > DegreeQ get MaxSi ze()) { //Evict LRU Page
Degr eeQ evi ct Page();

Degr eeQ pushMRU( newPage) ;

int PrepagedPageQ : get DegreeHi stograntEntry(int index)
{
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if (index > (DEFAULT_MAX DEGREE + 1)) {

}

if (debugMbdePrepaged == DEBUG 2) cout << "ERROR Degree histogramindex out of bounds!\n";
return O;

return degreeHi stograniindex];

int PrepagedPageQ : get Degr eeQueueSi ze(voi d)
{

return DegreeQ getSize();

Virtual Memory Management Unit Class: VirtualMMU.h
ncl ude <string>

ncl ude <i ostrean»

ncl ude <fstrean»

ncl ude <vector>

ncl ude <queue>

ncl ude <list>

ncl ude <map>

ncl ude <mat h. h>

#i
#i
#i
#i
#i
#i
#i
#i

#i
#i
#i

ncl ude "main. h"
ncl ude "UsedPageQ h"
ncl ude " PrepagedPageQ h"

usi hg nanmespace std;

class Virtual MW {

private:
int MVBI ze; /1 Size of Main Menory
int prepagedAll oc; /1 Max size of Prepaged Queue
int degree;
int predictionScheneg;
int historySize;

UsedPageQ usedPageQ
PrepagedPageQ prepagedPageQ

public:

/1 Prediction lists used to determ ne nost effective prediction schene
vect or<unsi gned | ong i nt> addressLocal Predi ctions;

vect or<unsi gned | ong int> recencylLocal Predi ctions;

vect or<unsi gned long int> stridePredictions;

vect or<unsi gned | ong int> hybri dPredictions;

/1 Prediction histograns

int addresslLocal Hi st ograni DEFAULT_MAX_DEGREE] ;

nt

recencylLocal Hi st ogr ani DEFAULT_MAX_ DEGREE] ;

int strideH stogran] DEFAULT_MAX_DEGREE] ;
int hybridHi stogran{ DEFAULT_MAX_DEGREE] ;

/1l G obal Variables
long int transfers;
doubl e avg_transfer;
doubl e transfer_rate;

Virtual MU();
Virtual MMJ(i nt newMVBi ze, int newPrepagedAlloc, int newDegree, int newPredictionSchene);

void printVMMJ(void);

voi d set MVSi ze(i nt newWSi ze) ;

voi d set PrepagedAl | oc(i nt newPrepagedAl | oc);
voi d set Degree(int newDegree);

voi d setHistorySize(int newH storySi ze);

nt
nt
nt
nt

nt
nt

get MVSi ze(voi d);

get PrepagedAl | oc(voi d);
get Degree(voi d);

get H storySi ze(voi d) ;

i ncDegree(void);
decDegree(voi d);

UsedPageQ * get UsedPageQ voi d);
Pr epagedPageQ * get PrepagedPageQ voi d);

i nt handl ePageRef (unsi gned | ong i nt referencedPage, int preParanibde);
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vect or<unsi gned | ong int> generat ePrepageli st (unsi gned | ong int referencedPage);
voi d printPrepageli st (vector<unsigned |ong int> *prepageli st);
voi d fetchPrepages(vector<unsi gned | ong int> prepagelList);

voi d updat ePr epagedAl | oc(voi d);
voi d updat eDegr ee(voi d);
voi d updat ePredi cti onSchene(voi d);

unsi gned int cal culateBenefit(int targetAlloc);
unsigned int cal cul ateCost(int targetAlloc);

void initializePredictionHi stograns(void);

voi d cl earPredicti onHi stograns(void);

int calculateH stTotal (int histograni]);

voi d updat ePredi cti onHi st ogranms(unsi gned | ong int referencedPage);
voi d printPredictionH stograns(void);

voi d printPredictionLists(void);

Virtual Memory Management Unit Source: VirtualMMU.c
#i ncl ude "main.h"
#i ncl ude "Virtual M. h"

string predictionSchenes[] = {"Uninitialized","Address Local", "Recency Local","Stride","Hybrid"};

/1 d obal Variabl es
int debugMbde = DEBUG_MODE;

int refNunber = 1; 71 Cunmul ative Reference Nunber
int faul tNunber = 1;// Cummul ative Page Fault Numnber
int decayPeri od = DEFAULT_DECAY_PERI OD; /1 Period at which histograns are decayed

int allocUpdatePeriod = DEFAULT_ALLOC UPDATE_PERI OD; // Period at which the prepaged target
al l ocation i s updated
doubl e decayVal ue = (doubl e) DEFAULT_DECAY_ NUMERATOR/ ( doubl e) DEFAULT_DECAY_DENOM NATOR;

Virtual MU : Virtual MMJ()
{
MVSi ze = DEFAULT_MEM SI ZE;
prepagedAl | oc = DEFAULT_PREPAGED TARGET_ALLCC,
degree = DEFAULT_DEGCREE;
predicti onScheme = DEFAULT_PREDI CTlI ON_SCHEME;

usedPageQ set MaxSi ze( MVBi ze - prepagedPageQ get ConsunmedAl | oc());
usedPageQ set M nSi ze( DEFAULT_M N_USED Q SI ZE);
pr epagedPageQ set Tar get Al | oc( prepagedAl | oc);

initializePredictionH stogranms();

ref Nunmber = 1; // Cummul ative Reference Nunber
faul t Nunber = 1;// Cunmul ative Page Fault Nurber

}
Virtual MU : Virtual MUJ(i nt newWSi ze, int newPrepagedAl |l oc, int newDegree, int newPredictionSchene)

MVBi ze = newWSi ze;

prepagedAl | oc = newPr epagedAl | oc;
degree = newDegr ee;

predi cti onScheme = newPr edi cti onSchene;

usedPageQ set MaxSi ze( MVBi ze - prepagedPageQ get ConsunmedAl | oc());
usedPageQ set M nSi ze( DEFAULT_M N_USED Q S| ZE) ;

pr epagedPageQ set Tar get Al | oc( prepagedAl | oc);
initializePredictionH stogranms();

ref Nunmber = 1; // Cummul ative Reference Nunber
faul t Nunber = 1;// Cunmul ative Page Fault Number

}
voi d Virtual MMJ: : print VM)
{
cout << "VMW' << endl;
cout << M-------- " << endl;
cout << "Main Menory Size: " << MVBize << endl;
cout << "Prepaged Allocation: " << prepagedAlloc << endl;
cout << "Degree: " << degree << endl;
cout << "Prediciton Scheme: " << predictionSchene << endl;
cout << "History Size: " << historySize << endl;

usedPageQ pri nt QueueEntries();
cout << endl << endl;
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pr epagedPageQ pri nt QueueEntries();
voi d Virtual MMJ: : set MVBI ze(i nt newWsSi ze)

MVBi ze = newW\Bi ze;

usedPageQ set MaxSi ze( MVBi ze - prepagedPageQ get ConsunmedAl | oc());
voi d Virtual MMJ: : set PrepagedAl | oc(i nt newPrepagedAl | oc)

if (newPrepagedAl | oc > DEFAULT_MAX PREPAGED TARGET_ALLQC) {
prepagedAl | oc = DEFAULT_MAX PREPAGED TARGET_ALLCC;

}
el se if (newPrepagedAl | oc < DEFAULT_M N_PREPAGED TARCGET _ALLOC) {
prepagedAl | oc = DEFAULT_M N_PREPAGED TARGET_ALLCC;

el se {
prepagedAl | oc = newPr epagedAl | oc;
usedPageQ set MaxSi ze( MVSi ze - prepagedPageQ get ConsunmedAl | oc());
pr epagedPageQ set Tar get Al | oc( prepagedAl | oc);
voi d Virtual MMJ: : set Degree(int newDegree)
{
degree = newDegr ee;
}
voi d Virtual MMJ: : set Hi storySi ze(i nt newHi storySi ze)
{
hi storySi ze = newHi storySi ze;
}
int Virtual MM : get MVSi ze(voi d)
{
return MVSi ze;
}
int Virtual MM : get PrepagedAl | oc(voi d)
{
return prepagedAl | oc;
}
int Virtual MM : get Degree(voi d)
{
return degree;
}
int Virtual MM ;i ncDegree(void)
{
int newbegree = degree + 1,
if (newbDegree > DEFAULT_MAX DEGREE) newDegree = DEFAULT_MAX_ DEGREE;
return newDegree;
}
int Virtual MM : decDegr ee(voi d)
{
int newbegree = degree - 1;
if (newbDegree < DEFAULT_M N _DEGREE) newDegree = DEFAULT_M N_DEGREE;
return newDegree;
}
int Virtual MM : get Hi storySi ze(voi d)
{

return historySi ze;

UsedPageQ * Virtual MM : get UsedPageQ voi d)
{

return &usedPageQ

}
PrepagedPageQ * Virtual MW : get PrepagedPageQ voi d)
{

return &prepagedPageQ

int Virtual MM : handl ePageRef (unsi gned | ong int referencedPage, int preParanmvbde)
if (debugMbde == DEBUG 2) {

COUt << Mommmmimi e \n";
cout << "Referencing Page #" << referencedPage << endl;
COUt << Memmmmmccr e e e ccc e e \n";

}

int refResult = PAGE_FAULT,;
LRU pageQ entry prepagedPage;
vect or <unsi gned | ong int> prepagelLi st;
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i nt prepagePar anet er Mode = prePar amvbde;

/1 Check if page fault //

/1 Check Used Page Queue

i f (usedPageQ referencePage(referencedPage)) {
/1 Page hit in Used Page Queue, no further action required
if (debugMbde == DEBUG 2) cout << "Page hit in Used Page Queue\n";
ref Result = PAGE_HIT;

}
else { // Check Prepaged Page Queue
pr epagedPageQ updat eDegr eeHi st ogr an(r ef er encedPage, degree);
updat ePr edi cti onHi st ogr ans(ref er encedPage) ;
prepagedPage = prepagedPageQ referencePage(ref erencedPage) ;
usedPageQ set MaxSi ze( MVSi ze - prepagedPageQ get ConsunmedAl l oc()); //Update Used Page
/1 Check if page fault
if (prepagedPage. get PageNunber () == NULL) { // Page Fault in Prepaged Queue
/1 PAGE FAULT //
ref Result = PAGE_FAULT;

/'l Generate Prepage List
prepageli st = gener at ePr epagelLi st (ref erencedPage) ;

/1 Add referenced page to Used Page Queue
usedPageQ addPage(r ef er encedPage) ;
++transfers;

/1 Fetch Prepaged Pages
f et chPr epages(prepageli st);

/'l Update Prepage Paraneters
i f (prepageParanet er Mode == DYNAM C_PREPAGE_PARAMETERS || prepagePar anet er Mode ==
DYNAM C_PREPAGE_ALLOCATI ON) {
/1 Update Target Allocation
if ((faul tNunber % all ocUpdat ePeri od) == 0)
if (refNumber > DEFAULT_ALLOC STARTUP_PERI OD) updat ePrepagedAl | oc();

}

if (prepageParanet er Mode == DYNAM C_PREPAGE_PARAMETERS || prepagePar anet er Mode ==
DYNAM C_PREDI CTI ON_METHOD) {
/1 Update Prediction Schene
updat ePr edi cti onSchene();

i f (prepageParanet er Mode == DYNAM C_PREPAGE_PARAMETERS || prepagePar anet er Mode ==
DYNAM C_DEGREE) {
/'l Updat e Degree
if (debugMbde == DEBUG 5) prepagedPageQ pri nt DegreeQueue(degree);
updat eDegree() ;

++f aul t Nunber ;

el se { /1 Push referenced page into Used Queue
if (debugMbde == DEBUG 2) {
cout << "Page hit in Prepaged Page Queue\n";
cout << "Transferring page from Prepaged Page Queue to Used Page Queue\n";

refResult = PAGE HIT;
usedPageQ addPage( pr epagedPage. get PageNurnber () ) ;

if (debugMbde == DEBUG 2)
usedPageQ pri nt QueueEntries();
cout << "\n\n";
pr epagedPageQ pri nt QueueEntries();
cout << "\n\n";

/1 Periodically Decay Histogram

if ((refNunber % decayPeriod) == 0) {
/'l Perform Decay
pr epagedPageQ decayHi st ogr anm( decayVal ue) ;
usedPageQ decayHi st ogr an(decayVal ue) ;

ref Nunber ++;

Q MaxSi ze
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return refResult;

vect or<unsi gned | ong int> Virtual MMJ: : gener at ePr epagelLi st (unsi gned | ong int referencedPage)

if (debugMbde == DEBUG 2) {
cout << "Generating Prepage List using " << predictionSchenmes|[predictionScheme] << "
prediciton ... \n";
cout << "Referenced page = " << referencedPage << endl;
}

vect or<unsi gned | ong int> prepagelLi st;
vect or<unsi gned | ong i nt> degreelLi st;
int predictionNunber;

unsi gned | ong int currentPrediction;

/1 Address Local Prediction //
vect or <unsi gned | ong i nt> addressLocal Predi cti onLi st;
vect or <unsi gned | ong int> addressLocal Degreeli st;
for (predictionNunmber = 1; predictionNunber <= (degree+2); predictionNunber++) {
/1 Make predicitons
if (predictionNunmber == 1) currentPrediction = referencedPage + 1;
el se {
if ((predictionNunber %2) == 0) { //If Even Prediction Nunber
currentPrediction = currentPrediction - predictionNunber;
}

el se { //1f Odd Prediction Nunber
currentPredi ction = currentPrediction + predictionNunber;

}

//cout << "Adding prediction: << currentPrediction << endl;

if (predictionNunber <= degree) addressLocal PredictionList. push_back(currentPrediction);
addr essLocal Degreeli st. push_back(currentPrediction);

addr essLocal Predi cti ons = addressLocal PredictionLi st;

/'l Recency Local Prediction //

vect or<unsi gned | ong int> recencylLocal Predi ctionLi st;

vect or<unsi gned | ong int> recencylLocal Degreeli st;

for (predictionNunber = 1; predictionNunber <= (degree+2); predictionNunber++) {
if (predictionNunber <= degree) recencylLocal PredictionList. push_back(0);
recencylLocal DegreelLi st. push_back(0);

}

recencylLocal Predictions = recencyLocal PredictionLi st;

/1 Stride Prediction //

vector<unsi gned |long int> stridePredictionList;

vect or<unsi gned | ong int> strideDegreelist;

long int stride;

//cal cual ate stride

stride = referencedPage - usedPageQ get MRUPageNunber () ;

// make predictions

current Predi ction = referencedPage;

for (predictionNunber = 1; predictionNunber <= (degree+2); predictionNunber++) {
/1 Make predicitons
currentPredi ction += stride;
if (predictionNumber <= degree) stridePredictionList.push_back(currentPrediction);
stri deDegreeli st. push_back(currentPrediction);

}
stridePredictions = stridePredictionList;

/1 Hybrid Prediction //

vect or<unsi gned | ong int> hybridPredictionList;

vect or <unsi gned | ong int> hybri dDegreeli st;

for (predictionNunmber = 1; predictionNunber <= (degree+2); predictionNunber++) {
if (predictionNunber <= degree) hybridPredictionList.push_back(0);
hybri dDegr eeLi st . push_back(0);

}
hybri dPredi cti ons = hybridPredictionList;

/] Set Page Prediction //
swi t ch(predicti onSchene)
case PREDI CTI ON_UNI NI Tl ALI ZED:
br eak;
case PREDI CTI ON_ADDRESS LOCAL:
prepageli st = addressLocal PredictionLi st;
degreeli st = addressLocal Degreeli st;
br eak;
case PREDI CTI ON_RECENCY_LOCAL:
prepageli st = recencyLocal PredictionLi st;
degreelLi st = recencylLocal Degreeli st;
br eak;
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case PREDI CTlI ON_STRI DE:
prepageli st = stridePredictionList;
degreeli st = strideDegreelist;
br eak;

case PREDI CTI ON_HYBRI D
prepageli st = hybri dPredictionLi st;
degreeli st = hybri dDegreeli st;
br eak;

defaul t:

}

/1 Add degreeList to Degree Queue

vector<unsigned long int> :iterator predictionNum

predi cti onNum = degreelLi st. end();

--predictionNum

int predNunber;

for (predNunmber = (degree+2); predNunber > 0; --predNunber) {

//cout << "Adding " << *predictionNum<< " to degree list\n";
pr epagedPageQ addDegr eePage( * predi cti onNum ;

if (predictionNum == degreelist.begin()) {
br eak;

el se {
--predictionNum

}

/'l Check if predicted pages are already in main menory
for (predictionNum = prepagelist.begin(); predictionNum!= prepageList.end(); ++predictionNun) {
if (usedPageQ pagePresent | nResi dent ( *predictionNunm) ||
pr epagedPageQ pagePresent | nQ( *predi cti onNum)) {
/1 Page is present in Main Mem renove from prepagelLi st
if (debugMbde == DEBUG 2) cout << "Erasing prediction: " << *predictionNum << endl;
prepageli st. erase(predictionNunj;
--predictionNum

}

pri nt Prepageli st ( &pr epageli st);
return prepageli st;

voi d Virtual MMJ: : pri nt Prepageli st (vect or<unsi gned | ong i nt> *prepageli st)

if (debugMbde == DEBUG 2) {
cout << "Prepage List:\n";
cout << "Prediciton List size =" << (*prepagelList).size() << endl;

vector<unsigned long int>::iterator predictionNum
int predictionNumber = 1;
for (predictionNum = (*prepagelList).begin(); predictionNum!= (*prepageList).end();
++predi cti onNum) {
if (debugMbde == DEBUG 2) cout << predictionNunber << ": " << *predictionNum << endl;
predi cti onNunber ++;

if (debugMbde == DEBUG 2) cout << "Front = " << (*prepagelList).front() << endl;

void Virtual MW : f et chPrepages(vect or<unsi gned | ong i nt> prepagelLi st)
{
vector<unsigned long int>::iterator predictionNum
predi cti onNum = prepagelLi st. end();
--predictionNum
int predNunber;
for (predNunmber = degree; predNunber > 0; --predNunber) {

/1 Add page to Prepaged Page Q
pr epagedPageQ addPage( *predi cti onNum ;
++transfers;

/! Rermove page from Non- Resident Queue if present
pr epagedPageQ r enbveNonResi dent Page( *predi cti onNun) ;

if (predictionNum == prepagelList.begin()) {

br eak;
}
el se {
--predictionNum
}

}
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/'l Update Used Page Queue Max Size
usedPageQ set MaxSi ze( MVBi ze - prepagedPageQ get ConsunmedAl | oc());

voi d Virtual MMJ: : updat ePr epagedAl | oc(voi d)

i nt newPrepagedAl | oc = get PrepagedAl | oc();

int tenpPrepagedAll oc;

int currentNetReduction = 0;

i nt maxNet Reduction = 0;

int currentPrepagedAll oc = getPrepagedAl |l oc();

if (debugMbde == DEBUG 1) cout << "Od Prepaged Allocation: " << prepagedAl loc << endl;

/1 Deternine new prepage allocation
unsi gned int benefit = 0;
unsi gned int cost = 0;
for (tenpPrepagedAl |l oc = 0; tenpPrepagedAlloc < (MVESize - usedPageQ get M nSize());
++t enpPr epagedAl | oc) {
current Net Reducti on = cal cul at eBenefit (tenpPrepagedAl | oc) - cal cul at eCost (t enpPrepagedAl | oc) ;
if (currentNetReduction > maxNet Reduction) {
maxNet Reducti on = current Net Reducti on;
newPr epagedAl | oc = tenpPrepagedAl | oc;
}
}

set PrepagedAl | oc( newPr epagedAl | oc) ;

if (debugMbde == DEBUG 4) cout << "Setting prepaged allocation to: " << prepagedAlloc << endl;
/1if (debugMbde == DEBUG 4) {

/1 usedPageQ pri nt Hi stogran();

/'l prepagedPageQ print Hi stogram();

/1

if (debugMbde == DEBUG 1) cout << "New Prepaged Allocation: " << prepagedAl loc << endl;
}
voi d Virtual MMJ: : updat ePr edi cti onScheme(voi d)

int tenmpPredictionScheme = predictionScheneg;

if (debugMbde == DEBUG 1) cout << "Od Prediction Schenme: " <<
predi cti onSchenes[ predi cti onSchene] << endl ;

/] Determ ne new prediction schene
int nostEffectivePrediciton = predictionScheng;

int mxTotal = 0;
int currentTotal = O;
current Total = cal cul at eHi st Tot al (addr essLocal Hi st ogran);
if (currentTotal > maxTotal) {
maxTotal = currentTotal;

nost Ef f ecti vePredi ci ton = PREDI CTI ON_ADDRESS LOCAL;

current Total = cal cul ateHi st Total (recencyLocal Hi stogranj;
if (currentTotal > maxTotal) {
maxTotal = currentTotal;

nost Ef f ecti vePredi citon = PREDI CTI ON_RECENCY_LOCAL;

current Total = cal cul ateHi st Total (strideHi stogran;
if (currentTotal > maxTotal) {
maxTotal = currentTotal;

nost Ef f ecti vePredi ci ton = PREDI CTI ON_STRI DE;
}
current Total = cal cul at eHi st Total (hybri dHi stogram;
if (currentTotal > maxTotal) {

maxTotal = currentTotal;

nost Ef f ecti vePredi ci ton = PREDI CTI ON_HYBRI D;

}

predicti onScheme = nost Ef fecti vePrediciton;

if (predictionSchene != tenpPredictionSchene){
i f (debugWbde == DEBUG 8) {

cout << "Ad Prediction Schene: " << predictionSchenes[tenpPredictionSchene] << endl;
cout << "New Prediction Schene: " << predictionSchenes|[predictionSchenme] << endl;
print PredictionHi stograns();
[/ printPredictionLists();
}
}
cl ear Predi cti onHi stograns();
}
voi d Virtual MMJ: : updat eDegr ee(voi d)
{

int ol dDegree = degree;
if (debugMbde == DEBUG 1) cout << "O d Degree: " << ol dDegree << endl;
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/Il Get HistogramEntires for Current and Next Degree in Degree Queue

int val At Current Degree = prepagedPageQ get Degr eeHi st ograntnt ry(degree-1);

if (debugMbde == DEBUG 1) cout << "Hi stogram value at current degree: " << val At CurrentDegree <<
endl ;

i nt val At Degr eePl usOne = prepagedPageQ. get Degr eeHi st ogr antEnt ry(degree);

if (debugMbde == DEBUG 1) cout << "Hi stogramvalue at current degree + 1: " << val At Degr eePl usOne
<< endl;

int val At DegreePl usTwo = prepagedPageQ get Degr eeHi st ogranEnt ry(degree+l);

if (debugbde == DEBUG 1) cout << "Hi stogramvalue at current degree + 2: " << val At Degr eePl usTwo
<< endl;

/1 Determ ne New Degree

if (val At DegreePlusTwo > 0) {
degree = incDegree();
degree = incDegree();

}
el se if (val At DegreePl usOne > 0) degree = incDegree();
else if (val AtCurrentDegree == 0) degree = decDegree();

if (debugMbde == DEBUG 5) {
if (degree != ol dDegree) {
cout << "New Degree: " << degree << endl;
pr epagedPageQ pri nt Degr eeQueue( ol dDegr ee) ;
cout << endl;

}
i}f (debugMbde == DEBUG 1) cout << "New Degree: " << degree << endl;
pr epagedPageQ cl ear Degr eeHi st ogram() ;
unsi gned int Virtual MW : cal cul ateBenefit(int targetAlloc)
unsi gned int benefit = O;
int index;

for (index = 0; index < targetAlloc; ++index) {
benefit += prepagedPageQ get Hi stogranEntry(index);

return benefit;

unsi gned int Virtual MMJ : cal cul ateCost (int targetAlloc)
{

unsi gned int cost = 0;
int index;

for (index = (DEFAULT_MEM SIZE - targetAlloc); index < DEFAULT_MEM Sl ZE; ++i ndex) {
cost += usedPageQ get Hi st ogranEntry(index);
}

return cost;
void Virtual MU :initializePredictionH stograns(void)

int index;
for (index = 0; index < DEFAULT_MAX DEGREE; index++) {
addr essLocal H st ogranfindex] = 0;
recencylLocal Hi st ogranii ndex] = O;
strideH stogranfindex] = 0;
hybri dHi st ogranii ndex] = O;
}

voi d Virtual MMJ: : cl ear Predi cti onHi st ograns(voi d)
{
int index;
for (index = 0; index < degree; index++) {
addr essLocal H st ograniindex] = 0;
recencylLocal Hi st ogranii ndex] = 0;
strideH stogranfindex] = 0;
hybri dHi st ogr ani i ndex] 0;

) }
int Virtual MM : cal cul ateHi st Total (int histograni])
int total = 0;

int index;
for (index = 0; index < degree; index++) {
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total += histograniindex];

return total;
voi d Virtual MMJ: : updat ePr edi cti onH st ogranms(unsi gned | ong int referencedPage)

int predictionNum= 1;
vector<unsigned long int> :iterator prediction;
for (prediction = addressLocal Predi ctions. begin(); prediction != addressLocal Predi ctions. end();
++predi ction) {
if (predictionNum > degree) break;
else if (*prediction == referencedPage) {
addr essLocal Hi st ogranf predi cti onNum - 1] += 1;

el se predicti onNumt+;

}
predicti onNum = 1;
for (prediction = recencyLocal Predictions. begin(); prediction != recencylLocal Predi ctions. end();

++predi ction) {
if (predictionNum > degree) break;
else if (*prediction == referencedPage) {
recencylLocal Hi st ograni predi cti onNum - 1] += 1;

el se predicti onNumt++;

predicti onNum = 1;

for (prediction = stridePredictions.begin(); prediction != stridePredictions.end(); ++prediction)

if (predictionNum > degree) break;
else if (*prediction == referencedPage) {
strideH stogranfpredictionNum- 1] += 1;

el se predicti onNumt+;

predicti onNum = 1;

for (prediction = hybridPredictions.begin(); prediction != hybridPredictions.end(); ++prediction)

if (predictionNum > degree) break;
else if (*prediction == referencedPage) {
hybri dHi st ograni predi cti onNum - 1] += 1;

el se predicti onNumt+;

voi d Virtual MMJ: : printPredictionH stograns()
int index;
cout << "Address Local Prediction H stogram\n";
for (index = 0; index < degree; index++) {
cout << addressLocal Hi stogranfindex] << endl;
cout << endl;
cout << "Recency Local Prediction Hi stogram\n";
for (index = 0; index < degree; index++)
cout << recencylLocal Hi stogranfindex] << endl;
cout << endl;
cout << "Stride Prediction H stogram\n";
for (index = 0; index < degree; index++) {
cout << strideHi stograniindex] << endl;
cout << endl;
cout << "Hybrid Prediction H stogram\n";
for (index = 0; index < degree; index++) {
cout << hybridHi stograniindex] << endl;

cout << endl;

voi d Virtual MMJ: : printPredictionLists()

int index;
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cout << "Address Local Prediction H stogram\n";
for (index = 0; index < degree; index++)
cout << addressLocal Predi ctions[index] << endl;

cout << endl;
cout << "Recency Local Prediction H stogram\n";
for (index = 0; index < degree; index++)

cout << recencylLocal Predi ctions[index] << endl;
cout << endl;
cout << "Stride Prediction Hi stogram\n";
for (index = 0; index < degree; index++) {

cout << stridePredictions[index] << endl;
cout << endl;
cout << "Hybrid Prediction H stogram\n";
for (index = 0; index < degree; index++) {

cout << hybridPredictions[index] << endl;

cout << endl;
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