Calculating Molarity

1. What is the molarity of 950 mL of solution containing 22.4 g of silver nitrate?
2. What is the concentration of a solution that has 4.87 g of potassium permanganate dissolved in 187 mL of water?
3. Which of the following has the highest concentration of Na^{+}: a) $1.80 \mathrm{~g} \mathrm{Na}_{2} \mathrm{SO}_{4}$ in
a) $55.0 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O} ;$ b) a solution containing $1.05 \mathrm{~g} \mathrm{NaCl} / 100 \mathrm{~mL}$; c) a solution having 14.7 mg $\mathrm{Na}^{+} / \mathrm{mL}$?
4. Determine the mass of MgCl_{2} contained in a 35.0 mL aliquot of $0.241 \mathrm{M} \mathrm{MgCl}_{2}$ solution.
5. How many Mg^{2+} ions are present in 1.3 mL of 0.184 M magnesium nitrate?
6. How much methanol $\left(\mathrm{CH}_{3} \mathrm{OH}, \mathrm{d}=0.792 \mathrm{~g} / \mathrm{mL}\right)$ in mL , must be dissolved in water to produce 22.5 L of 0.485 M methanol?

Dilutions

7. How many liters of 12.0 M nitric acid are needed to make 4.00 L of a 4.39 M solution?
8. A stock solution of sodium hydroxide has a concentration of 5.00 M . How many mL of it are required to make 355 mL of a 1.35 M solution?
9. A dilution was prepared using a stock 2.50 M NaCl solution. A 20.00 mL aliquot was added to a 250.0 mL volumetric flask, which was then filled to the mark with deionized water. Calculate the concentration of the diluted solution.

Chapter 6 - Percentage Composition of Molecules
 Section A

1. What is the weight percent O in MgO ?
2. What is the weight percent Cl in $\mathrm{Mg}\left(\mathrm{ClO}_{3}\right)_{2}$?
3. What is the weight percent O in $\mathrm{N}_{2} \mathrm{O}_{5}$?
4. What is the weight percent C in $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$?
5. What is the weight percent S in $\mathrm{H}_{2} \mathrm{~S}$?
6. What relationship is there between the answers to Problem 5?
7. What is the weight percent O in SnO_{2} ?
8. What is the weight percent H in $\mathrm{C}_{5} \mathrm{H}_{9} \mathrm{O}_{4} \mathrm{~N}$?
9. What is the weight percent NH_{3} in $\mathrm{Cu}(\mathrm{OH})_{2} \cdot 4 \mathrm{NH}_{3}$?
10. What is the percent PbO in $\mathrm{PbSO}_{4} \cdot \mathrm{PbO}$?

Calculating Molarity

Molarity is a concentration expression. It tells how much solute is dissolved in the solvent. Solute is what dissolves in the solvent (small amount: example: NaCl in salt water). The solvent is what dissolves the solute (large amount: example: water in salt water). Put the solute and the solvent together, and you get a solution, which is a mixture with no visible boundaries between components (like a homogenous mixture, usually in the liquid phase but can be gaseous). A solution of anything has a concentration, which is a measure of the amount of solute dissolved in the solvent. There are many concentration expressions used in chemistry, but molarity is the most common. Molarity is a concentration term that expresses the moles of solute dissolved in 1 liter of solution ($\mathrm{mol} / \mathrm{L}$, represented as M). To solve molarity problems, put the mass over the volume, then convert to the correct units (moles over liters). When working with a molarity problem when a volume and a molarity has been given to you, start your dimensional analysis with the volume (one unit versus two - molarity is $\mathrm{mol} / \mathrm{L}$). Some definitions to remember:

1. $\quad M\left(\frac{\mathrm{~mol}}{\mathrm{~L}}\right) \mathrm{AgNO}_{3}=\left|\frac{22.4 \mathrm{gAgNO}_{3}}{950 \mathrm{~mL}}\right| \frac{1 \mathrm{molAgNO}_{3}}{169.91 \mathrm{~g}}\left|\frac{1000 \mathrm{~mL}}{1 \mathrm{~L}}\right|=0.139 \mathrm{M}$
2. $M\left(\frac{\mathrm{~mol}}{\mathrm{~L}}\right) K \mathrm{KnO}_{4}=\left|\frac{4.87 \mathrm{gKMnO}_{4}}{187 \mathrm{~mL}}\right| \frac{1 \mathrm{molKMnO}_{4}}{158.04 \mathrm{~g}}\left|\frac{1000 \mathrm{~mL}}{1 L}\right|=0.165 \mathrm{M}$
3. a) $\left.M\left(\frac{\mathrm{~mol}}{\mathrm{~L}}\right) N \mathrm{Na}^{+}=\left|\frac{1.80 \mathrm{gNa}_{2} \mathrm{SO}_{4}}{55.0 \mathrm{~mL}}\right| \frac{1 \mathrm{molNa}_{2} \mathrm{SO}_{4}}{142.05 \mathrm{~g}} \right\rvert\, \frac{2 \mathrm{molNa}_{1 \mathrm{molNa}_{2} \mathrm{SO}_{4}}}{\left.\frac{1000 \mathrm{~mL}}{1 \mathrm{~L}} \right\rvert\,=0.461 \mathrm{M}, ~}$
b) $\left.M\left(\frac{\mathrm{~mol}}{\mathrm{~L}}\right) N a^{+}=\left|\frac{1.05 \mathrm{gNaCl}}{100 \mathrm{~mL}}\right| \frac{1 \mathrm{molNaCl}}{58.44 \mathrm{~g}}\left|\frac{1 \mathrm{molNa}^{+}}{1 \mathrm{molNaCl}}\right| \frac{1000 \mathrm{~mL}}{1 \mathrm{~L}} \right\rvert\,=0.180 \mathrm{M}$
c) $\left.M\left(\frac{\mathrm{~mol}}{\mathrm{~L}}\right) N \mathrm{Na}^{+}=\left|\frac{14.7 \mathrm{mgNa}^{+}}{1 \mathrm{~mL}}\right| \frac{1 \mathrm{~g}}{1000 \mathrm{mg}}\left|\frac{1 \mathrm{molNa}^{+}}{22.99 \mathrm{~g}}\right| \frac{1000 \mathrm{~mL}}{1 L} \right\rvert\,=0.639 \mathrm{M}$

The highest concentration of Na^{+}is in solution C.
4. $\operatorname{mass}(g) \mathrm{MgCl}_{2}=35.0 \mathrm{~mL}\left|\frac{1 \mathrm{~L}}{1000 \mathrm{~mL}}\right| \frac{0.241 \mathrm{molMgCl}}{2}\left|\frac{95.21 \mathrm{~g}}{1 \mathrm{~L}}\right|=0.803 \mathrm{gMgCl}_{2}$
5.

$$
\text { \#ionsMg } \left.{ }^{2+}=1.3 \mathrm{~mL}\left|\frac{1 L}{1000 \mathrm{~mL}}\right| \frac{0.184 \mathrm{molMg}\left(\mathrm{NO}_{3}\right)_{2}}{1 L}\left|\frac{1 \mathrm{molMg}{ }^{2+}}{1 \mathrm{molMg}\left(\mathrm{NO}_{3}\right)_{2}}\right| \frac{6.02 \times 10^{23} \text { ions }}{1 \mathrm{molMg}^{2+}} \right\rvert\,=1.44 \times 10^{20} \text { ions }
$$

6. $\operatorname{vol}(m L) \mathrm{CH}_{3} \mathrm{OH}=22.5 L\left|\frac{0.485 \mathrm{CH}_{3} \mathrm{OH}}{1.00 \mathrm{~L}}\right| \frac{32.042 \mathrm{~g}}{1 \mathrm{molCH}_{3} \mathrm{OH}}\left|\frac{1.00 \mathrm{~mL}}{0.792 \mathrm{gCH}} \mathrm{OH}_{3}\right|=441 \mathrm{~mL}$

Dilutions

When you want to decrease the concentration of a solution, you must dilute it. When you dilute something, the concentration is decreased by adding more solvent. The formula used for calculating dilutions is $\mathrm{M}_{1} \mathrm{~V}_{1}=\mathrm{M}_{2} \mathrm{~V}_{2}$. An aliquot is a small sample of a solution.
7. $M_{1} V_{1}=M_{2} V_{2} \quad(12.0 M)\left(V_{1}\right)=(4.39 M)(4.00 L) \quad V_{1}=\frac{17.56 M \mathrm{gL}}{12.0 M}=1.46 \mathrm{~L}$
8. $M_{1} V_{1}=M_{2} V_{2}$
$(5.00 M)\left(V_{1}\right)=(1.35 M)(3.55 \mathrm{~mL}) \quad V_{1}=\frac{479.25 M g n L}{5.00 M}=95.9 \mathrm{~mL}$
9. $M_{1} V_{1}=M_{2} V_{2}$
$(2.50 \mathrm{M})(20.00 \mathrm{~mL})=M_{2}(250.0 \mathrm{~mL}) \quad M_{2}=\frac{50.0 \mathrm{Mg} \mathrm{gL}}{250.0 \mathrm{~mL}}=0.200 \mathrm{M}$

Answers to Chapter 6 - Percentage Composition of Molecules Section A

1. $39.7 \% \mathrm{O} \quad(\mathrm{MW}=40.3 \mathrm{~g} / \mathrm{mol})$
2. $37.1 \% \mathrm{Cl}$
(MW = $191.3 \mathrm{~g} / \mathrm{mol})$
3.

74.1\% O
$(\mathrm{MW}=108.0 \mathrm{~g} / \mathrm{mol})$
4. $52.2 \% \mathrm{C}$
$(\mathrm{MW}=46.0 \mathrm{~g} / \mathrm{mol})$
5.
94.1\% S
$(\mathrm{MW}=34.1 \mathrm{~g} / \mathrm{mol})$
6. The sum of the weight percents is 100 .
7. $21.2 \% \mathrm{O}$
$(\mathrm{MW}=150.7 \mathrm{~g} / \mathrm{mol})$
8. $\quad 6.12 \% \mathrm{H}$
(MW = $147.0 \mathrm{~g} / \mathrm{mol}$)
9. $\quad 41.1 \% \mathrm{NH}_{3} \quad(\mathrm{MW}=165.5 \mathrm{~g} / \mathrm{mol})$
10. $42.4 \% \mathrm{PbO} \quad(\mathrm{MW}=526.4 \mathrm{~g} / \mathrm{mol})$

