CHAPTER 2: ATOMIC STRUCTURE, BONDING AND PROPERTIES

ISSUES TO ADDRESS...

- Review of atomic structure
- What promotes bonding?
- > What types of bonds are there?
- What properties are inferred from bonding?

BOHR ATOM

orbital electrons: n = principal quantum number

Adapted from Fig. 2.1, *Callister 6e.*

Nucleus: Z = # protons = Atomic number(= # electrons) = 1 for hydrogen to 94 for plutonium N = # neutrons

Atomic mass $A \approx Z + N$

Isotopes = equal Z but different N!

1 mole = 6.023x10²³ (Avogadro's number) atoms or molecules

ELECTRON ENERGY STATES

Electrons...

- have discrete energy states
- tend to occupy lowest available energy state.

Adapted from Fig. 2.5, *Callister 6e.*

Pauli Exclusion Principle: Each energy state cannot hold more than two electrons. Hund's Rule: For a shell with less than half full, electrons arrange themselves with all spins parallel.

Probability of Finding Electrons

Adapted from: "Quantum Mechanics in Chemistry", M. W. Hanna, Figures 6-4 and 6-8

STABLE ELECTRON CONFIGURATIONS

Stable electron configurations...

- have complete s and p subshells
- tend to be unreactive.

Ζ	Element	Configuration	
2	He	1s ²	Adapted from Table 2.2
10	Ne	1s ² 2s ² 2p ⁶	Callister 6e.
18	Ar	_{1s} 2 _{2s} 2 _{2p} 6 _{3s} 2 _{3p} 6	
36	Kr	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d	10 _{4s} 2 _{4p} 6

SURVEY OF ELEMENTS

• Most elements: Electron configuration not stable.

Element	<u>Atomic #</u>	Electron configuration
Hydrogen	1	1s ¹
Helium	2	1s ² (stable)
Lithium	3	1s ² 2s ¹
Beryllium	4	1s ² 2s ²
Boron	5	1s ² 2s ² 2p ¹ Adapted from Table 2.2,
Carbon	6	1s ² 2s ² 2p ² Callister 6e.
Neon	10	$1s^{2}2s^{2}2p^{6} \qquad (stable)$
Sodium	11	1s ² 2s ² 2p ⁶ 3s ¹
Magnesium	12	1s ² 2s ² 2p ⁶ 3s ²
Aluminum	13	1s ² 2s ² 2p ⁶ 3s ² 3p ¹
Argon	18	<u>1s ²2s ²2p ⁶3s ²3p ⁶</u> (stable)
	••••	
Krypton	36	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ¹⁰ 4s ² 4 ⁶ (stable)

• Why? Valence (outer) shell usually not filled completely.

THE PERIODIC TABLE

• Columns: Similar Valence Structure

IONIC BONDING

- Occurs between + and ions.
- Requires electron transfer.
- Large difference in electronegativity required.
- Example: NaCl

EXAMPLES: IONIC BONDING

• Predominant bonding in Ceramics

Give up electrons

Acquire electrons

Adapted from Fig. 2.7, *Callister 6e.* (Fig. 2.7 is adapted from Linus Pauling, *The Nature of the Chemical Bond*, 3rd edition, Copyright 1939 and 1940, 3rd edition. Copyright 1960 by Cornell University.

COVALENT BONDING

- Requires shared electrons
- Example: CH4
 - C: has 4 valence e, needs 4 more
 - H: has 1 valence e, needs 1 more

Electronegativities are comparable.

Adapted from Fig. 2.10, Callister 6e.

% ionic character = $\{1-\exp[-(0.25)(X_A-X_B)2]\} \times 100$ X_A and X_B are the electronegativities of the respective elements

EXAMPLES: COVALENT BONDING

H_2O																		
H_2 E F_2																		
IA						(C(di	am	ond) .			, nmn				0	
H 2.1	ILA							c ;(۲			THE	colt	14	VIA	VIIA	He -	2C12
Li	Be]						SIC		\sim		5	C	7 N	0 2.0	F 40	Ne	
Na	Mg							VIII				2.0 13 Al	Si	30 15 P	16 \$	C1	Ār	
0.9	1.2	IIIB	N'B	٧B	VI B-	VIIB	\square			IB	ШB	1.5	1.8	2.1	2.5	3.0	d - a	
K	Ca	21 Sc	Ti	23 V	Cr	25 Min	Fe	27 Co	Ni	29 Cu	Zn	Ga	Ge	As	34 Se	Br	Kr	
0.0	1.0	1.3	40	L.6	1.0	1.5	1.8	18	1.8	1.9	1.8	1.0	1.8	2.0	2.4	2.8	-	
Rb	Sr	Y	2r	Nb	Mo	Te	Ru	Rh	Pd	Ag	Cd	In	Sn 18	Sb	Te	$\begin{vmatrix} 1 \\ 25 \end{vmatrix}$	Xe	
Cs	Ba	57-71	72	73	74	75	76	77	78	70	80	81	Pb/	83	84	At	Rn	
0.7	0.9	La-Lu 1.1-1.2	H1 1.3	Ta 1.5	W 1.7	Rc 1.9	05	1r 2.2	Pt 2.2	Au 2.4	Hg 1.9	1.8	1.8	BI 1.0	Po 2.0	2.2	-	
Fr	Ra	89-102 Ac-No	Adapted from Fig. 2.7. Callister 6e. (Fig. 2.7 is $G_2 \Delta s$															
0./	adapted from Linus Pauling, <i>The Nature of the Chemical Bond</i> , 3rd edition, Copyright 1939 and																	

1940, 3rd edition. Copyright 1960 by Cornell University.

- Molecules with nonmetals
- Molecules with metals and nonmetals
- Elemental solids (RHS of Periodic Table)
- Compound solids (about column IVA)

METALLIC BONDING

• Arises from a sea of donated valence electrons (1, 2, or 3 from each atom).

Adapted from Fig. 2.11, Callister 6e.

• Primary bond for metals and their alloys

BOND STRENGTH

F_A(r) = Attractive Force F_R(r) = Repulsive Force

 $F_N(r)$ = net force = $F_A + F_R$

E = Potential Energy = \int F.dr or F(r)= dE/dr E_N(r) = E_A + E_R

Equilibrium: FA + FR = 0or $dE_N/dr = 0$

Problem 2-14

NaCl

 $E_A = -1.436/r$, $E_R = 7.32 \times 10^{-6}$ Note:

Attractive Potential energy < 0 Repulsive Potential energy > 0

SECONDARY BONDING

Arises from interaction between dipoles

• Fluctuating dipoles

• Permanent dipoles-molecule induced

SUMMARY: BONDING

Type	Bond Energy	Comments
Ionic	Large!	Nondirectional (ceramics)
Covalent	Variable large-Diamond small-Bismuth	Directional semiconductors, ceramics polymer chains)
Metallic	Variable large-Tungsten small-Mercury	Nondirectional (metals)
Secondary	smallest	Directional inter-chain (polymer) inter-molecular

PROPERTIES FROM BONDING: T_M

• Bond length, r

Bond energy, E₀

• Melting Temperature, Tm

T_m is larger if E_0 is larger.

PROPERTIES FROM BONDING: E

• Elastic modulus, E

PROPERTIES FROM BONDING: α

• Coefficient of thermal expansion, α

coeff. thermal expansion
$$\frac{\Delta L}{L_0} = \alpha (T_2 - T_1)$$

 α is larger if E₀ is smaller.

α ~ symmetry at r₀
 ▲ Energy

SUMMARY: PRIMARY BONDS

Ceramics

(Ionic & covalent bonding):

Large bond energy large T_m large E small α

Metals

(Metallic bonding):

Variable bond energy moderate T_m moderate E moderate α

Polymers (Covalent & Secondary):

secondary bonding

 $\begin{array}{c} \mbox{Directional Properties}\\ \mbox{Secondary bonding dominates}\\ \mbox{small T}\\ \mbox{small E}\\ \mbox{large } \alpha \end{array}$