Problem 1) Consider a laminar slug flow flowing between two semi-infinite parallel plates separated by a distance 2b. The lower plate is subjected to a uniform heat flux, q_w , and the upper plate is subjected to a uniform heat flux, $2q_w$. The inlet bulk temperature of the fluid is $T_{b,i}$. The velocity, u_b , in the FULLY DEVELOPED thermal boundary layer is approximately uniform and slug flow may be assumed.

- (a) Find an expression for the FULLY DEVELOPED temperature profile, T(y).
- (b) Evaluate the Nusselt Number at the upper surface, where Nu=hb/k.

Problem 2) Consider steady laminar flow over a flat plate that is maintained at a constant wall temperature. You are given the similarity parameter, $\eta = y \sqrt{\frac{u_{\infty}}{v_x}}$ and the stream function, $\psi(x, y) = \sqrt{v u_{\infty} x} F(\eta)$. Recall that $u = \frac{\partial \psi}{\partial y}$ and $v = -\frac{\partial \psi}{\partial x}$.

(a) Show that the energy equation may be reduced to the following ordinary differential equation

$$\tau'' + \frac{1}{2} \operatorname{Pr} F \tau' = 0,$$

where (') denotes differentiation with respect to η and $\tau = \frac{T_w - T}{T_w - T_{\infty}}$.

(b) For **high** Prandtl number fluids (Pr>>1), the velocity profile inside the thermal boundary layer may be assumed linear, $u(y) = \frac{\tau_w}{\mu} y$. Use this information to show that, $F' = F''(0)\eta$.

(c) Given that F''(0)=0.332, derive an expression for the Nusselt number. Leave your answer in terms of the gamma function defined below.

Note: $\Gamma(n) = \int_0^\infty x^{n-1} e^{-x^2} dx$; also $\Gamma(n+1) = n\Gamma(n)$.

Incompressible Fluid

Conservation of Mass

$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0$$

Conservation of Momentum

x-momentum

$$\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial v}{\partial y} = -\frac{1}{\rho} \frac{\partial P}{\partial x} + v \left[\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \right] + \mathbf{X}$$

y-momentum

$$\frac{\partial v}{\partial t} + u \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial y} = -\frac{1}{\rho} \frac{\partial P}{\partial v} + v \left[\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} \right] + Y$$

Conservation of Energy

$$\rho c_p \left(\frac{\partial T}{\partial t} + u \frac{\partial T}{\partial x} + v \frac{\partial T}{\partial y} \right) = k \left[\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} \right] + \mu \Phi + q'''$$

$$\Phi = 2\left[\left(\frac{\partial u}{\partial x}\right)^2 + \left(\frac{\partial v}{\partial y}\right)^2\right] + \left[\left(\frac{\partial u}{\partial y}\right) + \left(\frac{\partial v}{\partial x}\right)\right]^2$$

$$Re = \frac{ux}{v}$$

$$Pr = \frac{v}{\alpha}$$

$$Nu = \frac{hx}{k}$$

$$St = \frac{h}{\rho c_p u}$$