1) Consider a solid cylinder of length L and diameter D that is attached between two plane walls. Both ends of the cylinder are maintained at a constant temperature equal to T_{1}. The curved surface of the cylinder is subjected to convection heat transfer with a uniform convection coefficient $h\left(W / m^{2} \mathrm{~K}\right)$ and fluid temperature T_{oo}, noting that $\mathrm{T}_{1}>\mathrm{T}_{\mathrm{o} \text { o }}$. The thermal conductivity of the cylinder is k . The $\mathrm{Bi}=(\mathrm{hD} / \mathrm{k})$ is much less than 1 .
(i) Using a partially-lumped analysis, calculate the steady-state, total heat rate (W) at which energy is transferred from the cylinder into the fluid.
Hint: First find the 1- D temperature distribution.

2) A two-dimensional rectangular solid ($\mathrm{L} x \mathrm{~W}$) is shown below. Initially, the solid is at a uniform temperature of T_{1}. For $\mathrm{t}>0$, the boundary conditions as shown are applied, namely, convection heat transfer to a fluid at T_{1} on the left surface ($x=0$), a constant, incident heat flux on the right surface ($x=L$), and a prescribed temperature of T_{1} on the top $(y=W)$ and the bottom ($y=0$).

i) Solve for the temperature distribution of the solid, $T(x, y, t)$. You may leave integrals in your final answer.
