Thermodynamics Exam - Spring 2007

Calculator may be used

Problem 1) A solid material has a heat capacity which varies linearly with temperature, modeled by $\mathrm{C}=\mathrm{a}+\mathrm{bT}$, where C is the heat capacity, $\mathrm{a}=5 \mathrm{~J} / \mathrm{kg} \mathrm{K}$ and $\mathrm{b}=0.03 \mathrm{~J} / \mathrm{kg} \mathrm{K}{ }^{2}$. Two objects A and B are made of this material. Object A has a mass of 1 kg and is initially at 200 K ; object B has a mass of 2 kg and is initially at 500 K . The two objects are brought into contact with each other and isolated. Determine the final equilibrium temperature and the entropy generated. Considering $\mathrm{A}+\mathrm{B}$ as the system, discuss the entropy increase from a statistical point of view.

Problem 2) Equal moles of diatomic nitrogen and oxygen are heated at 1 atm to a temperature of 2800 K . The global reaction may be described as

$$
\mathrm{N}_{2}+\mathrm{O}_{2} \leftrightarrow 2 \mathrm{NO}
$$

For this reaction at $2800 \mathrm{~K}, \ln K_{p}=-4.72$. At equilibrium, find the mole fractions of N_{2}, O_{2}, and NO. Describe qualitatively how the results would depend on pressure and why.

