Convection Exam - Spring 2007

Problem 1) Consider that low Prandtl number fluid is injected between two parallel plates as shown below and separated by a distance H and having width w . The lower plate is maintained at temperature T_{w} and the upper plate is insulated. Fluid is injected with mass flow rate m_{o} and temperature T_{o} that laminar flow is maintained at all times. At the stagnation point, a thermal boundary layer forms in the positive and negative x-directions as shown. Assume that the axial component of velocity does not vary in the direction normal to the wall (slug flow assumption).
a) Use conservation of mass to evaluate u_{0} and Reynolds number where $\operatorname{Re}=\frac{\rho u_{o} H}{\mu}$
b) Assume the temperature profile in the thermal boundary layer varies as $\frac{T-T_{o}}{T_{w}-T_{o}}=a+b \eta+c \eta^{2}$, where $\eta=\frac{y}{\delta_{t}}$. Use the integral energy equation to evaluate the variation of the thermal boundary layer thickness, δ_{t}, with x. Express relationship in terms of Re, Pr, x, and H.

Integral Energy Equation: $-\left.\alpha \frac{\partial T}{\partial y}\right|_{y=0}=\frac{d}{d x}\left[\int_{0}^{\delta_{t}} u\left(T-T_{o}\right) d y\right]$
c) Evaluate the heat transfer coefficient. Define an appropriate Nusselt number and evaluate.

Problem 2) A fluid is placed between two vertical walls of different temperature ($\mathrm{T}=\mathrm{T}_{1}$ at $\mathrm{y}=\mathrm{b}$ and $\mathrm{T}=\mathrm{T}_{2}$ at $\mathrm{y}=-\mathrm{b}: \mathrm{T}_{1}<\mathrm{T}_{2}$). Due to temperature gradients the fluid near the hot wall rises and the fluid near the cold wall descends.

Derive expressions for:
a) the temperature profile
b) the velocity profile
c) the heat transfer coefficient, where the driving potential is $\left(\mathrm{T}_{2}-\mathrm{T}_{1}\right)$

Note: the following may be assumed: the volumetric flow rate of the upward moving stream is the same as that in the downward moving stream; $u=u(y)$; and $T=T(y)$, i.e. u and T only vary in the y direction.

Governing Eqs.
$\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}=0$
$u \frac{\partial u}{\partial x}+v \frac{\partial u}{\partial y}=g \beta\left(T-T_{c}\right)+v \frac{\partial^{2} u}{\partial y^{2}}$
$u \frac{\partial T}{\partial x}+v \frac{\partial T}{\partial y}=\alpha \frac{\partial^{2} T}{\partial y^{2}}$
where T_{c} is the centerline temperature.

