Problem 1

Consider incompressible forced flow over a flat plate with a free stream velocity of U_{∞} and free stream temperature T_{∞} . The boundary condition for the surface of the plate is:

$$T_w - T_\infty = Ax^m$$

Here A and m are constants. The x-coordinate denotes the position along the plate and the y-coordinate denotes the position normal to the plate.

- a) In order to analyze the boundary layer thermal field associated with this problem, it is assumed at u(x,y)=U_∞ everywhere in the boundary layer. For what range of Prandtl number is such an assumption valid?
- b) Using the assumption that u(x,y)=U_∞ everywhere, show that a similarity solution is available and the governing energy equation may be reduced to an ordinary differential equation with dependent variable F and independent variable η. The similarity variables are given as,

Let
$$\theta = \frac{T - T_{\infty}}{T_{w} - T_{\infty}}$$
 where $T_{w} - T_{\infty} = Ax^{m}$
 $\theta = x^{m}F(\eta)$
 $\eta = \frac{y}{\sqrt{x}}$

(Caution: when substituting variables in energy equation, note that T_w - T_∞ varies with x)

c) State the boundary conditions and use the solution to the energy equation to evaluate the Nusselt Number, Nu_x as a function of Reynolds number and Prandtl number.

Note: the error function $erf(x) = \frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-u^{2}} du$; erf(0)=0 and $erf(\infty)=1$

Convection Heat Transfer - Fall 2007

Problem 2

Consider a turbulent flow boundary layer near a wall. Implementing the law of the wall, the momentum and energy equations may be expressed as,

Momentum

$$\frac{\tau_{_{W}}}{\rho} = (\nu + \varepsilon_{_{M}}) \frac{du}{dy}$$

Energy

$$q_{w} = -\rho C_{p} (\alpha + \varepsilon_{H}) \frac{dT}{dy}$$

where ε_M is the eddy viscosity and ε_H is the eddy thermal diffusivity. Assume that in the laminar sublayer ($y^+<5$) the turbulent stresses and heat flux are negligibly small and in the outer layer ($y^+>5$), the turbulent stresses and heat flux are dominant. Find an expression for the Stanton number as a function of the friction coefficient and Prandtl number. Assume $Pr_t=0.8$. Ignore the buffer layer for this problem.

(recall that
$$y^+ = \frac{yu^*}{v}$$
 and $u^* = \sqrt{\frac{\tau_w}{\rho}}$)