Problem 1) Consider a composite wall, as shown in the figure below. The left portion of the wall is of thickness L_1 , made of Material 1 (with thermal conductivity k_1), and will be characterized by dependent variable T_1 . The right portion of the wall is of thickness L_2 , made of Material 2 (with thermal conductivity k_2), and will be characterized by dependent variable T_2 . Initially, the <u>entire wall</u> is at a uniform temperature T_i . The x-axis is shown on the figure, where x=0 is the left most boundary of the wall, and x = ($L_1 + L_2$) is the right most boundary of the wall. At time = 0, the left side of the wall (x=0) is perfectly insulated, while the right side (x= $L_1 + L_2$) is subjected to convection heat transfer with a uniform convection coefficient h (W/m² K) and fluid temperature T_{oo} , noting that $T_i < T_{oo}$. The contact resistance between Material 1 and Material 2 is negligible. In addition: $Bi_1 = (hL_1/k_1)$ is <u>much less</u> than 1, $Bi_2 = (hL_2/k_2)$ is <u>equal</u> to 1, and H & W are both <u>much greater</u> than L_1 and L_2 .

(i) In consideration of the parameters and problem statement described above, formulate the problem to solve for the temperatures T_1 and T_2 . Formulation includes <u>all</u> relevant governing equations and boundary conditions/initial conditions reduced to the <u>simplest form</u>. You do <u>not</u> need to solve the equations.

(ii) Sketch T(x) from $0 < x < (L_1 + L_2)$ for (a) t=0; (b) a small time after t=0; (c) an intermediate time; (d) a relatively long time; and (e) for steady-state. Put all five plots on the same graph, and label the curves (a) through (e).

(iii) Sketch q"(t) at the position $x = L_1$ and at the position $x = (L_1 + L_2)$. Put these two curves on together on the same graph, and give attention to, slope, sign, and relative magnitude.

Problem 2) A solid cylinder is shown below of radius **b** and of length **L**, such that $b \sim L$. The cylinder is subjected to uniform, incident heat flux $q_0^{"o}$ (W/m²) around the entire curved surface. The left flat surface is maintained at constant, uniform temperature T_{oo} , and the right flat surface is subjected to convection heat transfer with a uniform convection coefficient h (W/m² K) and fluid temperature T_{oo} .

(i) Solve for the steady-state temperature distribution of the cylinder. Clearly define your coordinate system and origin.

(ii) Provide an expression for conservation of energy between the curved and the flat surfaces.

You may leave integrals in answers as necessary.

