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Constant Sum Games 
 
 
Paper - in lieu of final exam; choose one of three types: 

Original topic applying game theory 
Critique paper that uses game theory 
Critical survey of some area we don't cover in class (review basic literature; explain why 

they did what they did and determine if it's sensible) 
 
Focus of Course - application of game theory (not theoretical mathematical foundations); learn 

enough to read articles that apply game theory and to use it in our own papers 
 
Review 
Describing Game - 2 ways 

Strategic (Normal) Form - lists all strategies and puts payoffs in table 
Extensive Form  - draw game three 

 
Strategy  - instructions for what player would do in every contingency of the game (not just the 

equilibrium path); point is, no matter what happens in the game, an agent with a strategy 
can play a response for anything the opponent does 
Problem - strategies can get very complicated in multi-stage game; e.g., chess is a two 

player, constant sum game with perfect information; equilibrium should be "easy", but 
strategy space is very complex 

 
Preferences  - course will assume Von Neumann/Morgenstern (VNM) utility functions (unique 

up to a positive affine transformation: bau +)(x   ( 0>a ) 
 
Continuous Strategy Space - can use to approximate discrete game with many strategies 

(and vice versa); sometimes easier to find mixed strategy equilibrium 
 
 
Constant Sum Games 
Two Person Constant Sum Games - solved and set benchmark for quality of 

solution/equilibria for other classes of games 
Constant Sum - sum of payoffs in strategic form is constant 

Utilities - constant sum refers to payoffs in utility terms; there's no discussion of what the 
utility functions must look like for this to be possible; the only way the game will also be 
constant sum with respect to monetary payoffs is if the players are risk neutral 

Zero Sum - sum of payoffs equals zero; same as constant sum because of VNM  
Proof: assume constant sum so 0)()( 21 ≠=+ kuu xx  

Can transform utility functions because of VNM: 0)()( 2
2

21
1

1 =+++ buabua xx  

From original equation sub )()( 12 xx uku −= : 0))(()( 21
1

2
1

1 =++−+ bbukaua xx  

Can set 121 == aa :  021 =++ bbk  

∴ if we use kbb =+ 21 , we can convert a constant sum game into a zero sum game 

Flexibility - can ensure all payoffs are positive (as long as no payoff is -∞)... benefit for 
mathematical techniques 
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Strictly Competitive - used synonymously with constant sum by Luce and Raiffa, but others 
use it as a more general form: players' ordinal preferences over pure strategy outcomes are 
opposites 
Example  - if player 1 prefers outcome 1 ( 1O ) to outcome 2 ( 2O ) then player 2 prefers 

outcome 2 to outcome 1; in notation: 
2

1
1  P OO   �  1

2
2  P OO     or    )()( 2111 OuOu >   �  )()( 1222 OuOu >  

Mixed Strategies - with new definition, strictly competitive is not the same as constant sum 
because in strictly competitive players can agree on preferences for a lottery (mixed 
strategy) which they can't do in a constant sum game with opposite ordinal preferences 
over pure strategy outcomes 
Proof: Assume )()()( 312111 OuOuOu >>    (so )()()( 122232 OuOuOu >> ) 

Pick lottery of 1O  and 3O  where 1O  occurs with probability p  (so 3O  occurs with 

probability p−1 ) 
From VNM players value lottery by expected payoff so for both players to prefer the 

lottery we must have: 
(Player 1)  )()()1()( 213111 OuOupOpu >−+  

(Player 2)  )()()1()( 223212 OuOupOpu >−+  

For player 1 this simplifies to 
)()(

)()(
3111

3121

OuOu

OuOu
p

−
−>  

Now we can use a VNM transformation: 
0)()( 3131 =+= bOauOv  

1)()( 3111 =+= bOauOv  

(2 equations with 2 unknowns: a  and b  and results in 1)(0 21 << Ov ) 

Now we can say 
01

0)( 21

−
−> Ov

p  or simply )( 21 Ovp >  

For player 2 to prefer the lottery we need 
)()(

)()(
3212

3222

OuOu

OuOu
p

−
−>  

Use a similar VNM transformation for player 2 (i.e., 1)( 32 =Ov  and  0)( 12 =Ov ) 

10

1)( 22

−
−> Ov

p   �  )(1 22 Ovp >−  

It is feasible that these two conditions could hold and the players can both prefer the 
lottery over outcome 2 for certain 

For a constant sum game (with the same preferences), however, this is not possible. 
After the transformation, the constant sum payoff is 1 (just pick outcome 1 or 3 
and this should be obvious). Therefore, we must have 1)()( 2221 =+ OvOv . We 
just showed that for both players to prefer the lottery we must have 
(a) )( 21 Ovp >  and (b) )(1 22 Ovp >− . If we add these together, we get 

)()(1 2221 OvOv +>  which is not possible in a constant sum game. 
Why Strictly Competitive  - so constant sum and strictly competitive (with the new 

definition) are slightly different, but why do we care? Many results for strictly competitive 
games are the same as constant sum games, but they differ in mixed strategies so some 
game theorists like to distinguish the two 
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Real World  - constant sum games are hard to find; strictly competitive is more realistic 
Poker - constant sum in terms of money, but not necessarily in utility (unless all players 

are risk neutral); it will, however, always be strictly competitive over pure strategies 
Deviations - poker books are usually written for risk neutral players; players following 

"the book" can take advantage of players who are risk averse, risk seeking, or simply 
make a mistake; the bad part is once a player deviates from the equilibrium path (say 
to take advantage of another player's risk aversion or mistake), the other player can 
then take advantage of the one who deviates to take advantage of the original 
deviation 

Why Play  - if all players are risk neutral and play by "the book", all players have 
expected winnings of zero; the fact that people play indicates that not everyone is 
risk neutral (or people think they can decipher another player's level of risk aversion 
and take advantage of deviations from equilibrium play from "the book") 

 
Matrix Game - implies a 2 person (rows and columns), constant sum (1 number per cell which 

corresponds to the row player's utility), finite game 
Bimatrix Game - 2 person, nonconstant sum game (lists payoffs for both players in each cell) 
 
Equilibrium - 2 types in constant sum games 
Nash Equilibrium - defined as a pair of strategies *)*,( ji yx  such that utility to the row 

(column) player is at least as much as the utility to the row (column) player for all other 
strategies: 

*),(*)*,( ji
R

ji
R uu yxyx ≥  ∀ ix  

)*,(*)*,( ji
R

ji
R uu yxyx ≤  ∀ jy      (this is based on row player's utility) 

Alternative - in each column *ix  gives maximum payoff (i.e., it's the row player's best reply 

to that strategy played by the column player); in each row *jy  is the minimum payoff 

(i.e., it's the column player's best reply to that strategy played by the row player) 
Saddle Point  - the equilibrium point describes a saddle point; maximizing 

in one direction and minimizing in another 
Cournot - Nash equilibrium is similar to Cournot because it assumes 

simultaneous play 
 
Guarantee Levels  - VNM equilibrium 

Intuition - don't know what the other guy is going to do so look at each strategy available 
and determine what is the worst that could happen (based on what opponent does); then 
pick the strategy with the best guarantee 

Math  - guarantee for row strategy i: ),(min)( ji
R

i
R uG

j

yxx
y

≡  

This is the worst that can happen to the row player when he/she plays strategy i; 
minimize payoffs across the columns for row i 

Guarantee for column strategy j:  ),(max)( ji
R

j
C uG

i

yxy
x

≡  

"Best" strategies (based on guarantee levels) are determined by: 

),(minmax ji
RR uG

ji

yx
yx

≡   &  ),(maxmin ji
RC uG

ij

yx
xy

≡  

Row 

uR 

Col 
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Pure Strategy Equilibrium  - if CR GG =  there is a pure strategy equilibrium (and a 
common guarantee for both players) 

Mixed Strategy - VNM proved if CR GG ≠  for pure strategies, there will be a mixed strategy 

where CR GG =  

Mixed Extension - same basic idea except use ),( CRRu ss , where the arguments are 
probability vectors (or they could be strategy vectors for continuous games) 

Not Nash  - not taking opponent's strategy as fixed 
Stakelberg - playing against opponent's best reply and choosing your best reply as if it were 

a sequential game (like Stakelberg)... this only applies in constant sum games 
Paranoia  - it makes sense to assume opponent wants to hurt you in constant sum game 

because the only way your opponent does better is by making you do worse;  
Slutsky: "In constant sum games, paranoia is rational" 

 
Equivalence  - for matrix game, Nash equilibrium and guarantee level are the same 

Timing - doesn't matter for matrix game (that's why the two equilibria are the same) 
Real World  - for nonconstant (bimatrix) games, Nash and guarantee level are not 

necessarily the same thing which raises a problem : which do we use? 
 

Nash vs. Guarantee - we usually use Nash equilibrium, but there are cases when guarantee 
levels look more appealing 
Example  - assume nonconstant sum game, but only look at 

payoffs for row player; also assume ),( 21 yx  is the 
Nash equilibrium; in real world, row player would 
probably pick 2x  rather than 1x  

Counter  - given VNM preferences, we can change payoffs 
so it doesn't look so bad; don't be misled by looking at 
small differences 

 
Multiple Equilibria - another problem occurs when there are 

multiple equilibrium (Coordination Problem) 
Refinements - try to eliminate those equilibria that are "unreasonable" but usually don't get 

whittle the list down to one (some of the "unreasonable" ones are better than what's left) 
Constant Sum Games  - this problem doesn't occur in 

matrix games; any equilibrium strategy of the row player 
combined with any equilibrium strategy for the column 
player also defines an equilibrium and all equilibria are 
equivalent 
Example - if ),( 11 yx  and ),( 33 yx  are equilibria, then 

),( 31 yx  and ),( 13 yx  are too 

 
Equilibrium vs. Efficiency  - prisoners' dilemma 

Weakly Dominated  - prisoners' dilemma uses strictly dominated strategies, but even with 
weakly dominated strategies, refinements may remove a Pareto optimal equilibrium 
which doesn't make sense 
Example - (10, 10) and (2, 2) are Nash equilibria, but (2, 2) would 

be the only one if refinements eliminate weakly dominated 
strategies 

Constant Sum Games - issue of efficiency is non existent; sum of 

 y1 y2 y3 y4 
x1 0 10 0 0 

x2 9.99 9.99 9.99 9.99 

x3     
 
 y1 y2 y3 y4 
x1 0 10 0 0 

x2 0.01 0.01 0.01 0.01 

x3     
 

 y1 y2 y3 y4 
x1     

x2     

x3     
 

 y1 y2 
x1 0, 10 10, 10 

x2 2, 2 10, 0 
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payoffs is always the same so all results are Pareto optimal 
Good - don't have to worry about it 
Bad - not realistic; can't use constant s um game to analyze real world situations 

 
Details  - closer look at some of the statements made above 

Mixed Strategy - VNM proved if CR GG ≠  for pure strategies, there will be a mixed strategy 

where CR GG =  
Proof: VNM used a fixed point theorem; later proven with separating hyperplane theorem; 

Owen proved it with induction argument (no math, but hardest proof to understand) 
We'll sketch the second version... needs lots of support material it's long (goes to p.8!) 

Notation  - matrix game can be represented by the payoff matrix nm×A  
Mixed Strategies - use probability vectors: 

mR∈x  with 0x ≥  and 1
1

=�
=

m

j
jx   (row vector) 

nR∈y  with 0y ≥  and 1
1

=�
=

n

k
ky   (column vector) 

Semipositive Vector  - vector with some elements = 0 and others > 0; more general 
than a probability vector, but all probability vectors are semipositive 

Expected Payoff  - to row player is xAy   (1xm)(mxn)(nx1) = (1x1) 

Guarantee Levels  - we could rewrite xAyyx ≡),(Ru  which allows us to rewrite the 

guarantee levels: xAy
yx

minmax≡RG   &  xAy
xy

maxmin≡CG  

Note: in general 
xyyx

maxminminmax ≤  

(from ECO 7504 notes) 
Matching Pennies  - has no pure strategy Nash 

equilibrium; play with mixed strategy (e.g., player 1 
picks H with probably p and T with probability 1 - p) 
Best Reply for Player 1  - look at boundary points 

first 
q = 1  �  best reply is H (p = 1) 
q = 0  �  best reply is T (p = 0) 
In Between  - compare expected payoffs for 

player 1 using H and T 
1
HEV  = 1q - 1(1 - q) = 2q - 1 
1

TEV  = -1q + 1(1 - q) = 1 - 2q 

At q near 0, 1
TEV  > 1

HEV  so player 1 should play T; At q near 1, 
1
HEV  > 1

TEV  so player 1 should play H 
1

TEV  and 1
HEV  converge at q = 0.5 at which point player 1 is 

indifferent between H and T 
Best Reply for Player 2  - similar argument to player 1 

p = 1  �  best reply is T (q = 0) 
p = 0  �  best reply is H (q = 1) 

Nash Equilibrium  - best replies intersect at p = q = 0.5 
(new notes) 

 H T G R(xi) 

H 1, -1 -1, 1 -1 

T -1, 1 1, -1 -1 

G C(yj) 1 1  

 

Player 2  

P
la

ye
r 

1
 

q 1 - q 

p 

1 - p 

p 1 

1 

q 

R 1(q) 

R 2(p) 

Nash Eq. 
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Guarantee Levels - ( ) 11,1minmax −=
��
�

��
� −−=

yx

RG , ( )[ ] 11,1maxmin ==
xy

CG  

∴ CR GG <   (no pure strategy equilibrium) 

With mixed strategies (p = q = 0.5): 0== CR GG  
Symmetric Game  - matrix game A  is symmetric if nm =  and jiij AA −=  

Zero Diagonal  - if players play same strategy, each gets payoff of zero 
(all elements of A 's diagonal are zero) 

Mirror Payoffs  - if players swap strategies, they also swap payoffs; 
),(),(),( xyxyyx CRR uuu =−=  

"Symmetrizing"  - any finite game G  based on payoff matrix nm×A  can be "symmetrized"... 

i.e., ∃ a symmetric game Ĝ  which is equivalent to G  
Why  - we can limit the proof of the VNM result to looking at symmetric games only 
How  - denote row strategies with x  and column strategies with y ; each player then 

chooses both a row and column strategy: player 1 chooses ),( αα yx� =  & player 2 

chooses ),( ββ yx
�

=  

Payoff - to player 1 is ),(),(),( αββαφ yxuyxu RR −≡
��  

Note:  we subtract the second payoff because in the second 
game, player 2 is the row player and payoffs are stated in 
terms of the row player 

Symmetry - satisfies the two properties: 
Zero diagonal... 0),(),(),( =−≡ ααααφ yxyx�� RR uu  

Mirror payoffs... ),(),(),(),(
��yxyx�� φφ βααβ −=−≡ RR uu  

Analogy - schoolyard games (baseball, football, tennis) are not symmetric; players may 
not even face same strategy space; usually flip coin to create symmetry (to negate 
possible advantages of first/second mover) 

Symmetrizing Theorem  - there exists an equilibrium in game G  iff  there exists an 

equilibrium in Ĝ  (the symmetrized version of G ), specifically: 

(a) ),( yx  is a Nash equilibrium in G  � ),( yx
�� ==  is a Nash equilibrium in Ĝ  

(b) ),(
��  is Nash equilibrium in Ĝ  � ),( αα yx  and ),( ββ yx  are NE in G  

 
Proof: (part a) assume ),( yx  is a Nash equilibrium in G  

That means ),(),(),( yxyxyx RRR uuu ≥≥  ∀ x, y 
  i ii iii 

i & ii say y  minimizes Ru  (maxes Cu ) when row player plays x  (i.e., y  is a best 
reply to x ) 

ii & iii say x  maximizes Ru  when column player plays y  (i.e., x  is a best reply 
to y ) 

Using i & iii we have 0),(),( ≥− yxyx RR uu  ∀ x, y 

In terms of Ĝ  this is written 0),( ≥
��φ  ∀ 

�
   (where ),( yx� =  & ),( yx

�
= ) 

Because Ĝ  is symmetric, we know 0),( =��φ  

 y1 y2 
x1 0 -1 

x2 1 0 
 

1 plays row; 
2 plays col 

Nature 

1/2 1/2 

A 

1 plays col; 
2 plays row 

A 

( ) ( )αββα AyxAyx
2

1

2

1 −
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Combine these:  ),(),( ���� φφ ≥  ∀ 
�

 

That says that ),( yx� =  is player 2's best reply to �  played by player 1 

Using i & iii in reverse we have 0),(),( ≤− yxyx RR uu  ∀ x, y 

In terms of Ĝ  this is written 0),( ≤��φ  ∀ �    (where ),( yx� =  & ),( yx� = ) 

Because Ĝ  is symmetric, we know 0),( =��φ  

Combine these:  ),(),( ���� φφ ≤  ∀ �  

That says that ),( yx� =  is player 1's best reply to �  played by player 2 

∴ ),( ��  is a Nash equilibrium in Ĝ  

(part b) Assume ),(
��  is Nash equilibrium in Ĝ  

Because Ĝ  is symmetric, the payoff must be zero: 0),( =
��φ  

Because it's a Nash equilibrium: ),(),(),(
������ φφφ ≥≥  ∀ � , �  

(similar to case a: 
�

 is best reply to �  and vice versa) 

Since the middle term is 0, we have 0),( ≥��φ  

Expand that: 0),(),(),( ≥−= αββαφ yxyx
�� RR uu  ∀ βx , βy  

Since we can use any βy , use αy : ),(),( αβαα yxyx RR uu ≥  ∀ βx  

That means αx  is a best reply to αy  

Since we can use any βx , use αx : ),(),( ααβα yxyx RR uu ≥  ∀ βy  

That means αy  is a best reply to αx  

∴ ),( αα yx  is a Nash equilibrium in game G  

Repeat this procedure for ),(0
��φ≥  and we'd show ),( ββ yx  is NE in G  

Harsanye - proposed a similar tool to turn an incomplete information game into a 
complete, but imperfect information game 

Symmetric Game Lemma - a symmetric matrix game has a solution (Nash equilibrium) iff  
∃ a semipositive vector x  (i.e., a mixed strategy) with 0≥Ayx  ∀ semipositive y  

Proof: (Sufficient) Assume ),( yx  is a solution 

That means yAxAyx ≥  ∀ y  (i.e., y  is a best reply to x ) and yxAyAx ≥  ∀ x  
(i.e., x  is a best reply to y ) 

Combine these: yxAyAxAyx ≥≥  ∀ x , y  
Since we can use any x , pick yx =  (we can do this because it's a symmetric game 

and x  and y  have the same dimensions) 

From symmetry 0=yAy  ∴ 0=≥ yAyAyx  

(Necessary) Assume ∃ semipositive x  with 0≥Ayx  ∀ semipositive y  

We know 0=xAx  from symmetry 
That means xAxAyx ≥  ∀ y  

From symmetry, reverse strategies have mirrored payoffs: AyxxyA −=  ∀ y  

Combine that with previous inequality: 0=≤ xAxxyA  ∀ y  

Combine all the inequalities:  xyAxAxAyx ≥≥  

That means ),( xx  is a Nash equilibrium so the symmetric game has a solution 
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Simplifying 0≥Ayx  - since  y  is a semipositive vector, we know 0≥iy ; ∴ since 

0≥Ayx , we know that Ax  can't have any negative components... so we can rewrite 

the second party of the symmetric game lemma to say ∃ a semipositive vector x  with 
0≥Ax  

Theorem of the Alternative - if 0≥Ax  has no semipositive solutions, then the system 
0<Ay  has a semipositive solution 

Proof: need separating hyperplane theorem to prove this ("it's hard") 
Existence Theorem - for any symmetric game with payoff matrix A  ∃ a semipositive vector 

x  with 0≥Ax  (Note: combined with the symmetric game lemma, 0≥Ax  guarantees a 
solution exists for the symmetric game; then combined with the "symmetrizing" theorem 
there's a solution to the original game) 
Proof: Assume 0≥Ax  does not have a semipositive solution 

Theorem of the Alternative says ∃ a semipositive y  such that 0<Ay  

From symmetry, reverse strategies have mirrored payoffs so 0>yA  

That's a contradiction so 0≥Ax  does have a semipositive solution 
Where Are We?  - just showed that ∃ a Nash equilibrium in any two person, finite, constant 

sum game 
Guarantee Level Same As Nash Eq.  - general outline of proof; since there is limited 

applicability of constant sum games we won't spend more time on this proof; what we're 
trying to prove is if CR GG =  then there exists a Nash equilibrium; there are three 

possible relationships for RG  and CG  (guarantee levels): 
CR GG >  - not possible; maxmin will always be ≤ minmax 
CR GG =  - assume Nash equilibrium doesn't exist then get a contradiction 
CR GG <  - assume Nash equilibrium does exist then get a contradiction 

 
Properties of Nash Equilibrium (for constant sum games) 
1) Same Payoffs - if *)*,( yx  and )ˆ,ˆ( yx  are Nash equilibria, then yAxAyx ˆˆ** =   

Proof: Since *)*,( yx  is NE, we know ** * AyxAyx ≥  ∀ y  

We can pick any y , so let yy ˆ= :  ** ˆ* AyxyAx ≥  

Since )ˆ,ˆ( yx  is NE, we know yxAyAx ˆˆˆ ≥  ∀ x  

We can pick any x , so let *xx = : yAxyAx ˆ*ˆˆ ≥  

Chain the two inequalities together:  ** ˆ*ˆˆ AyxyAxyAx ≥≥  

Repeat this procedure starting with )ˆ,ˆ( yx  and using *yy = , then using *)*,( yx  and 

using xx ˆ=  and we'd get yAxyAxAyx ˆˆˆ ≥≥ ***  

In order for both of those strings of inequalities to be true, we must have yAxAyx ˆˆ=**  
Significance  - players don't care which NE they pick, but this could lead to a coordination 

problem 
Reverse Not True - having same payoff as the NE doesn't make a set of strategies a NE; 

example below has NE with expected payoff of 1; (x3,y3) also has expected payoff of 1, 
but it is not a Nash equilibrium 
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2) No Coordination Problem  - if *)*,( yx  and )ˆ,ˆ( yx  are Nash equilibria, then )ˆ*,( yx  and 

*),ˆ( yx  are also Nash equilibria 

Proof: From previous proof, we know *ˆˆˆˆ AyxyAxyAxAyx === ***   

Since *)*,( yx  is a NE  �  *AyxxAy ** ≤  ∀ x   ( *x  is best reply to *y ) 

Sub *ˆAyxAyx =** :  *ˆAyxxAy ≤*  ∀ x   ( x̂  is best reply to *y ) 

Also since )ˆ,ˆ( yx  is a NE  �  AyxyAx ˆˆˆ ≤  ∀ y   ( ŷ  is best reply to x̂ ) 

Sub *ˆˆˆ AyxyAx = :  AyxAyx ˆˆ ≤*  ∀ y   ( *y  is best reply to x̂ ) 

∴ *),ˆ( yx  is NE 

(similar argument for )ˆ*,( yx ) 
Significance - solves coordination problem; players can pick any equilibrium strategy 

without worrying about which equilibrium strategy opponent picks 
 
3) Convex - the set of Nash equilibria is convex: if *)*,( yx  and )ˆ,ˆ( yx  are Nash equilibria, then 

)ˆ)
�

1(
�

,ˆ
�
)1(

�
( yyxx −+−+ **  ( ]1,0[

�
∈ ) is also a Nash equilibrium 

Proof: To simplify notation let xxx ˆ
�
)1(

�
� −+= *  and yyy ˆ)

�
1(

�
� −+= *  

��� )ˆ
�
)1(

�
( AyxxAyx −+= *  

Break this up: �� ˆ
�
)1(

�
AyxAyx −+*  

Because *)*,( yx  is NE, *** AyxAyx ≥�   ( *y  is best reply to *x ) 

Because )ˆ,ˆ( yx  is NE, yAxAyx ˆˆˆ � ≥   ( ŷ  is best reply to x̂ ) 

We know yAxAyx ˆˆ=**  so that last inequality can be rewritten: **AyxAyx ≥�ˆ  

Putting that all together, we have *** AyxAyxAyx ≥−+ �� ˆ
�
)1(

�
   

(convex combination of two numbers that are greater than a third is greater than 
the third number... i.e., if ca ≥  and cb ≥ , then cba ≥−+ )

�
1(

�
 ( ]1,0[

�
∈ )) 

)ˆ
�
)1(

�
(��� yyAxAyx −+= *  

Break this up:  yAxAyx ˆ
�
)1(

�
�� −+*  

Because *)*,( yx  is NE, **AyxAyx ≤*�   ( *x  is best reply to *y ) 

Because )ˆ,ˆ( yx  is NE, yAxyAx ˆˆˆ� ≤   ( x̂  is best reply to ŷ ) 

We know yAxAyx ˆˆ=**  so that last inequality can be rewritten: **AyxyAx ≤ˆ�  

Putting that all together, we have *** AyxyAxAyx ≤−+ ˆ
�
)1(

�
��  

 y1 y2 y3 G R(xi) 

x1 1 -1 -2 -2 

x2 3 1 2 1 

x3 -4 0 1 -4 

G C(yj) 3 1 2  

 

GR = max GR(xi) = 1 

GC = min GC(yj) = 1 

(min in row) 
= ),(min ji

R

y
yxu

j

 

),(max ji
R

x
yxu

i

 = 

(max in column) 
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So that means **AyxAyx =��   (the convex combination of NE strategies has the 
same expected payoff as the NE strategies... but as shown on the previous page, 
this is a necessary condition for NE, not a sufficient condition) 

Assume ),( �� yx  is not a Nash equilibrium 

That means either ∃ x~  with ���~ AyxAyx ≥  (i.e., �x  is not the best reply to �y ) or ∃ y~  

with yAxAyx ~��� ≥  (i.e., �y  is not the best reply to �x ) 

Pick the first case and write out �y :  )ˆ
�
)1(

�
(~~ � yyAxAyx −+= *  

Now break that up:  yAxAyxAyx ˆ~�
)1(~�~ � −+= *  

Combine this with the first case inequality above:  ��ˆ~�
)1(~�

AyxyAxAyx ≥−+*  

We showed earlier that **AyxAyx =�� , so *** AyxyAxAyx ≥−+ ˆ~�
)1(~�

 

For this to be true, we must have either *** AyxAyx ≥~  ( *x  is not best reply to *y ) 

or yAxAyxyAx ˆˆˆ~ =≥ **  ( x̂  is not best reply to ŷ )... both cases contradict 

*)*,( yx  and )ˆ,ˆ( yx  being NE 

Similar reasoning with the second case (∃ y~  with yAxAyx ~��� ≥ ) 

∴ ),( �� yx  is also a NE 
Significance - same reason we like convex sets for consumer preferences: we can apply a 

fixed point theorem (which requires the mapping to be convex valued) 
 
(from ECO 7504 notes) 

1. If two (or more) strategies are played with positive probability by a player, then the 
expected value of those strategies are equal to each other 

2. The expected payoff of strategies with positive probability must be at least as great as 
(≥) the expected value from strategies with zero probability 

 
 
 
 
 
 
 
 
 
 
 
(new notes) 
4a) Played Strategy Payoffs - assume *)*,( yx  is a Nash equilibrium; if 0>*x j  and 0>*xk  

(i.e., these strategies are played with positive probability), then ** kj yAyA =  (i.e., the 

expected payoffs from those pure strategies are equal against *y  so the row player is 

indifferent between them when facing the mixed strategy *y  from the column player) 

Notation  - jA  is the j th row of matrix A ; jA  is the j th column of matrix A  

Proof: assume ** kj yAyA =  didn't hold; the row player would put more weight on the pure 

strategy with the higher expected payoff which means *x  is not best reply to *y  

Column Player - if 0>*y j  and 0>*yk , then kj ** AxAx =  

  q1 q2 q3 q4 

  W X Y Z 

p1 A a1, w1 a2, x1 a3, y1 a4, z1 

p2 B b1, w2 b2, x2 b3, y2 b4, z2 

p3 C c1, w2 c2, x3 c3, y3 c4, z3 

p4 D d1, w4 d2, x4 d3, y4 d4, z4 

Player 2 

P
la

ye
r 

1 

Assume p1 & p2 > 0; p3 & p4 = 0 
 Criteria 1 Criteria 2 
 

���
===

≥=
4

1

4

1

4

1 j
jj

j
jj

j
jj qcqbqa  

���
===

≥=
4

1

4

1

4

1 j
jj

j
jj

j
jj qdqbqa  
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4b) Non-played Strategy Payoffs  - assume *)*,( yx  is a Nash equilibrium; if 0>*x j  and 

0=*xl  (i.e., the row player puts zero probability on using this strategy), then ** jl yAyA ≤  

(i.e., the pure strategy with zero probability has no greater expected payoff than those 
strategies with positive probability) 
Generalizes - 4 a&b are the only properties that carry over to general (non constant sum) 

games 
Problem - the counter intuitive result (e.g., change row player payoff doesn't change row 

player's mixed strategy, but changes column player's mixed strategy) causes some 
game theorists to say mixed strategies are not compelling; they argue if a player is 
indifferent between *x j  and *xk , the assigned probability shouldn't matter, yet mixed 

strategy equilibria requires the player to chose the probabilities in order to make his 
opponent indifferent 
Counter  - point of analysis is to get non-intuitive results 

 
5) Order Doesn't Matter - with pure strategy equilibria (in constant sum games), timing doesn't 

matter; for mixed strategies timing doesn't matter unless realization (actual result) occurs 
between decisions 
Second Mover Advantage  - if realization occurs before second player has to choose, the 

second player has an optimal pure strategy (vs. equilibrium mixed strategy) so timing 
matters 
War Game Example - espionage to learn opponent's plans not good unless it learns the 

realization of the strategy: knowing aggressor will attack left 50% or right 50% does 
no good (reply by spreading defenses), but if espionage learns the realization (i.e., 
the result of the coin flip: left or right), then the defender has an advantage 

 
Problems with Nash Equilibrium 
Mixed Strategies - already covered this above 
"Purification" of Nash - use nature to determine mixed strategy; basically playing a pure 

strategy conditional on nature; argument is that this reduces the "cost" of playing a mixed 
strategy; Slutsky: this "hasn't accomplished a huge amount" 

Strong Nash - subgroup of players can't collude to improve their own payoffs 
Problem - existence proofs don't exist and finding a strong Nash equilibrium is hard to do 
Truth as Dominant Strategy - setup incentives to ensure truth is played; yields a Nash 

equilibrium, but it's not a strong Nash equilibrium 
Strict Nash - unique best reply; not the same as strong, but just as hard to find 
 
Summary 

Guarantee Levels - ),(minmax ji
RR uG

ji

yx
yx

≡   &  ),(maxmin ji
RC uG

ij

yx
xy

≡  

Nash Equilibrium  - *),(*)*,( ji
R

ji
R uu yxyx ≥  ∀ ix   and  )*,(*)*,( ji

R
ji

R uu yxyx ≤  ∀ jy  

1) Same payoffs 
2) No coordination problem 
3) Convex 
4) Played vs. non-played  (expected value of strategies played are equal; non-played ≤) 
5) Order doesn't matter 


