Risk Aversion (Kreps Chpt 6)

What is Z - typically, we'll assume $Z=(\underline{z}, \bar{z}) \subseteq R$ (i.e., an interval of the real line); each value $z \in Z$ can represent cash or the amount of some commodity

Notation -

P_{S} - set of simple probability distributions on Z (described on previous page)
$\mathbf{p}, \mathbf{q}, \mathbf{r}$ - typical elements of P_{S}
\succ - binary relation denoting preferences over P_{S} (i.e., $\succ \subseteq P_{S} \times P_{S}$
$\bar{p}_{\hat{z}}$ or $\delta_{\hat{z}}$ - degenerate lottery at the value \hat{z} (i.e., $p(z)=1$ if $z=\hat{z}, 0$ otherwise); all mass at one point
$E[f \mid \mathbf{p}]$ - expected value of function f taken with respect to \mathbf{p}
$E[\mathbf{p}]$ - expected value of \mathbf{p}
$v[\mathbf{p}]$ - variance of \mathbf{p}

Risk Aversion - preferences \succ are
Risk Averse if $\bar{p}_{E[z \mid \mathbf{p}]} \succeq \mathbf{p} \forall \mathbf{p} \in P_{S}$ (i.e., weakly prefer mean for certain over gamble)
Strictly Risk Averse if $\bar{p}_{E[z \mid \mathbf{p}]} \succ \mathbf{p} \forall \mathbf{p} \in P_{S}$ such that $v[\mathbf{p}]>0$
Risk Neutrality if $\bar{p}_{E[z \mid \mathbf{p}]} \sim \mathbf{p} \forall \mathbf{p} \in P_{S}$ (i.e., indifferent between mean for certain or gamble)
Risk Seeking if $\mathbf{p} \succeq \bar{p}_{E[z \mid \mathbf{p}]} \forall \mathbf{p} \in P_{S}$ (i.e., weakly prefer gamble over mean for certain)
Strictly Risk Seeking if $\mathbf{p} \succ \bar{p}_{E[z \mid \mathbf{p}]} \forall \mathbf{p} \in P_{S}$ such that $v[\mathbf{p}]>0$
From Game Theory Notes:

Definitions \& Propositions-

Concave - function $f: Z \rightarrow R$ is concave if $f(\alpha z+(1-\alpha) y) \geq \alpha f(z)+(1-\alpha) f(y) \forall$
$y, z \in Z$ and $\alpha \in(0,1)$
Jensen's Inequality - For \mathbf{p} a simple probability distribution on $Z, f(e[\mathbf{p}]) \geq E[f \mid \mathbf{p}]$ if f is concave; strict inequality if strictly concave; equality if f is affine;
Continuity - concave function u is define on an open interval, u is continuous and continuously differentiable almost everywhere (if not differentiable, take limit of u^{\prime} from left and right to be left and right hand derivatives)
u^{\prime} is nonincreasing (i.e., $u^{\prime \prime} \leq 0$)
Convex - reverse the inequalities above

KP 6.2 - preferences \succ are
Risk Averse $\Leftrightarrow u$ is concave
Strictly Risk $\Leftrightarrow u$ is strictly concave
Risk Neutral $\Leftrightarrow u$ is affine
Risk Seeking $\Leftrightarrow u$ is convex
Strictly Risk Seeking $\Leftrightarrow u$ is strictly convex
Proof: "partial sketch"
Risk Averse \Rightarrow concave:
Let $\mathbf{p}=\alpha \bar{p}_{z_{1}}+(1-\alpha) \bar{p}_{z_{2}}, \alpha \in(0,1)$
Risk aversion $\Rightarrow \bar{p}_{E[z \mid \mathbf{p}]} \succeq \mathbf{p}$

Use KP 5.15: $\bar{p}_{E[z \mid \mathbf{p}]} \succeq \mathbf{p} \Leftrightarrow E\left[u \mid \bar{p}_{E[\mid \vec{p}]}\right] \geq E[u \mid \mathbf{p}]$
Now use $E\left[u \mid \bar{p}_{E[z[\mathbf{p}]}\right]=E\left[u \mid \alpha z_{1}+(1-\alpha) z_{2}\right]$ and $E[u \mid \mathbf{p}]=\alpha u\left(z_{1}\right)+(1-\alpha) u\left(z_{2}\right)$
$u\left(\alpha z_{1}+(1-\alpha) z_{2}\right) \geq \alpha u\left(z_{1}\right)+(1-\alpha) u\left(z_{2}\right)$ so u is concave
i.e., the function of the average value of z is \geq the average of the function of each z

For lottery, that means, utility of expected payoff of lottery is \geq expected utility of lottery
Concave \Rightarrow risk averse
Assume u is concave
Since we have finite support, we can use induction
Case $n=1$ is trivial (vacuously true because we can't compare two things when we only have one)
Assume concave for $n-1$
$\mathbf{p}=p(\hat{z}) \bar{P}_{\hat{z}}+(1-p(\hat{z})) \mathbf{q}$, where $\mathbf{q}=\frac{p(z)}{1-p(\hat{z})}$ if $z \neq \hat{z}, 0$ otherwise
$E[u \mid \mathbf{p}]=p(\hat{z}) u(\hat{z})+(1-p(\hat{z})) E[u \mid \mathbf{q}]$
Use induction hypothesis: $E[u \mid \mathbf{q}] \leq E\left[u \mid \bar{q}_{E[z \mid q]}\right]$

$\therefore E[u \mid \mathbf{p}] \leq p(\hat{z}) u(\hat{z})+(1-p(\hat{z})) E\left[u \mid \bar{q}_{E[\mid q]}\right]$
By definition $E\left[u \mid \bar{q}_{E[u \mid q]}\right]=u(E[z \mid \mathbf{q}]) \ldots \bar{q}_{E[u \mid q]}$ has a single value: $E[z \mid \mathbf{q}]$
$\therefore E[u \mid \mathbf{p}] \leq p(\hat{z}) u(\hat{z})+(1-p(\hat{z})) u(E[z \mid \mathbf{q}])$
This is a convex combination of $u(\hat{z})$ and $u(E[z \mid \mathbf{q}]) \therefore$ since we assumed u is concave, we know $p(\hat{z}) u(\hat{z})+(1-p(\hat{z})) u(E[z \mid \mathbf{q}]) \leq u(E[z \mid \mathbf{p}])$
$\therefore E[u \mid \mathbf{p}] \leq u(E[z \mid \mathbf{p}])$
By definition $E\left[u \mid \bar{p}_{E[u \mid \mathbf{p}]}\right]=u(E[z \mid \mathbf{p}])$ so we have $E[u \mid \mathbf{p}] \leq E\left[u \mid \bar{p}_{E[z \mid \mathbf{p}]}\right]$
By KP 5.15 that means $\mathbf{p} \preceq \bar{p}_{E[z \mid \mathbf{p}]}$ which means preferences are risk averse for n lotteries

Example -

Let's use $u=\sqrt{z}$, which is a convex function. Look at the full game with $n=4$ alternatives. It's easy to verify risk aversion from the full tree:

$$
E[z \mid \mathbf{p}]=\frac{1}{4}(9+1+4+16)=7.5 \therefore u(E[z \mid \mathbf{p}])=E\left[u \mid \bar{p}_{E[u \mid \mathbf{p}]}\right]=\sqrt{7.5} \approx 2.7
$$

$E[u \mid \mathbf{p}]=\frac{1}{4}(3+1+2+4)=2.5$
$2.7>2.5 \Rightarrow E\left[\left.u\right|_{E[u \mid \mathbf{p}]}\right]>E[u \mid \mathbf{p}] \Rightarrow \bar{p}_{E[u \mathbf{p}]} \succ \mathbf{p} \Rightarrow$ risk averse
To follow the induction the proof, though, we want to look at breaking the tree into $n=3$ and adding another branch
$E[u \mid \mathbf{p}]=\frac{1}{4}(3)+\frac{3}{4} E[u \mid \mathbf{q}]$
The induction hypothesis says $E[u \mid \mathbf{q}] \leq E\left[u \mid \bar{q}_{E[\mid q]}\right]$, which we can

verify with the numbers:

$$
\begin{aligned}
& E[u \mid \mathbf{q}]=\frac{1}{3}(1+2+4)=\frac{7}{3} \approx 2.3 \\
& E\left[u \mid \bar{q}_{E[\mid \mathbf{q}]}\right]=\sqrt{\frac{1}{3}(1+4+16)}=\sqrt{7} \approx 2.6
\end{aligned}
$$

\therefore we can write $E[u \mid \mathbf{p}] \leq \frac{1}{4}(3)+\frac{3}{4} E\left[u \mid \bar{q}_{E[|z|]}\right]$
At this point, the proof uses the fact that $E\left[u \mid \bar{q}_{E[u \mid q]}\right]=u(E[z \mid \mathbf{q}])$, which we can verify with the numbers:
$u\left(E[z \mid \mathbf{q}]=\sqrt{\frac{1}{3}(1+4+16)}=\sqrt{7} \approx 2.6\right.$
So the proof rewrites things as $E[u \mid \mathbf{p}] \leq \frac{1}{4}(3)+\frac{3}{4} u(E[z \mid \mathbf{q}])$
Now because of the convexity of u, the proof claims
$\frac{1}{4}(3)+\frac{3}{4} u(E[z \mid \mathbf{q}]) \leq u(E[z \mid \mathbf{p}]) \ldots$ to the numbers we go:
$\frac{1}{4}(3)+\frac{3}{4} u(E[z \mid \mathbf{q}])=\frac{1}{4}(3)+\frac{3}{4} \sqrt{7} \approx 2.734$
$u(E[z \mid \mathbf{p}])=\sqrt{7.5} \approx 2.738$ (OK, technically, we used the whole tree to figure this out, but I'm just trying to use the numbers to clarify what's going on in the proof)
Put the latest step in and we get $E[u \mid \mathbf{p}] \leq u(E[z \mid \mathbf{p}])$
Invoke the definition: $u(E[z \mid \mathbf{p}])=E\left[u \mid \bar{p}_{E[u \mid \mathbf{p}]}\right]$ and we have $E[u \mid \mathbf{p}] \leq E\left[u \mid \bar{p}_{E[z \mid \mathbf{p}]}\right]$
KP 5.15 finishes off the proof by saying $\mathbf{p} \preceq \bar{p}_{E[z \mathbf{p}]}$ which means preferences are risk averse for the case $n=4$

Concavity Meaningful? - in first problem set, we said concavity is not meaningful property for utility representations, how can we then use it to determine risk aversion?
Before - we were looking at ordinal measurement so we allowed strictly increasing transformations
Now - admissible transformations are positive affine ($a+b u(z)$ with $b>0$); if we know $u^{\prime \prime}>0$ then $b u^{\prime \prime}>0$ so if u is concave, then $a+b u(z)$ will also be concave

Certainty Equivalents (Kreps Chpt 6, p.73)
Certainty Equivalent $-\operatorname{CE}(\mathbf{p}) \equiv\left\{z \in Z: \bar{p}_{z} \sim \mathbf{p}\right\} \ldots$ i..., certain amount that is indifferent to the gamble (or lottery)
KP 6.3 - if $u(\cdot)$ is strictly increasing and concave (i.e., risk averse) $\Rightarrow|\operatorname{CE}(\mathbf{p})|=1$
English - cardinality of $\mathrm{CE}(\mathbf{p})$ is 1 (i.e., there's only one certainty equivalent for gamble \mathbf{p})
Other Definition - $E[u \mid \mathbf{p}]=u(\mathrm{CE}(\mathbf{p}))$
Note1: this is how we calculate the CE (i.e., find the expected utility and then determine the certain payoff that yields that same level of utility)
Note2: this definition is used in proof of CP 5.1
New Interpretation of Preference - $\mathbf{p} \succ \mathbf{q} \Leftrightarrow \mathrm{CE}(\mathbf{p})>\mathrm{CE}(\mathbf{q})$
Buying vs. Selling Prices - from problem set 1: $u(x)=\sqrt{200+x} \ldots$ increasing and concave
CE w/out info is 611.76

CE w/ info is 787.20
\therefore if the person owns the info, it's worth 787.20
If person doesn't have info, how much is he willing to pay for it?
Note, pulling payment out, increases risk aversion so we can't just subtract 611.76 from 787.20 to determine what information is worth (can only do difference like that if there's constant absolute risk aversion... see p.7)
Actual value of info is $166.74 \ldots$ see problem set 1 , problem 1
Odd Result - note from PS1 that CE with risk neutral > CE for risk averse, but risk averse person is willing to pay more for the information

Risk Premium

Risk Averse $-\boldsymbol{\pi}(\mathbf{p})=E[z \mid \mathbf{p}]-\mathrm{CE}(\mathbf{p})>0$ (for strictly increasing and concave $u(\cdot)$)
Risk Neutral - $\boldsymbol{\pi}(\mathbf{p})=0$

Arrow-Pratt

Defined for $u^{\prime}>0$ and $u^{\prime \prime}<0$
$A(z) \equiv \frac{-u^{\prime \prime}(z)}{u^{\prime}(z)}=-\frac{d}{d z} \ln u^{\prime}(z)>0 \quad$ "change in the change, normalized by the change"
Meaningful? - get same measure with positive affine transformation so it is meaningful
Proof:

$$
\begin{aligned}
& -\int A(z) d z=B+\ln u^{\prime}(z) \\
& \exp \left[-\int A(z) d z\right]=e^{B} u^{\prime}(z)=b u^{\prime}(z) \\
& \int \exp \left[-\int A(z) d z\right]=a+b u(z)
\end{aligned}
$$

Fancy Math - with \mathbf{p} is "small" and $E[z \mid \mathbf{p}]=0 \ldots$... have no clue what this means, but it's an "intuitive description of the Arrow-Pratt measure"
$\mathbf{p} \circ \hat{z}$ is concatenation: $\mathbf{p} \circ \hat{z}(z)=\mathbf{p}(z-\hat{z})$
$E[u \mid \mathbf{p} \circ \hat{z}]=E\left\{u(\hat{z})+(z-\hat{z}) u^{\prime}(\hat{z})+\frac{1}{2}(z-\hat{z}) u^{\prime \prime}(\hat{z})+R\right\} \cong u(\hat{z})+\frac{1}{2} u^{\prime \prime}(\hat{z}) v(\mathbf{p})$
$u(\mathrm{CE})=u(\hat{z}-\boldsymbol{\pi}(\mathbf{p} \circ \hat{z})) \cong u(\hat{z})-\boldsymbol{\pi}(p \circ \hat{z}) u^{\prime}(\hat{z})+\frac{1}{2} \boldsymbol{\pi}(p \circ \hat{z})^{2} u^{\prime \prime}(\hat{z})$, assumed "small"

Equating: $\frac{1}{2} u^{\prime \prime}(\hat{z}) v(\mathbf{p})=-\pi(p \circ \hat{z}) u^{\prime}(\hat{z})$

$$
\frac{\pi(p \circ \hat{z})}{\frac{1}{2} v(\mathbf{p})}=-\frac{u^{\prime \prime}(\hat{z})}{u^{\prime}(\hat{z})}=A(\hat{z}) \quad \text { or } \quad \pi(p \circ \hat{z})=\frac{1}{2} A(\hat{z}) v(\mathbf{p})
$$

(Class Proposition) CP 5.1- The following are equivalent:
(i) $A_{2}(z) \geq A_{1}(z) \forall z \in Z$... i.e., larger Arrow-Pratt measure
(ii) \exists concave transformation $G: R \rightarrow R, G^{\prime}>0, G^{\prime \prime}<0$ such that $u_{2}=G\left(x_{1}\right)$

Note: $G^{\prime}>0$ preserves order; $G^{\prime \prime}<0$ "bends it more"... i.e., more risk averse; class notes used $G \circ u^{*}$ which is the same as $G\left(u^{*}\right)$, but just one more way to confuse us
(iii) $\pi_{2}(\mathbf{p}) \geq \pi_{1}(\mathbf{p}) \forall \mathbf{p} \in X$... i.e., larger risk premium

Note: changed from class notes; used u_{1} for u^{*} and $u_{2}=G\left(u_{1}\right)$ for $u=G \circ u^{*}$; this makes the notation much easier to follow because the * doesn't get in the way... just think of u_{2} being "more risk averse" than u_{1}
English - more concave utility \Leftrightarrow more risk averse \Leftrightarrow larger Arrow-Pratt \Leftrightarrow larger risk premium \Leftrightarrow smaller CE
Proof:
(i) \Rightarrow (ii)

Assume u and u^{*} are strictly increasing and $\exists G$ such that $u=G\left(u^{*}\right)$
$u^{\prime}=G^{\prime} \cdot u^{*} \ldots$ by assumption $u^{\prime}>0$ and $u^{* '}>0$ so we must have $G^{\prime}>0$
$u^{\prime \prime}=G^{\prime} \cdot\left(u^{* '}\right)^{2}+G^{\prime} \cdot u^{* \prime \prime}$
Solve for $G^{\prime \prime}: G^{\prime \prime}=\frac{u^{\prime \prime}-G^{\prime} \cdot u^{* \prime \prime}}{\left(u^{*}\right)^{2}}$
Not entirely intuitive step, but factor out $\frac{G^{\prime}}{u^{* \prime}}: G^{\prime \prime}=\frac{G^{\prime}}{u^{* \prime}}\left[\frac{u^{\prime \prime}}{G \cdot u^{* \prime}}-\frac{u^{* \prime \prime}}{u^{* \prime}}\right]$
Substitute $u^{\prime}=G^{\prime} \cdot u^{* \prime}: \quad G^{\prime \prime}=\frac{G^{\prime}}{u^{* \prime}}\left[\frac{u^{\prime \prime}}{u^{\prime}}-\frac{u^{* \prime}}{u^{*^{\prime}}}\right]$
Substitute Arrow-Pratt measures: $G^{\prime \prime}=\frac{G^{\prime}}{u^{*}}\left[A-A^{*}\right]$
From (i), we assumed $A \geq A^{*}$ so $A-A^{*} \leq 0$
We showed $G^{\prime}>0$ and assumed $u^{* \prime}>0$
$\therefore G^{\prime \prime}=\frac{G^{\prime}}{u^{* \prime}}\left[A-A^{*}\right]=\frac{>0}{>0}[\leq 0]$ is ≤ 0, so G is concave transformation
(ii) \Rightarrow (iii)... here notation gets confusing so use u_{1} and $u_{2}=G\left(u_{1}\right)$
$u_{2}\left(\mathrm{CE}_{2}(\mathbf{p})\right)=E\left[u_{2} \mid \mathbf{p}\right]=E\left[G\left(u_{1}\right) \mid \mathbf{p}\right] \quad$ (using (ii))
Because G is concave: $E\left[G\left(u_{1}\right) \mid \mathbf{p}\right] \leq G\left(E\left[u_{1} \mid \mathbf{p}\right]\right)$
Substitute $E\left[u_{1} \mid \mathbf{p}\right]=u_{1}\left(\mathrm{CE}_{1}(\mathbf{p})\right): \quad G\left(E\left[G\left(u_{1}\right) \mid \mathbf{p}\right]\right)=G\left(u_{1}\left(\mathrm{CE}_{1}(\mathbf{p})\right)\right)$
Substitute $G\left(u_{1}\left(\mathrm{CE}_{1}(\mathbf{p})\right)\right)=u_{2}\left(\mathrm{CE}_{1}(\mathbf{p})\right)$
$\therefore u_{2}\left(\mathrm{CE}_{2}(\mathbf{p})\right) \leq u_{2}\left(\mathrm{CE}_{1}(\mathbf{p})\right)$
Since u_{2} is an increasing function, $\mathrm{CE}_{2}(\mathbf{p}) \leq \mathrm{CE}_{1}(\mathbf{p})$
Combine that with definition of risk premium: $\boldsymbol{\pi}(\mathbf{p})=E[z \mid \mathbf{p}]-\mathrm{CE}(\mathbf{p})$
$\therefore \pi_{2}(\mathbf{p}) \geq \pi_{1}(\mathbf{p})$
(iii) \Rightarrow (i)

Using "Fancy Math" from bottom of p.3...
as $\boldsymbol{\varepsilon} \rightarrow 0 \pi_{1}(\mathbf{p})=\frac{1}{2} A_{1}(z) \boldsymbol{\varepsilon}^{2}$ and $\pi_{2}(\mathbf{p})=\frac{1}{2} A_{2}(z) \boldsymbol{\varepsilon}^{2}$
(iii) says $\pi_{2}(\mathbf{p}) \geq \pi_{1}(\mathbf{p})$
$\therefore A_{2}(z) \geq A_{1}(z)$
Example - this should make proof of CP 5.1 more clear

(ii) says G is concave transformation... $\sqrt{ }$ is a concave transformation Arrow-Pratt:

$$
\begin{aligned}
& u_{1}^{\prime}=\frac{1}{2} z^{-1 / 2} ; u_{1}{ }^{\prime \prime}=-\frac{1}{4} z^{-3 / 2} ; A_{1}=-\frac{-\frac{1}{4} z^{-3 / 2}}{\frac{1}{2} z^{-1 / 2}}=\frac{1}{2} z^{-1} \\
& u_{2}^{\prime}=\frac{1}{4} z^{-3 / 4} ; u_{2}^{\prime}{ }^{\prime}=-\frac{3}{16} z^{-7 / 4} ; A_{2}=-\frac{-\frac{3}{16} z^{-7 / 4}}{\frac{1}{4} z^{-3 / 4}}=\frac{3}{4} z^{-1} \\
& \text { (i) says } A_{2}(z) \geq A_{1}(z) \ldots \text { in this case } 3 / 4>1 / 2
\end{aligned}
$$

Certainty Equivalents:

$$
\begin{aligned}
& u_{1}\left(\mathrm{CE}_{1}\right)=\sqrt{\mathrm{CE}_{1}}=5 \Rightarrow \mathrm{CE}_{1}=5^{2}=25 \\
& u_{2}\left(\mathrm{CE}_{2}\right)=\left(\mathrm{CE}_{1}\right)^{1 / 4}=\frac{1}{2} \sqrt{10} \Rightarrow \mathrm{CE}_{2}=\left(\frac{1}{2} \sqrt{10}\right)^{4}=6.25
\end{aligned}
$$

As the proof argued $\mathrm{CE}_{2}(\mathbf{p}) \leq \mathrm{CE}_{1}(\mathbf{p}) \ldots$ in this case $6.25<25$
Risk Premiums:

$$
\begin{aligned}
& \pi_{1}=E[z \mid \mathbf{p}]-\mathrm{CE}_{1}=50-25=25 \\
& \pi_{2}=E[z \mid \mathbf{p}]-\mathrm{CE}_{2}=50-6.25=43.75
\end{aligned}
$$

(iii) says $\pi_{2}(\mathbf{p}) \geq \pi_{1}(\mathbf{p}) \ldots$ in this case $43.75>25$

Absolute Risk Aversion

\forall (gambles) $\mathbf{p} \in X$ and (prizes) $z_{1}, z_{2}, z \in Z$ with $z_{1}>z_{2}$ (specific prizes) (z is any prize)

Constant Absolute Risk Aversion (CARA) -

$E\left(u \mid \mathbf{p} \circ z_{2}\right)>u\left(z_{2}+z\right) \Leftrightarrow E\left(u \mid \mathbf{p} \circ z_{1}\right)>u\left(z_{1}+z\right)$
English - if given prize z_{2} in wallet, person prefers gamble \mathbf{p} over prize z, then person will prefer the gamble over z if he has z_{1} in his wallet and vice versa
Plainer English - how much person has doesn't affect preferences

Decreasing Absolute Risk Aversion -

$E\left(u \mid \mathbf{p} \circ z_{2}\right)>u\left(z_{2}+z\right) \Rightarrow E\left(u \mid \mathbf{p} \circ z_{1}\right)>u\left(z_{1}+z\right)$
English - person becomes less risk averse as amount in wallet increases; the math above says if he prefers the game with a small amount $\left(z_{2}\right)$, he'll prefer it with a large amount $\left(z_{1}\right)$, but not necessarily the other way around

Increasing Absolute Risk Aversion -

$E\left(u \mid \mathbf{p} \circ z_{2}\right)>u\left(z_{2}+z\right) \Leftarrow E\left(u \mid \mathbf{p} \circ z_{1}\right)>u\left(z_{1}+z\right)$
English - person becomes more risk averse as amount in wallet increases; the math above says if he prefers the game with a large amount (z_{1}), he'll prefer it with a smaller amount $\left(z_{2}\right)$, but not necessarily the other way around

CP 5.2 - relates absolute risk aversion to Arrow-Pratt measure
CARA $\Leftrightarrow A(z)$ is constant... "constant concavity"
Example - $u=a-b e^{-k z} \ldots u^{\prime}=b k e^{-k z} ; u^{\prime \prime}=-b k^{2} e^{-k z} ; A(z)=\frac{-u^{\prime \prime}}{u^{\prime}}=-\frac{-b k^{2} e^{-k z}}{b k e^{-k z}}=k$
Example - $u=a+b z \ldots u^{\prime}=b ; u^{\prime \prime}=0 ; A(z)=\frac{-u^{\prime \prime}}{u^{\prime}}=-\frac{0}{b}=0 \quad$ (risk neutral)
Decreasing ARA $\Leftrightarrow A(z)$ is decreasing Increasing ARA $\Leftrightarrow A(z)$ is increasing

[^0]
Risk Comparisons (Kreps p.89)

(intro from class handout 5)
Is gamble \mathbf{p} more or less risky than gamble \mathbf{q} (for a given person)?
Assuming \mathbf{p} and \mathbf{q} have the same expected value, \mathbf{p} is "more risky" if there is more uncertainty
(i.e. "more weight in tails")... "as if" \mathbf{p} is the same as \mathbf{q} with extra noise

Point - this will eventually be applied to quality of information and the Blackwell Theorem
(from class handout 6; Ingersoll Handout)

Which gamble above is more risky?
Variance - rule of thumb says if they have the same mean, pick the gamble with the smallest variance... that means pick x
$E(x)=\frac{1}{2} 0+\frac{1}{2} 4=2$
$\operatorname{Var}(x)=\sum_{i=1}^{n} p_{i}\left(x_{i}-\bar{x}\right)^{2}=\frac{1}{2}(0-2)^{2}+\frac{1}{2}(4-2)^{2}=4$
$E(y)=\frac{7}{8} 1+\frac{1}{8} 9=2$
$\operatorname{Var}(y)=\frac{7}{8}(1-2)^{2}+\frac{1}{8}(9-2)^{2}=7$
Utility - suppose $u(z)=\sqrt{z} \ldots$ that means pick y
$E(\sqrt{x})=\frac{1}{2} 0+\frac{1}{2} 2=1$
$E(\sqrt{y})=\frac{7}{8} 1+\frac{1}{9} 3=\frac{10}{8}>1$
Trick Question - given 2 gambles with equal means; we want to say which is better (less risky), but as this example shows, we can't use variance and even utility is suspect because that means the answer is different for each person

Using Utility - if x and y are two random variables with $E(x)=E(y)$, we say y is as risky as x for all $u \in U$ if $E[u(x)] \geq E[u(y)] \forall u \in U$
English - for the class of utility functions (e.g., "concave"), gamble x is less risky than gamble y if the expected utility of x is greater than for y; this is what's illustrated by second example above
Variations - "as risky as" = "more risky" = "riskier than"
General Assumption - focus on increasing, concave functions that are "sufficiently" differentiable (i.e., as many times as we need to take derivatives)

Alternatives - there are several ways to identify "riskiness" by focusing on the random variables themselves:
[1] $x \succeq y \forall$ increasing u (note: doesn't require concave)
[2] $E[x]=E[y]$ and $x \succeq y \forall$ increasing, concave u
[3] $E[x]=E[y]$ and $\operatorname{Var}[x] \leq \operatorname{Var}[y]$
[4] $E[x]=E[y], y=x+\varepsilon$ and $\operatorname{Cov}(x, \varepsilon)=0$
(i.e., y is equal in distribution to x plus noise uncorrelated with x)
[5] $E[x]=E[y], y \stackrel{d}{=} x+\varepsilon$ and $E[\varepsilon \mid x]=0$ (equal means is implied by last part)
[6] $E[x]=E[y], y=x+\varepsilon$ and $x \& \varepsilon$ are independent
[7] $E[x]=E[y], y$ has "more weight in the tails" (meaning it's a "mean preserving spread")

Relationships -

$[6] \Rightarrow[5] \Rightarrow[4]$
$[4] \Leftrightarrow[3]$
[2] \Rightarrow [1]
$[7] \Leftrightarrow[5] \Leftrightarrow[2]$
Math Review -
Uncorrelated - means $\operatorname{Cov}(x, \varepsilon)=0$
Independent - means $\operatorname{Cov}(f(x), g(\varepsilon))=0 \forall f$ and g
Conditionally Independent - means $E[x \mid y]=E[x] \forall y$; with some "regularity" this is equivalent to $\operatorname{Cov}(x, g(y))=0 \forall g$
Noise wrt \boldsymbol{y} (Fair Game) - x conditionally independent of y with $E[x]=0$... so

$$
E[x \mid y]=0
$$

Setup - x and y are random variables with respective cumulative distribution functions $F(x)$
and $G(y)$ on bounded support $[a, b] \ldots$ that is, $F(a)=G(a)=0$ and $F(b)=G(b)=1$

Mean Preserving Spread -

Lower Tail - y has more weight in the lower tail if

$$
\int_{a}^{T}(T-t) d F(t) \leq \int_{a}^{T}(T-t) d G(t) \forall T \in[a, b]
$$

Use integration by parts:
$\int U d V=U V-\int V d U \ldots$ let $U=(T-t) \& d V=d F(t) \ldots$ so $d U=-d t \& V=F(t)$
$\left.(T-t) F(t)\right|_{a} ^{T}+\int_{a}^{T} F(t) d t \leq\left.(T-t) G(t)\right|_{a} ^{T}+\int_{a}^{T} G(t) d t$
At $t=T$, the first half of the first term on both sides drops out; at $t=a$,
$F(a)=G(a)=0$ so the second half of the first term on both sides drops out \therefore
$\int_{a}^{T} F(t) d t \leq \int_{a}^{T} G(t) d t$

Upper Tail - y has more weight in the lower tails if $\int_{T}^{b}(T-t) d F(t) \leq \int_{T}^{b}(T-t) d G(t) \forall$
$T \in[a, b]$
Use integration by parts as before to get :
$\int_{T}^{b} F(t) d t \geq \int_{T}^{b} G(t) d t$
Len's Note - this just seems like gratuitous calculus to confuse the crap out of us... think pictures!... also, if $F(T)$ is the CDF, then $d F(t)$ is the PDF y has "more weight in lower tail"... in pdf, that means $F(T) \leq G(T)$ (i.e., the area below the pdf from T downward is less for the distribution of x than it is for $y \ldots$ the fancy math above says that the area is also less when looking at the CDF)

CP 6.1-x and y are random variables with support $\subseteq[a, b]$ and $E[x]=E[y]$, y has more weight in the lower tail iff y has more weight in the upper tail Proof: more gratuitous calculus... aren't we smart?

$$
\begin{aligned}
& E[X]=\int_{a}^{b} t d F(t)=\left.t F(t)\right|_{a} ^{b}-\int_{a}^{b} F(t) d t=b-\int_{a}^{b} F(t) d t \\
& E[X]=E[Y] \Leftrightarrow \int_{a}^{b} F(t) d t=\int_{a}^{b} G(t) d t
\end{aligned}
$$

Break up the integrals: $\int_{a}^{T} F(t) d t+\int_{T}^{b} F(t) d t=\int_{a}^{T} G(t) d t+\int_{T}^{b} G(t) d t \quad \forall T \in[a, b]$
$\therefore \int_{a}^{T} F(t) d t \leq \int_{a}^{T} G(t) d t \Leftrightarrow \int_{T}^{b} F(t) d t \geq \int_{T}^{b} G(t) d t \quad \forall T \in[a, b]$
English - this is all a fancy way to describe a see-saw (fixed support), in order for the kids to play on it, they have to weigh about the same (mean at pivot point); that means if you replace one kid with a fat kid, you have to replace the other kid with a fat kid (the kids are the "weight" in the tails)

CP 6.2 (Rothchild-Stiglitz) - [7] $\Leftrightarrow[5] \Leftrightarrow[2]$
Proof:
(a) $[5] \Rightarrow[2]$

Assume [5]: $y=x+\varepsilon$ and $E[\varepsilon \mid x]=0 \forall x$
Assume $u(\cdot)$ is an increasing, concave function
A little statistics trick: $E[u(y)]=E\{E[u(y) \mid x]\}$
Sub $y \stackrel{d}{=} x+\varepsilon: E[u(y)]=E\{E[u(x+\varepsilon) \mid x]\}$
Use fact that $u(\cdot)$ is an increasing, concave function: $E\{E[u(x+\varepsilon) \mid x]\} \leq E\{E[u(x) \mid x]\}$
Stat trick again: $E\{E[u(x) \mid x]\}=E[u(x)]$
\therefore we have $E[x]=E[y]$
(b) [2] $\Rightarrow[7] \ldots$ proof uses more fancy calculus developed in 6.1 and previous pages (see class notes 6.4 if you really care)

Point - go back to example on p.8; want to say one activity is more risky than another; if they have the same expected value, the three statements ([2], [5], [7]) try to define riskiness:
[2] - any "greedy" (increasing), risk averse (concave) person will prefer less risky option [5] - more risky activity can be modeled as the less risky activity plus a noise term
[7] - more risky activity is a mean preserving spread of the less risky activity
Note: later we'll use mean preserving spread of likelihood ratios as key for determining when information source is better (it spreads the posterior probabilities making the information better), but for risk, spreading probability is bad

Suppose $u(z)=\sqrt{z}$ (this is increasing and concave)... as shown on p.8, that means $y \succ x$ Now pick a different increasing and concave function:

$$
\begin{aligned}
& u(z)=\left\{\begin{array}{l}
z \text { if } z \leq 8 \\
8+0.1(z-8) \text { otherwise }
\end{array}\right. \\
& E[u(x)]=\frac{1}{2}(0)+\frac{1}{2}(4)=2 \\
& E[u(y)]=\frac{7}{8}(1)+\frac{1}{8}(8+0.1)<2 \ldots \text { so now } x \succ y
\end{aligned}
$$

These gambles are too different to compare (neither is a mean preserving spread of the other)

CP 6.3 - Let X be the set of all random variables with equal means and support confined to [a, b]. There does not exist a function $H: X \rightarrow R$ (real numbers) such that $H(x)>H(y) \Leftrightarrow x$ is strictly more risky than y for all $x, y \in X$
English - can't define risk
Solution - usually restrict preferences to include mean and variance or restrict the set of gambles so we can more easily determine risk

Stochastic Dominance - another way to try to define "riskiness"

Background - $y=x+\varepsilon, \varepsilon \leq 0 \ldots$ this implies $E[u(x+w)] \geq E[u(y+w)] \forall$ random variables w given $u(\cdot)$ is increasing and concave

First Order Stochastic Dominance (FOSD) - equivalent definitions:
(a) $y \stackrel{d}{=} x+\varepsilon, \varepsilon \leq 0$
(b) $E[u(x)] \geq E[u(y)] \forall$ increasing u
(c) $F(t) \leq G(t) \forall t \in[a, b]$ (where $F(t)$ and $G(t)$ are CDFs of x and y, respectively)

Second Order Stochastic Dominance (SOSD) - equivalent definitions:
[a] $y \stackrel{d}{=} x+\varepsilon+\delta, \varepsilon \leq 0, E[\delta \mid x+\varepsilon]=0$
[b] $E[u(x)] \geq E[u(y)] \forall$ increasing, concave u
[c] $\int_{a}^{T}[F(t)-G(t)] d t \leq 0 \quad \forall$
Proofs of the equivalence are sketched in class notes (pp.6.6 and 6.7) and detailed in Ingersoll's appendix

Example - never really got any!

Summary

x dominates $y \Rightarrow x$ FOSD $y \Rightarrow x$ SOSD y y as risky as (or riskier than) $x \Rightarrow x$ SOSD y
"Risk is like garbage. Think of it generically like a commodity. No one every says one bundle is always better than another for every set of preferences. It's the same with risk."

[^0]: (e.g., $\sqrt{ }$)

