Externalities and Public Goods

Welfare Theorems - basic assumptions we had to make:
1. **Price Takers** - core argument shows this assumption is valid for large economies; people can't lie ("misrepresent their preferences") to get out of the core.
2. **Convexity** - given single individual with non-convex preferences, he could use a mixed strategy, but it doesn't make sense to talk about his average consumption; given a million of this same type of individual with half choosing one point and the other half choosing the other, and we can talk about the average consumption.; for large economies, the convexity assumption is valid (i.e., a large economy "convexifies" individual non-convexities).
3. **No Externalities** - decisions that affect others' welfare directly (not pecuniary [through prices]).

Externalities
1st FTWE - fails if person 1 doesn't take other people's benefits/costs into account; this leads to inefficiency
Inducing Efficiency - try to get people to internalize extra benefits/costs
- **Pigovian Approach** - government steps in with corrective subsidies/taxes; efficiency is restored if the subsidy/tax is the correct amount.
 - **Note**: assumes lump sum taxes so we can ignore distortions from taxes.
- **Coasian Approach** - Chicago approach; government doesn't have to intervene; people can negotiate on their own.
 - **Note**: assumes zero transaction/bargaining costs.

Definitions -
- **Non-Excludable** - can't keep somebody from getting the good once it's supplied.
- **Non-Rival** - one person's consumption doesn't interfere with another persons; marginal cost is zero.
- **Jointness of Supply** - if the good is supplied, it's available to everyone even if excludable (e.g., non-congested bridge).
- **Inefficiency** - good that is non-rival, but excludable can be supplied privately, but may be inefficient because MC = 0 (i.e., if firm charges price > 0, people will consume less than the socially optimal level).

Pure Public Good - is both non-rival and non-excludable.

Notation -
- \(x^i \) - vector of private good consumption for person \(i \)
- \(\sum_{i=1}^{n} x^i \) - aggregate consumption of private goods
- \(y \) - supply of private goods
- \(z^i \) - vector of public good consumption for person \(i \)
- \(z \) - supply of public goods
Pareto Optimality -
\[
\max_{x', x} W\left(u^1(x^1, z^1), \ldots, u^n(x^n, z^n)\right)
\]
\[
\text{s.t. } \sum_{i=1}^n x_i' = y \quad \text{(market clearing for private goods; demand = supply)}
\]
\[
z_i' = z_i \quad \forall i \quad \text{(market clearing for public goods; everyone consumes same amount)}
\]
\[
F(y, z) = 0 \quad \text{(aggregate technology; production of private and public goods is feasible)}
\]

Note: think of objective as weighted sum of \(u^i\)'s to generate the utility possibilities frontier (i.e., we're not limiting it to a specific definition of social efficiency like utilitarian or Rawlsian)

Assumptions -
1) only consider interior solution; there are some interesting results with non-negativity constraints, but we don't have time
2) at least 1 private good and 1 public good (makes the math easier)

Simplify - the formulation above is the general case which allows selective excludability so we showed how much public good each consume gets... technically could use \(\leq\) if some are excluded; if we assume there is no one excluded, we can simplify the formulation:
\[
\max_{x', x} W\left(u^1(x^1, z^1), \ldots, u^n(x^n, z^n)\right)
\]
\[
\text{s.t. } F\left(\sum_{i=1}^n x_i', z\right) = 0
\]

Lagrangian - \(\ell = W\left(u^1(x^1, z), \ldots, u^n(x^n, z)\right) - \lambda F\left(\sum_{i=1}^n x_i', z\right)\)

FOCs -
\(k^{th}\) private good consumed by \(j^{th}\) person:
\[
\frac{\partial \ell}{\partial x_k^j} = \frac{\partial W}{\partial u^i} \frac{\partial u^i}{\partial x_k^j} - \lambda \frac{\partial F}{\partial x_k^j} = 0, \quad \forall j = 1, \ldots, n \quad \text{and} \quad k = 1, \ldots, K
\]
\(h^{th}\) public good consumed by any person (they all consume the same amount)
\[
\frac{\partial \ell}{\partial z_h} = \sum_{j=1}^n \frac{\partial W}{\partial u^i} \frac{\partial u^i}{\partial z_h^j} - \lambda \frac{\partial F}{\partial z_h} = 0, \quad \forall h = 1, \ldots, m
\]

Two Private Goods - \(k \& l\) for same individual \(i\)
\[
\frac{\partial W}{\partial u^i} \frac{\partial u^i}{\partial x_k^i} = \frac{\partial F}{\partial x_k^i} \quad \Rightarrow \quad \frac{\partial u^i}{\partial x_k^i} = \frac{\partial F}{\partial u^i} / \frac{\partial F}{\partial x_k^i} \Rightarrow \text{MRS}_{k, l} \neq \text{MRT}_{k, l}
\]

Marginal rate of substitution between goods \(k \& l\) = marginal rate of transformation between those two goods

Note: since MRS for any consumer = MRT (which is always the same), MRS is the same for all consumers; this is the same result as before (see p.4 of "Simple Models" notes)

Public and Private - public good \(h\) and private good \(1\)

Take FOC of public good \(h\) (shown above):
\[
\sum_{j=1}^n \frac{\partial W}{\partial u^i} \frac{\partial u^i}{\partial z_h^j} = \lambda \frac{\partial F}{\partial z_h}
\]
Divide both sides by \(\lambda \frac{\partial F}{\partial x_i} \):
\[
\sum_{j=1}^{n} \frac{\partial W}{\partial u^j} \frac{\partial u^j}{\partial z_h} \frac{\partial F}{\partial x_i} = \lambda \frac{\partial F}{\partial z_h} \frac{\partial F}{\partial x_i}.
\]

\(\partial F / \partial x_i \) is not dependent on the consumer, so it can be put inside the summation:
\[
\sum_{j=1}^{n} \frac{\partial W}{\partial u^j} \frac{\partial u^j}{\partial z_h} = \frac{\partial F}{\partial z_h} = \text{MRT}_{z_h, x_i}
\]

Now use FOC for private good 1 and consumer j:
\[
\lambda \frac{\partial F}{\partial x_i} = \frac{\partial W}{\partial u^j} \frac{\partial u^j}{\partial x_i}
\]
\[
\sum_{j=1}^{n} \frac{\partial W}{\partial u^j} \frac{\partial u^j}{\partial x_i} = \sum_{j=1}^{n} \frac{\partial u^j}{\partial x_i} = \sum_{j=1}^{n} \text{MRS}_{z_h, x_i} = \text{MRT}_{z_h, x_i}
\]

Samuelson Condition for Public Goods - \(\sum_{j=1}^{n} \text{MRS}_{z_h, x_i} = \text{MRT}_{z_h, x_i} \) ... sum of MRS between public and private goods for all consumers is equal to the MRT between those goods

Caution - sometimes theorists are casual about how they specify MRS

\[
\text{MRS}_{ij} = \left. \frac{-dx_j}{dx_i} \right|_{y=\text{constant}} \quad \text{or} \quad \left. \frac{-dx_i}{dx_j} \right|_{y=\text{constant}}
\]

But with public and private good, it matters:
\[
\text{MRS}_{z_h, x_i} = \left. \frac{-dx_i}{dz_h} \right|_{y=\text{constant}}
\]

which is equal to marginal willingness to pay for the public good (i.e., holding person j’s utility constant, how much \(x_i \) does person j have to give up for more public good \(z_h \)).

\[
\sum_{j=1}^{n} \text{MRS}_{z_h, x_i} = \text{total social willingness to pay} \text{ for public good}
\]

Over Supply - \(\sum_{j=1}^{n} \text{MRS}_{z_h, x_i} < \text{MRT}_{z_h, x_i} \) (i.e., marginal value is less than marginal cost)

Under Supply - \(\sum_{j=1}^{n} \text{MRS}_{z_h, x_i} > \text{MRT}_{z_h, x_i} \) (i.e., marginal value exceeds marginal cost)

Duality - between public and private goods:

Quantity Conditions - \(\sum_{j=1}^{n} x' = y \) (private) and \(z' = z \) (public)

PO Conditions - \(\text{MRS}_{k,j} = \text{MRT}_{k,j} \) (private) and \(\sum_{j=1}^{n} \text{MRS}_{z_h, x_i} = \text{MRT}_{z_h, x_i} \) (public)
View MRS as price ratio so $\text{MRS}_{k,j} = \text{MRT}_{k,j}$ for private goods basically says "all individuals pay the same price"; for public goods: $\sum_{j=1}^{n} \text{MRS}_{x_j, x_j'} = \text{MRT}_{x_j, x_j'}$ says that price is equal to the sum of what everybody pays

Result - "private good prices are like public good quantities" and "public good prices are like private good quantities" (mathematically)

Free Riders - since public goods are non-excludable, consumers have incentive to free-ride (not pay their "fair share" and still consume the good); for private goods, the free rider problems results in efficiency because collusion breaks down, but is the source of inefficiency for public goods

Inefficiency - because of free rider problem "voluntary approach" (asking consumers to pay for public goods by paying for the value they receive) doesn't work; usual solution is compulsory benefit taxation, but even that doesn't work because government can't determine MRS for each individual (because of free rider problem); that means government turns to income taxation assuming income is perfectly correlated with preferences for public goods

Can't Solve Inefficiency - because of duality, if someone manages to find a mechanism to solve the free rider problem in public goods (hence solving the inefficiency), that same mechanism could be used to enforce cartels for private goods (resulting in inefficiency)

Samuelson's View - argued if a good is not a pure private good (i.e., excludable and rival with no externalities), then it should be treated as a public good in that sum of MRS should equal MRT (i.e., FOC accounts for all costs/benefits)

Not So Extreme - need to distinguish solution to inefficiencies; flowers in your yard is not the same as national defense

Private Goods

- **For Person j** - $\text{MRS}_{x_j', x_j} = \text{MRT}_{x_j', x_j}$

- **For Person k** - $\text{MRS}_{x_k', x_k} = 0$... i.e., how much person k is willing to give up (willingness to pay) of private good 2 in order for person j to consume more of private good 1 (nothing!)

Result - we can add these two equations together: $\text{MRS}_{x_j', x_j} + \text{MRS}_{x_k', x_k} = \text{MRT}_{x_j', x_j}$

Public Good - $\text{MRS}_{x_j', x_j'} = \text{MRS}_{x_k', x_k'}$... i.e., doesn't matter who consumes the public good (because everyone consumes the same amount)

Extremes - pure private good: $\text{MRS}_{x_j', x_j'} = 0$; pure public good: $\text{MRS}_{x_k', x_k'} = \text{MRS}_{x_k', x_k'}$... other goods are between these extremes

Slutsky's Papers - focus on 1st and 2nd FTWE with Coasian bargaining

Paper 1 - "Production Externalities and Long-Run Equilibria: Bargaining and Pigovian Taxation"

Short Version - perfect information with free entry; 1st FTWE fails; Coasian bargaining doesn't work because 2nd order conditions fail

Scenario - 1 lake; 2 types of firms: fishing & chemical plant; chemicals dumped in lake affect fishing (but fishing doesn’t impact chemical plant)

Simplifying Assumptions & Notation - don't really affect results, but simplify the math and make the result more obvious

1. Labor is the only input in both industries
2. Labor is numeraire (i.e., wage rate = 1)
3. \(X = \) total production from chemical plants (polluting industry)
4. \(Y = \) total production from fishing firms (polluted industry)
5. \(F(x) = \) amount of labor needed for individual chemical firm to generate output \(x \)
6. Identical chemical firms \(\therefore X = n_x X \)
7. \(G(y, X) = \) amount of labor needed for individual fishing firm to generate output \(y \); assume for given level of output \(y \), cost increases with \(X \)
 Atmospheric Externality - only total amount matters, not who or where it’s produced
8. Second order conditions... \(F(x) \) strictly convex with \(\lim_{x \to 0} F(x) > 0 \) (i.e., fixed cost of entry)... u-shaped average cost curve so we’ll have limited number of chemical firms
9. SOC for fishing firms... \(G(y, X) \) strictly convex with \(\lim_{y \to 0} G(y, X) > 0 \)
10. Identical consumers with population \(n \)
11. Quasilinear utility - \(u \left(\frac{X}{n_x}, \frac{Y}{n_y} \right) = \frac{L}{n} \) ... linear in labor so we can think of economy consisting of single individual: \(\hat{u}(X, Y) = L \) (standard trick when focusing on production; eliminates income and substitution effects); assume \(\hat{u}(X, Y) \) is strictly concave

Pareto Optimality - get unconstrained optimization by substituting supply of labor =

demand for labor: \(L = n_x F \left(\frac{X}{n_x} \right) + n_y G \left(\frac{Y}{n_y}, X \right) \)

\[
\max_{X,Y,n_x,n_y} W = \hat{u}(X, Y) - n_x F \left(\frac{X}{n_x} \right) - n_y G \left(\frac{Y}{n_y}, X \right)
\]

Assumption - interior solution
Second Order Conditions - \(\hat{u}(X, Y) \) is strictly concave; \(F \) and \(G \) are convex so the objective function is strictly concave.... wrong! no guarantee it’s concave with respect to all four variables; check Hessian is negative definite:

\[
H = \begin{bmatrix}
\frac{\partial^2 W}{\partial X^2} & \frac{\partial^2 W}{\partial X \partial Y} & \frac{\partial^2 W}{\partial X \partial n_x} & \frac{\partial^2 W}{\partial X \partial n_y} \\
\frac{\partial^2 W}{\partial X \partial Y} & \frac{\partial^2 W}{\partial Y^2} & \frac{\partial^2 W}{\partial Y \partial n_x} & \frac{\partial^2 W}{\partial Y \partial n_y} \\
\frac{\partial^2 W}{\partial X \partial n_x} & \frac{\partial^2 W}{\partial Y \partial n_x} & \frac{\partial^2 W}{\partial n_x^2} & \frac{\partial^2 W}{\partial n_x \partial n_y} \\
\frac{\partial^2 W}{\partial X \partial n_y} & \frac{\partial^2 W}{\partial Y \partial n_y} & \frac{\partial^2 W}{\partial n_y^2} & \frac{\partial^2 W}{\partial n_y \partial n_x}
\end{bmatrix}
\]

Need - each diagonal element < 0; determinant of 2x2 minors > 0; determinant of 3x3 minors > 0; determinant of matrix > 0

Assumption - some of these determinants are indeterminate (can be > 0 or < 0), but \(\exists \) some \(\hat{u}(X, Y), F \) and \(G \) such that \(W \) is concave
First Order Conditions -

\(\frac{\partial W}{\partial X} = \dot{u}_x (X, Y) - F\left(\frac{X}{n_x} \right) - n_x G_X \left(\frac{Y}{n_y}, X \right) = 0 \)

\(\frac{\partial W}{\partial Y} = \dot{u}_y (X, Y) - G_Y \left(\frac{Y}{n_y}, X \right) = 0 \)

\(\frac{\partial W}{\partial n_x} = \frac{X}{n_x} F\left(\frac{X}{n_x} \right) - F\left(\frac{X}{n_x} \right) = xF'(x) - F(x) = 0 \)

\(\frac{\partial W}{\partial n_y} = \frac{Y}{n_y} G_Y \left(\frac{Y}{n_y}, X \right) - G \left(\frac{Y}{n_y}, X \right) = y G_Y (y, X) - G(y, X) = 0 \)

Note: for (3) and (4), we assumed \(n_x \) and \(n_y \) are continuous variables (so we could take derivatives), but they're actually integers

From (3): \(xF'(x) = F(x) \Rightarrow F'(x) = \frac{F(x)}{x} \) ... marginal cost of chem = average cost

From (4): \(y G_Y (y, X) = G(y, X) \Rightarrow G_Y (y, X) = \frac{G(y, X)}{y} \) ... MC of fish = AC

From (2): \(\dot{u}_y (X, Y) = G_Y \left(\frac{Y}{n_y}, X \right) \) ... marginal benefit of fish = marginal cost

From (1): \(\dot{u}_x (X, Y) = F\left(\frac{X}{n_x} \right) + n_x G_X \left(\frac{Y}{n_y}, X \right) \) ... MB of chemicals = social MC (the sum of all the costs; similar to Samuelson condition [middle of p.3])

Competitive Equilibrium - "without getting into details"

Chemical Firm - \(\max_x p_x x - F(x) \) ... FOC: (a) \(p_x = F'(x) \)

Fishing Firm - \(\max_y p_y y - G(y, X) \) ... FOC: (b) \(p_y = G_Y (y, X) \)

Consumers - \(\max_{X,Y,L} \hat{u}(X,Y) - L \) s.t. \(p_x X + p_y Y = L \) ... embed constraint:

\(\max_{X,Y} \hat{u}(X,Y) - p_x X - p_y Y \) ... FOCs: (c) \(\hat{u}_x = p_x \); (d) \(\hat{u}_y = p_y \)

Combine (b) and (d) to get (2)... \(\hat{u}_y = p_y = G_Y (y, X) \)

Combine (a) and (c)... \(\hat{u}_x = p_x = F'(x) \neq F\left(\frac{X}{n_x} \right) + n_x G_X \left(\frac{Y}{n_y}, X \right) \) (1)... ... the CE is not PO (1st FTWE fails)

Pigovian Solution - tax chemical firms: \(\max_x p_x x - F(x) - t_s x \) ... FOC: (a) \(p_x = F'(x) + t_s \);

set \(t_s = n_x G_X \left(\frac{Y}{n_y}, X \right) \) and CE will be PO

Coasian Solution - unclear who's involved because of free entry (Coase's paper only dealt with fixed number of participants); instead of bargaining, assume lake is owned by single individual who completely controls the lake (i.e. has property rights); assume no monitoring or enforcement costs for owner
Owners Revenue -

Optimal Fees - takes all profit from both firms: \(I_x = p_x x - F(x) \) and \(I_y = p_y y - G(y, X) \) (want to focus on output per firm)

\[
\max_{n_x, n_y, x, y} R = n_x I_x + n_y I_y = n_x \left(p_x x - F(x) \right) + n_y \left(p_y y - G(y, n_x, x) \right)
\]

FOC - will compare these to PO FOCs on previous page

(i) \[
\frac{\partial R}{\partial n_x} = p_x x - F(x) - n_y x G_x (y, n_x, x) = 0
\]

(ii) \[
\frac{\partial R}{\partial n_y} = p_y y - G(y, n_x, x) = 0
\]

(iii) \[
\frac{\partial R}{\partial x} = n_y \left(p_x - F'(x) \right) - n_y n_x G_x (y, n_x, x) = 0
\]

(iv) \[
\frac{\partial R}{\partial y} = n_y \left(p_y - G_y (y, n_x, x) \right) = 0
\]

Combine (i) and (iii) to get (3)...

\[
p_x - \frac{F(x)}{x} - n_y G_x (y, n_x, x) = 0
\]

\[
\Rightarrow \frac{F(x)}{x} = F'(x) \quad \text{... MC of chemicals = AC of chemicals}
\]

Combine (ii) and (iv) to get (4)...

\[
p_y - \frac{G(y, n_x, x)}{y} = 0
\]

\[
\Rightarrow \frac{G(y, X)}{y} = G_y (y, X)
\]

Combine (iii) with consumer FOC (c) to get (1) \(\hat{u}_x = p_x = F'(x) + n_y G_x (y, X) \)

Combine (iv) with consumer FOC (d) to get (2) \(\hat{u}_y = p_y = G_y (y, X) \)

∴ FOCS for Coasian bargaining (private owner of lake) are same as FOCS for PO solution, but...

SOC - full results in paper, but here’ the basics

\[
\frac{\partial^2 R}{\partial n_x} = 0 \quad \text{... supposed to be < 0 (sufficient), but \leq 0 is necessary... may be a problem}
\]

Check 2x2 minors... determinant must be \(\geq 0 \):

\[
\begin{vmatrix}
\frac{\partial^2 R}{\partial n_x^2} & \frac{\partial^2 R}{\partial n_x \partial n_y} \\
\frac{\partial^2 R}{\partial n_y \partial n_x} & \frac{\partial^2 R}{\partial n_y^2}
\end{vmatrix} = \begin{vmatrix}
\frac{\partial^2 R}{\partial n_x^2} & \frac{\partial^2 R}{\partial n_x \partial n_y} \\
\frac{\partial^2 R}{\partial n_y \partial n_x} & \frac{\partial^2 R}{\partial n_y^2}
\end{vmatrix} \leq 0
\]

(as long as \(\frac{\partial^2 R}{\partial n_x \partial n_y} = -x G_x \neq 0 \))
SOC fail and there's no assumption we can impose on F or G to make SOC hold

Problem - free entry results in zero profit for both firms so lake owner's revenue is zero; he can do better by removing a chemical firm which gives positive profits to fishing firms

Note: with fixed set of participants, both Coasian and Pigovian approaches work; problem with Coasian approach arises when there is not a fixed number of participants (i.e., doesn't work in long run)

Paper 2 - "Private Information, Coasian Bargaining, and the Second Welfare Theorem"

Short Version - private information with no entry; 2nd FTWE fails; Coasian bargaining restricts government's ability to redistribute

Max social welfare subject to technology and self selection constraints

Private owner limits redistribution government can do. ∴ 2nd FTWE fails (can't get to all PO points with CE)

Even if private owner increases efficiency, will have people hurt who can no longer get government redistribution