Consumer Theory - Preferences & Choice Functions

What's First - arguments for and against presenting consumer theory first or production first

Production - easier; clearer results
Consumer - more fundamental; production relies on consumer; underlies welfare economics

Consumer Theory - look at how to describe consumer choices; many different ways of looking at same consumer; no substantive difference between different ways, but each exists to make results easier to get to mathematically

Assumptions - each method to describe consumers has set of assumptions or properties that makes them equivalent to other methods

Example - preferences and utilities aren't observable, but are used in theoretical models; translate properties from these models into demand which can be observed; collect data on demand to verify these properties on preferences and utilities

Mathematical Economists - eliminate assumptions to see what can still be concluded; not very useful and very technical; won't do in this course

Applied Economics - study implications of additional assumptions; problems arise when new assumptions seem reasonable to one method, but then give nonsensical result in another method

Methods - we'll study these in detail:

- Preferences
- Indifference curves
- Utility functions
- Demands
- Revealed preferences
- Expenditure functions
- Indirect Utility function
- Compensated demand

Preferences

Common Usage - "I prefer apples to oranges"; worthless for economics; says nothing about quantity (e.g., 1 apple vs. any number of oranges?) or circumstance (e.g., other goods available)

Technical Definition - defined only between commodity bundles (vectors)

Weak Preference Ordering ($x \, R \, y$) - x "at least as good as" y; also write $x \succeq y$ or $x \succeq y$

$x \, R \, y \iff x \, P \, y$ or $x \, I \, y$

Strict Preference Ordering ($x \, P \, y$) - x is preferred to y; also write $x > y$ or $x \succ y$

$x \, P \, y \iff x \, R \, y$ and $\neg(y \, R \, x)$

Indifference Ordering ($x \, I \, y$) - indifferent between x and y; also write $x \approx y$

$x \, I \, y \iff x \, R \, y$ and $y \, R \, x$

Commodity Bundles - vector listing of amounts of everything you consume (e.g., all else equal (1 apple, 0 orange) preferred to (0 apple, 1 orange))

Time Dated - preferences change over time too

Average Consumption - avoid time dated problem by looking at average for some period of time (e.g., # apples/week)

Rationality Postulates - consumer who's preferences are complete and transitive; guarantees individual will always be able to make a choice

Rational - technical definition: individual can always make a choice; common usage: sensible... these definitions aren't the same!

Economist Preferences - if you prefer x to y, you'd choose x over $y
Philosophers - argue choices ≠ preferences; causes problems because you can't measure preferences

Probabilistic Choice - because of unobservables, sometimes you'll pick x and sometimes you'll pick y; prefer x to y means Pr[choose x over y] > 0.5; stronger preference means greater probability of choosing x over y

5 Assumptions - complete, transitive, continuous, monotonic, & convex
1. **Complete** - given a pair of bundles, individual can make a choice; consumer never says I can't decide; only says one of three things: (i) I prefer A, (ii) I prefer B, (iii) I'm indifferent (don't care); 2 equivalent definitions:
 (a) x R y or y R x; at least one of these two must hold
 (b) x P y or y P x or x I y

Minor Decisions - assumption seems reasonable for minor decisions

Incomplete Preferences - bundles can't be compared because of lack of experience (e.g., job in North Dakota vs. job in Florida for someone who's never seen snow)

2. **Transitivity** - given larger groups of bundles (> 2), a choice is possible
 \[\forall x, y, z, \ x R y \text{ and } y R z \Rightarrow x R z \]

Violation - if you have prerequisite and conclusion doesn't hold; if you don't have prerequisite, transitivity is vacuously true; Example: x P y, y P z, z P x; given any two of these preferences, individual can make a choice, but given all there, he can't (it's circular)

Weaker Assumptions -

2a. **Quasitransitivity** - transitivity of strict preferences; x P y and y P z ⇒ x P z

Theorem - 2 ⇒ 2a, but 2a \(\not\Rightarrow \) 2

Proof: Consider x I y, y I z, and x P z
 Can rewrite x I y and y I z as y R x and z R y
 Transitivity would suggest z R x, but that's not the case
 This is quasitransitive (vacuously true because it doesn't satisfy the prerequisite)
 \[\therefore \ 2a \not\Rightarrow \ 2 \]

Consider x P y and y P z and assume transitivity
Assume this violates quasitransitivity (i.e., x P z not true so z R x)
Can rewrite x P y and y P z as x R y and y R z
Now have z R x, x R y, and y R z which violates transitivity
 \[\therefore \ 2 \Rightarrow 2a \]

2b. **Acyclicity** - not cycling; no patterns; x P y and y P z ⇒ x R z (ruling out z P x)

Theorem - 2a ⇒ 2b, but 2b \(\not\Rightarrow \) 2a

Proof: x P y, y P z and x I z is 2b, but not 2a (not completed in class)

Why Have Weaker Assumptions?

Psychology - there are circumstances where small, insignificant differences pile up and become significant; e.g., rooms with temperatures varying by 0.1 degree; individual would be indifferent between any two adjacent rooms, but may prefer one room over all others; this violates transitivity, but doesn't violate quasitransitivity or acyclicity

Transitivity Realistic?

Spouse Experiment - asked college students to rate potential spouses from list of three based on attractiveness, intelligence, and wealth; only ratings were + (very good), 0 (average), - (very bad); students

<table>
<thead>
<tr>
<th></th>
<th>Lady</th>
<th>Att</th>
<th>Int</th>
<th>With</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>II</td>
<td>0</td>
<td>-</td>
<td>+</td>
<td>1</td>
</tr>
<tr>
<td>III</td>
<td>-</td>
<td>+</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
asked to choose between pairs: I vs. II, II vs. III, and III vs. I; roughly 1/3 of the students choose I P II, II P III, and III P I (violates transitivity)

Why Inconsistent - picking best 2 of 3 attributes (different dimensions); don’t have quantitative data (e.g., how much wealthier?)

When Transitive - transitivity OK to assume if bundles are sufficiently different and there’s quantitative data

Theorem (Transitivity Builds) - If \(R \) is transitive or quasi-transitive over every triple of alternatives taken from feasible set \(A \), then \(R \) is transitive over the entire set \(A \); i.e., transitivity for small sets builds to larger sets

Example - given \(x R y, y R z, \) and \(z R w \), use transitivity with triples to say \(x R z \), then again to say \(x R w \); just used transitivity of triples to show transitivity of all four

NOT for Acyclicity - doesn’t build to larger sets; have to check them all

Example - given \(y P x, z P y, w P z, x P w, x I z, y I w \) (see picture)

- take any three bundles and acyclicity is satisfied (e.g., \(x, y, w \))
- \(y P x \) and \(x P w \) \(\Rightarrow \) \(y I w \) (or \(y R w \))... unique choice is \(y \); if you expand to all four bundles there is a cycle

Theorem (Rationality 1) - \(C(A,R) \) is nonempty for any finite feasible set \(A \) if and only if \(R \) is complete and acyclic; (transitive and quasi-transitive are sufficient, but not necessary)

Proof:

Assume \(\exists \) pair of alternatives \(x, y \) with \(\neg(x R y) \) and \(\neg(y R x) \) (i.e., not complete) or there is a set \(\{x, y\} \) of 2 or more alternatives on which \(R \) has a cycle

\[C(\{x, y\}, R) = \emptyset \] and \(C(\{x, y\}, \alpha, R) = \emptyset \) (This proves \(\neg B \Rightarrow \neg A \)... see aside below)

Assume \(C(A,R) = \emptyset \) for some set \(A \)

If \(A = \{x, y\} \), then \(\neg(x R y) \) and \(\neg(y R x) \)... if this wasn’t the case \(C(A,R) \neq \emptyset \)

If \(A \) has more than 2 alternatives, a cycle must exists

- e.g., \(A = \{x, y, z\} \); if \(R \) not complete, obviously \(C = \emptyset \) so assume \(R \) is complete
- Consider \(x \)... it’s not in choice set \(:\) \(\neg(x R y) \) and \(\neg(y R z) \)... that means \(y P x \)
- or \((z P x) \)... assume the first one
- Consider \(y \)... it’s not in choice set \(:\) \(z P y \)
- Consider \(z \)... it’s not in choice set \(:\) \(\neg(z R x) \)... that means \(x P z \)
- This forms a cycle: \(x P z, z P y, \) and \(y P x \)
- \(:\) either \(R \) is not complete or there is a cycle (This proves \(\neg A \Rightarrow \neg B \))

Practical - although all we need is acyclicity, we’ll work with transitivity instead for two reasons: (1) it’s easier to test, (2) also guarantees \(C(A,R) \neq \emptyset \) for all \(A \) with imposed structure like a budget set (not just finite \(A \))

3. **\(R \) is Continuous** - mostly technical with little economic value

\[R^*=\{y: y R x\} \]... set of all bundles at least as good as \(x \)

\[R^=\{y: x R y\} \]... set of all bundles that \(x \) is at least as good as

Definition 1 - \(\forall x R^* (x) \) and \(R^* (x) \) are closed sets

Definition 2 - \(\forall x R^= (x) \) and \(R^= (x) \) are open sets

Indifference Curves - indifference curve is boundary between \(R^* (x) \) and \(R^= (x) \); continuous \(R \Rightarrow \) indifference curve is well behaved continuous function (i.e., no gaps)
Lexicographic Preferences - preferences similar to dictionary (alphabetical order) were there are no tradeoffs (so azzzz always comes before baaaa); extreme example of preferences that aren't continuous

Example - \(x = (x_1, x_2) \) and \(y = (y_1, y_2) \) (this generalizes to \(n \) dimensions)

\[x \mathcal{P} y \iff x_1 > y_1 \quad \text{or} \quad (x_1 = y_1 \quad \text{and} \quad x_2 > y_2) \]

\(x \mathcal{P} y \) (i.e., \(\mathbb{R}^2 \)) is shaded area plus line and dot

\(y \mathcal{P} x \) (i.e., \(\mathbb{R}^2 \)) is white area plus dotted line and dot

Can have series all in \(\mathbb{R}^2 \), but limit is in \(\mathbb{R}^\leq \). \(R \) not continuous

Examples - single issue voter; Fear Factor where contestant will not eat worms for any price (no tradeoffs); "Rather push a Chevy than drive a Ford" bumper sticker

Economic Interpretation - \(R \) is continuous means small changes in individual bundles will have a small effect on the individual's well being; this is not the case with lexicographic preferences

Theorem (Utility Representation 1) - if \(R \) is complete, transitive, and continuous, then \(\exists \) a continuous utility representation... very hard to prove

Theorem (Rationality 2) - \(C(A,R) \neq \emptyset \) for any compact set \(A \) if \(R \) is complete, transitive and continuous

Proof:

\[C(A,R) = \{ x \in A : \forall y \in A \} = \{ x \in A : U(x) \geq U(y) \ \forall y \in A \} = \{ x \in A : x \text{ solves max } U(y) \text{ over } y \in A \} \]

which is guaranteed to have a solution if \(U \) is continuous and \(A \) is compact

4. Listed in order from weakest to strongest (opposite of property 2); \(d \Rightarrow c \Rightarrow b \Rightarrow a \);

rough translation: "more is better"

4a. Nonsatiation - for any bundle \(x \), there exists a bundle \(y \) with \(y \mathcal{P} x \) (i.e., there is no satiation or bliss point; you can always find something better)

4b. Local Nonsatiation - for any bundle \(x \), there exists a bundle \(y \) nearby with \(y \mathcal{P} x \); rules out "thick" indifference curves

Nearby - "in the neighborhood"; no matter how you define distance, the distance between \(x \) and \(y \) is \(< \varepsilon \)

Meaning - slight modification of bundle will make individual happier; don't know how much better (that's cardinal), just know it's better

Implication - if \(A \) is compact and \(R \) is complete, transitive, continuous, & has local nonsatiation, then \(C(A,R) \) is a subset of the boundary of \(A \)

4c. (Weak) Monotonicity - \(x > y \Rightarrow x \mathcal{P} y \)

4d. (Strict) Monotonicity - \(x \geq y \Rightarrow x \mathcal{P} y \)

Definitions - confusing because different authors use different symbols

1. \(> \) (or \(>> \)) - \(x_i > y_i \ \forall \ i = 1,2,\ldots,n \)

2. \(\geq \) (or \(\geq \)) - \(x_i > y_i \ \forall \ i \) and \(x_j \geq y_j \) for some \(j \)

3. \(\geq \) - \(x_i \geq y_i \ \forall \ i = 1,2,\ldots,n \)

Not much difference between 1 & 2; 1 is for weak monotonicity (doesn't include any bundles with same quantity as \(y \)); 2 is for strict monotonicity (only need at least 1 commodity with more than \(y \)); 3 doesn't work for monotonicity because if \(y \) is included, you can't have \(x \mathcal{P} y \)

Implication - monotonicity \(\Rightarrow \) local nonsatiation
Perfect Compliments - $U(x_1, x_2) = \min(x_1, x_2)$; special case where weak monotonicity (4c) holds, but strict monotonicity (4d) doesn't

Example - $x_1 = \text{left shoe}; x_2 = \text{right shoe}$

No Monotonicity - some things are "bads" so less is better (e.g., exams, pollution, labor); this can be handled by defining a new commodity that's the opposite (e.g., leisure instead of labor) so monotonicity really means adding more has same effect (not just "more is better"); other commodities don't satisfy monotonicity either way because sometimes more is better and sometimes less is better (e.g., temperature)

Economic Meaning - if any commodity in the bundle satisfies monotonicity, the choice must be on the "outer" boundary (e.g., choice will be on the budget line... that means you spend all your money)

Theorem (Utility Representation 2) - if R is complete, transitive, continuous, and monotonic (weak or strict) then \exists a continuous and monotonic utility representation...

Proof (of $\exists U(x)$ and monotonicity using 2 commodities... generalizes to more):

Assign U to each bundle on a 45° line such that $U(a, a) = a$

Since R is monotonic 45° line is monotonic

Given assumptions about R, \forall bundles x not on the 45° line \exists

a unique bundle on the 45° line such that $U(x) = U(a, a) = a$,

That means $x \succeq (a, a)$.

Thus: the 45° line is a monotonic utility representation

Proving that \exists unique bundle on 45° line:

Define $A \equiv R^>(x) \cap 45°$ line and $B \equiv R^<(x) \cap 45°$ line

$R^>(x)$ and $R^<(x)$ are closed by continuity assumption

45° line is closed by definition

If you move up from x (or left if it's on the other side of the line) and then move up the 45° line, by monotonicity of R, \exists points preferred to x;

similarly, if you move up from x and then move down the 45° line, \exists points inferior to x; \therefore A and B are nonempty and closed

Since R is complete, $A \cup B = 45°$ line

$A \cap B$ is nonempty $\therefore \exists$ points on the 45° line that are indifferent to x

Theorem - If set T is closed, then T^c is open

Theorem - Given 2 closed sets with union equal to everything, then intersection is nonempty

Proof: if $A \cap B$ were empty, then $A = B^c$, but both A and B are closed; that a contradicts previous theorem so $A \cap B \neq \emptyset$

Assume there are multiple points z and $w \in A \cap B$ with $z \neq w$

Both z and w are on 45° line so either $z > w$ or $w > z$ (i.e., one of them has more of everything); order not important so pick $z > w$

By monotonicity $z \succ w$ Knowing $z \succ w$ and $w \sim x$ (because $w \in A \cap B$), then $z \succ x$ by transitivity

That contradicts $z \in A \cap B$ which says $z \preceq x$

\therefore there is a unique bundle on the 45° line that is indifferent to x

Note that 45° line was used for convenience, any line with positive slope could be used so there is actually an infinite number of utility representations

No U for Lexicographic - with lexicographic preferences every bundle has to be assigned a unique U; since there are an infinite number of values for C_2 for each of an infinite number of values for C_1, there is no way to use a utility
representation... we'd run out of numbers (there are various levels of infinity and this one is bigger than the infinite number of numbers)

5. **Convexity** - various definitions, make a difference when paired with other assumptions;
 differences not important right now; i ⇔ ii
 (i) $x R y \Rightarrow [\lambda x + (1 - \lambda)y] R \forall \lambda \in (0,1)$
 (ii) $R^2(y)$ is convex set (i.e., $z R y \& x R y \Rightarrow [\lambda x + (1 - \lambda)y] R y$)
 (iii) $x R y$ and $x \neq y \Rightarrow [\lambda x + (1 - \lambda)y] P \forall \lambda \in (0,1)$... this is **strict** convexity

Infinite Bundles - convexity assumes # of alternatives (i.e., A) is infinite

Hard to Test - difficult to confirm convexity empirically

Theorem (Choice 1) - if A is compact and convex and R is complete, transitive, continuous, monotonic (weak or strict) and convex then the choice function $C(A,R)$ is convex

Proof:
Pick x and $y \in C(A,R)$

$[\lambda x + (1 - \lambda)y] \in A$ (i.e., feasible) for $\lambda \in (0,1)$ because A is convex
$x R z \& \forall z \in A$ and $y R z \& \forall z \in A$ because $x \& y \in C(A,R)$
$[\lambda x + (1 - \lambda)y] R z$ because R is convex (using definition ii)
$\therefore [\lambda x + (1 - \lambda)y] \in C(A,R)$ for $\lambda \in (0,1)$

Theorem (Choice 2) - change previous theorem to say R is strictly convex, then $C(A,R)$ is unique choice (only one bundle)

Proof:
Pick x and $y \in C(A,R)$

That means $x I y$ which can be written $x R y$ and $y R x$
$[\lambda x + (1 - \lambda)y] P x$ because R is strictly convex
But that means x can't be $\in C(A,R)$ because there's a better bundle

Reasonable Assumption? - convexity basically means "balanced bundles are better"

Specific Time - may not be true at specific time, but is true for longer periods;
 e.g., can have chicken or steak for dinner doesn't mean you'll prefer a combination, but if you're talking about 100 dinners, you'll probably prefer a combination of chicken and steak rather than having only one of them 100 times.

Drinking - mixing drinks results in worse hangovers so people prefer 1 bottle of bourbon or 1 bottle of scotch rather than a half bottle of each

Risk Aversion - people buy insurance to reduce risk so consumption is the same with or without an accident

Risk Loving - opposite case so preferences aren't convex;
 e.g. gambling
Choice Function

Choice Function, \(C(A,R) \) - gives choice set \((C) \) from set of bundles \((A) \) based on preference relationship \((R) \); Formally: \(C(A,R) \equiv \{ x \in A: x \ R \ y \ \forall \ y \in A \} \)

Examples:
\[
C([x,y], \{ x \ P \ y \}) = \{ x \}
\]
\[
C([x,y], \{ x \ I \ y \}) = \{ x, y \}
\]

Theorem - If \(R \) is complete and transitive, then \(C(A,R) \neq \emptyset \)

Problem - \(C(A,R) \) isn't observable because we can't observe preferences \((R) \)

Observable Choice Function, \(C(A) \) - different function used in book; given observed choices, we can try to rationalize them into a preference ordering \((R) \)

Example:
\[
\hat{C}([x,y]) = \{ x \} \Rightarrow x \ R \ y
\]
\[
\hat{C}([x,y,z]) = \{ z \} \Rightarrow z \ R \ x \ and \ z \ R \ y
\]
\[
\hat{C}([y,z]) = \{ y \} \Rightarrow y \ R \ z
\]
This can't be rationalized because \(z \ R \ y \) and \(y \ R \ z \) means \(y \ I \ z \), but if that were the case, then \(\hat{C}([y,z]) = \{ y, z \} \) which isn't what was observed; if there's only one data point, this can slide, but would need multiple trials to see if the choices can actually be rationalized... assuming preferences don't change over time

Example: Demand; prices determine feasible set; we don't know preferences, but we observe choices to derive demand

Aside - Do people really do this stuff? No, but they act as if they do (paraphrased from Milton Friedman)

Baseball Analogy - player ends up in right spot even without knowing Newtonian physics and equations of motion (this is good argument to support consumer theory)

Test Conclusions - if conclusions are OK, we don't need to test assumptions; this drove lots of other economists wild because many times conclusions \(\leftrightarrow \) assumptions (same)

Proving \(A \iff B \) - Three options:
1. Show \(A \implies B \) and \(B \implies A \)
2. Show \(A \implies B \) and \(\neg A \implies \neg B \)
3. Show \(\neg B \implies \neg A \) and \(\neg A \implies \neg B \)

Stronger vs. Weaker Statements - if \(A \implies B \) and \(C \implies B \), whichever antecedent \((A \ or \ C) \) is less restrictive makes the stronger statement