Proof that the Natural Logarithm Can Be Represented by the Gaussian Hypergeometric Function*

Christopher Nofal ${ }^{\dagger}$

September 18, 2006

Abstract. The Gaussian or ordinary hypergeometric function is a special function represented by the hypergeometric series that includes many other special functions as specific or limiting cases. It is a solution of a second-order linear ordinary differential equation (ODE). Every second-order linear ODE with three regular singular points can be transformed into this equation.

Claim: $\ln (1+x)$ can be represented by the Gaussian hypergeometric function.

$$
\begin{aligned}
F(\alpha, \beta, \gamma ; x) & :=1+\sum_{n=1}^{\infty} \frac{\alpha_{n} \beta_{n}}{n!\gamma_{n}} x^{n} \\
F(1,1,2 ;-x) & =1+\sum_{n=1}^{\infty} \frac{1_{n} 1_{n}}{n!2_{n}}(-x)^{n} \\
\left(\text { note: } 1_{n}=n!\right) & =1+\sum_{n=1}^{\infty} \frac{n!(-x)^{n}}{2_{n}} \\
\text { (note: } \left.2_{n}=(n+1)!\right) & =1+\sum_{n=1}^{\infty} \frac{(-x)^{n}}{n+1} \\
& =1+\sum_{n=1}^{\infty} \frac{(-1)^{n} x^{n}}{n+1} \\
x F(1,1,2 ;-x) & =x\left(1+\sum_{n=1}^{\infty} \frac{(-1)^{n} x^{n}}{n+1}\right) \\
& =x+\sum_{n=1}^{\infty} \frac{(-1)^{n} x^{n+1}}{n+1} \\
(\text { let } n=k-1) & =x+\sum_{k=2}^{\infty} \frac{(-1)^{k-1} x^{k}}{k} \\
\text { [Taylor series expansion for } \ln (1+x)] & =x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{4}+\cdots \\
& =\ln (1+x)
\end{aligned}
$$

[^0]
[^0]: * made with LATEX
 ${ }^{\dagger}$ Christopher Nofal, B.S.C.E., University of Florida College of Engineering.

