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Abstract ― The global energy crisis and environmental 

concerns (e.g. global warming) have driven the IT community 

into the green computing era. Of clean, renewable energy 

sources, solar power is the most promising. While efforts have 

been made to improve the performance-per-watt, conventional 

architecture power management schemes incur significant solar 

energy loss since they are largely workload-driven and unaware 

of the supply-side attributes. Existing solar power harvesting 

techniques improve the energy utilization but increase the 

environmental burden and capital investment due to the 

inclusion of large-scale batteries. Moreover, solar power 

harvesting itself cannot guarantee high performance without 

appropriate load adaptation. To this end, we propose SolarCore, 

a solar energy driven, multi-core architecture power 

management scheme that combines maximal power provisioning 

control and workload run-time optimization. Using real-world 

meteorological data across different geographic sites and 

seasons, we show that SolarCore is capable of achieving the 

optimal operation condition (e.g. maximal power point) of solar 

panels autonomously under various environmental conditions 

with a high green energy utilization of 82% on average. We 

propose efficient heuristics for allocating the time varying solar 

power across multiple cores and our algorithm can further 

improve the workload performance by 10.8% compared with that 

of round-robin adaptation, and at least 43% compared with that 

of conventional fixed-power budget control. This paper makes 

the first step on maximally reducing the carbon footprint of 

computing systems through the usage of renewable energy 

sources. We expect that the novel joint optimization techniques 

proposed in this paper will contribute to building a truly 

sustainable, high-performance computing environment. 
 

1. Introduction 
The continuing decline of conventional fossil fuel has 

resulted in increasing energy costs all around the world. 

Meanwhile, fossil fuel and its induced greenhouse gas emissions 

have had profound impact on the environment and the climate of 

our planet. These trends have led the IT community into the 

renewable energy driven, green computing era. Among various 

renewable energy options, photovoltaic (PV) generation is 

gaining increased importance due to its advantages such as 

absence of fuel cost, low maintenance, and no noise and wear 

due to the absence of moving parts. It is expected that PV system 

installations will provide 15%-20% of the global electricity in 

2040 [1]. Today, solar energy is not only being used for 

powering various low-power electronic devices and household 

appliances, but it is also drawing increased attentions in 

performance-focused computing environments such as data 

centers [2]. Internet giants, such as Google, Microsoft and Yahoo 

all power part of their data centers using renewable resources 

such as solar farms. In this paper, we extend the benefits of solar 

energy to the high performance computer architecture design 

area. Specifically, we explore the joint optimization of green 

energy utilization and workload performance for multi-core 

processors, which are the mainstream hardware design choice for 

today’s IT industries and demand increasing amounts of power 

to unleash their full computation potential.  

Although solar energy is an abundant energy source, its 

efficient utilization presents a new challenge. In PV systems, 

sunlight is converted into DC electricity using PV cells. 

Implemented as a p-n junction fabricated in a thin wafer, PV 

cells have a non-linear relationship between their output 

photocurrent and terminal voltage. Under uniform irradiance 

(solar energy per unit area of the solar panel’s surface) and 

temperature, photovoltaic arrays exhibit a current-voltage 

characteristic with a unique point, called the maximum power 

point (MPP) [3, 4], where the module produces maximum 

output power. Due to the high fabrication cost (e.g. material, 

ingot, and wafering) and low conversion efficiency (typically 

13% ~19%) of present solar cells, it is crucial to operate the PV 

generator at the maximum power point in order to achieve the 

maximum efficiency. Nevertheless, the power generated by PV 

systems changes over time due to the unpredictable nature of 

weather pattern, as shown in Figure 1. The unstable working 

environment along with the existence of optimum operating 

points necessitate the rethinking of multi-core power 

management policy to achieve higher efficiency in utilizing 

solar energy. Moreover, the processor load should be regulated 

and tuned in such a way that the overall workload performance 

is also optimized during the successive MPP tracking. 

There are various ways to connect PV array to the load, as 

shown in Figure 2. For instance, solar-powered systems can 

employ energy storage elements (i.e. batteries or super-

capacitors) [5] and charge controller (Figure 2-C) [5] to backup 

energy which reduces voltage fluctuations and performs 

maximum power tracking. However, energy storage elements 

introduce many limitations in PV system utilization. For 

example, the maximal energy that can be delivered is limited by 

the battery capacity and this will unavoidably affect the 

performance of multi-core systems. The large current drawn by 

multi-core chips requires battery with large capacity, which is 

both bulky and expensive. In addition, the turn-around 

efficiency of battery is low due to internal resistance and self- 

discharge. These de-rating factors can contribute to significant 

loss in energy efficiency (up to 30% energy loss, detailed in 

Section 5). Last but not least, existing rechargeable batteries all 

have limited lifetime. Frequent charge/discharge (in case of 

using low-capacity batteries) and self-discharge further 

aggregate the aging effect. Without proper maintenance (which 

requires human intervention and causes loss of availability), the 

aging problem will directly lead to the capacity reduction and 

output voltage change. As a result, over the lifetime of the
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Figure 1: Solar energy utilization efficiency varies 

significantly for fixed load under different solar 

irradiance intensity  

Figure 2: Three typical PV systems: (A) grid-

connected, (B) direct-coupled, and (C) battery-

equipped 

 
solar-powered systems, batteries cost (e.g. initial and 

maintenance cost) can be the most expensive component of 

the renewable energy systems [6, 7]. 

In this study, we consider cost-effective direct-coupled 

PV system design (Figure 2-B), which has been used in 

applications such as heating and water pumping. For direct-

coupled PV system, the solar-panel load is DC load and no 

power inverter will be used. In our design, when the solar 

power supply drops below a certain threshold, a secondary 

power supply (e.g. gird utilities) will be switched in (via 

power switch) and used as a power supply until sufficient 

solar power is available. Different from the conventional 

direct-coupled PV systems, we propose techniques that allow 

multi-core processors to autonomously harvest the renewable 

energy supply to the maximal degree. As a result, our design 

eliminates the limitations (i.e. low performance, short-lifetime 

and high-cost) due to inclusion of batteries, while delivering 

satisfactory green energy utilization and high workload 

performance. Note that the purpose of our proposal is not to 

completely replace existing power supply. The key benefit of 

using SolarCore is that it maximally reduces the power 

dependence on the fossil-fuel-based supply while 

simultaneously optimizing the workload performance.  

This paper makes the following contributions:  
 

 We perform detailed characterization of PV cell/module 

under varying atmospheric conditions. We show that 

unlike conventional power sources, matching the power 

consumption level with the supply level can make a 

significant difference in solar energy utilization.  
 

 We propose SolarCore, the multi-core architecture power 

management schemes that address a two-fold challenge. 

The first is to maximize multi-core processor’s total solar 

energy utilization by performing load matching under 

variable PV power output. The second is to intelligently 

allocate the dynamically varied power budget across 

multiple cores so that the maximum workload 

performance can be achieved.  
 

 We perform extensive simulations to evaluate the 

effectiveness of the proposed techniques. We characterize 

the MPP tracking efficiency and workload behavior using 

real-world solar irradiance data across different 

geographic locations and seasons.  
 

 We characterize the green energy utilization and multi-

core performance of various solar energy based power 

management schemes. We demonstrate that SolarCore is 

able to extract 82% solar energy on average without 

relying on storage elements. Compared with the most 

efficient battery-based MPPT systems, SolarCore yields 

less than 1% performance degradation and overcomes the 

major drawbacks such as short life time, high capital cost 

and negative environment impact.  

The rest of this paper is organized as follows: Section 2 

describes circuit model, I-V, and power characteristics of PV 

cell. Section 3 presents a characterization of solar array I-V 

and power under varying atmospheric conditions. Section 4 

proposes solar energy driven multi-core power management 

techniques. Section 5 describes the experimental 

methodologies. Section 6 evaluates the power and 

performance impact of the proposed schemes. Section 7 

discusses related work and Section 8 concludes the paper. 
 

2. The Power Behavior of PV Systems 
A photovoltaic (PV) cell (a.k.a. solar cell) is a p-n 

junction fabricated in a thin wafer or layer of semiconductor. 

It is the basic building block of PV systems, where the 

electromagnetic radiation of sun can be directly converted to 

electricity through the photovoltaic effect. In this section, we 

describe solar power characteristics and important factors in 

designing solar energy driven computing systems. 
 

2.1 PV Power Model 
 During darkness, the PV cell does nothing; it behaves 

like a diode, generating a current dI  (a.k.a. dark current) 

under forward bias. When it is switched on by sufficient 

sunlight irradiance, the solar cell can generate a voltage. As 

shown in Figure 3, the simplest equivalent circuit of an ideal 

solar cell can be modeled by a current source in parallel with a 

diode. When switched on, the ideal cell produces a 

photocurrent (
phI ) proportional to the light intensity. To 

obtain a more accurate current-voltage (I-V) characteristic of a 

solar cell, the series resistance sR , representing the internal 

losses due to the current flow, and parallel resistance
pR , 

representing the leakage current to the ground, can be added to 

the ideal model. In addition, a second non-ideal diode can be 

added in parallel to the current source [8]. In this paper, we 

choose a model of moderate complexity, which captures the 

solar radiation and temperature impact on the photocurrent (

phI ) and saturation reverse current (
0I ) of the diode. Our 

model only considers the series resistance since the impact of 

shunt resistance (parallel resistance) is negligible. 

 The electrical behavior of a solar cell is given by its I-V 

characteristic equations, which relates solar cell parameters 

and environment conditions to the output current ( outI ) and 

voltage ( outV ). In Figure 3, the output current is a complex 

function of the sun irradiance (G), the operating temperature 

(T), and the terminal voltage outV . A detailed derivation of I-V 

characteristics can be found in [8, 9]. 
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Figure 4: The I-V (a) and P-V (b) characteristics of a PV 

cell, operating at specific resistive load and MPP Figure 3: The equivalent circuit of a solar cell 

 

2.2 I-V Characteristics and MPP 
Figure 4 shows a conceptual plot of solar cell I-V and P-

V curves, assuming constant sun irradiance and temperature. 

When the cell is operated at open circuit, 0outI and the 

voltage across the output terminals is defined as the open 

circuit voltage ( ocV ). Similarly, when the cell is operated at 

short circuit, 0outV  and the current through the terminals is 

defined as the short circuit current (
scI ). For a high-quality 

solar cell, sR  and 0I  are low and pR
 
is high, therefore

sc phI I . For a given load LR , the cell develops a terminal 

voltage between 0 ocV . Assuming there is no energy loss 

between the PV output power and the load input power, the 

operating point is the intersection between the I-V curves of 

the load and the PV generator.  

For a given I-V curve under the constant ambient 

irradiation and temperature, there is a single operating point 

(MPP) where the values of the voltage ( mppV ) and current (

mppI ) of the cell result in the maximum power output ( maxP ), 

which is the optimal operation point for the efficient use of the 

solar energy. As shown in Figure 4, a load connected PV 

generator may operate (as determined by the intersection of 

the I-V curve and the load line) far from its optimal condition 

(i.e. MPP or maxP ), resulting in inefficient solar power 

utilization. Moreover, since the maximum power point varies 

with the solar irradiance and temperature, the optimal 

operating point of the photovoltaic cell changes dynamically. 

2.3 PV Systems and Load Matching  

When connected to electrical loads, solar panels 

generally employ power converters to achieve appropriate 

output voltage. Such power converters can be implemented by 

using controllable transformers [10], such as a Pulse Width 

Modulation (PWM) based transformer. Assuming in outP P , 

the transformers can be described as /out inV V k  and

out inI k I  , where k is the transfer ratio that can be adjusted 

by changing the duty cycle of the PWM. The actual operating 

point of the PV system occurs at the intersection of the 

electrical characteristics of the solar panel and the load. By 

load matching, maximum power point tracker (MPPT) is able 

to extract the optimal power from the panel under varying 

atmospheric conditions. Such load matching can be achieved 

by either adjusting the DC-DC converter transfer ratio, k, or 

tuning multi-core load, w (e.g. via DVFS). For a multi-core 

processor, its electrical characteristics are largely dependent 

on parameters such as clock frequency and supply voltage. For 

instance, as the clock frequency increases, the multi-core 

processor will exhibit lower impedance and draw more current 

and power.  

Figure 5 shows how the operating point changes if we 

tune the two system parameters, namely, the multi-core load w 

or transfer ratio k. The output voltage will decrease when the 

load line moves counterclockwise and increase when the load 

line moves clockwise. However, due to the existence of 

maximum power point, the actual output power may either 

increase or decrease as the load line moves, depending on 

whether the operating point is approaching the MPP or not. 

Note that simply increasing the multi-core processor 

utilization rate and voltage level will not automatically draw 

maximal power because the load adaptation scheme (i.e. 

increasing or decreasing the load) varies with different 

operating point positions, as shown in Figure 5 (a) and (b). On 

the other hand, tuning the transfer ratio alone cannot increase 

the multi-core performance either due to the lack of effective 

multi-core load adaptation schemes. Moreover, without 

appropriate coordination between the power converter and 

load adaptation, the system will suffer from severe voltage 

fluctuations.  

 

3. Characterizing the I-V and Power 

Behavior of PV Modules 
Solar cells are the basic building blocks of solar 

photovoltaic systems. When charged by the sun, each cell can 

generate approximately 0.5 to 1V photo-voltage and tens of 

milliamps short current. PV modules consist of multiple 

interconnected PV cells which are arranged in series-parallel 

structure to achieve desired power output. PV modules can be 

further combined to form PV array. In this study, we model 

the BP3180N polycrystalline 180W solar module [11].  

We built the PV cell/array equivalent circuit models 

described in Section 2 and simulated them using SPICE. We 

modeled both current versus voltage and power versus voltage 

characteristics of the studied solar panel at various insolation 

and temperature conditions. As shown in Figures 6 and 7, 

higher sun irradiance generates more photocurrent and the 

MPPs consequently move upward. When the environment 

temperature rises, the open circuit voltage is reduced and the 

short circuit current increases. Since the voltage decrease is 

faster than the current increase, MPP shifts left and the total 

power that a PV module can produce is reduced at a higher 

temperature. As can be seen, unlike conventional energy 

sources, the solar power produced by the PV generator varies 

significantly under different atmospheric conditions. To 

harvest the maximum energy, it is crucial that the multi-core 

power management schemes are capable of identifying and 

tracking the MPP. 
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Figure 5: The characteristics of load matching (P, V and I are all for DC/DC output values). In scenario (a), increasing 

load or decreasing k will approach MPP. In scenario (b), decreasing load or increasing k will approach MPP. 
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Figure 6: I-V and P-V curves for various  

irradiations (     )  

Figure 7: I-V and P-V curves for various temperatures 

(          ) 
 

4. Solar Energy Driven Multi-core 

Architecture Power Management 
In this section, we propose SolarCore, solar energy 

driven multi-core architecture power management that can 

achieve the maximal solar energy utilization and the optimal 

workload performance simultaneously. Our design makes the 

first step on reducing the dependence on the utility power of a 

high performance computing system. A lower dependence 

saves more on utility bills and produces a lower carbon 

footprint, which is more sustainable. 
 

4.1 SolarCore: An Overview 
Figure 8 illustrates an overview of the SolarCore power 

control architecture. The system is powered by solar energy 

with grid utility as backup. An automatic transfer switch 

(ATS) is employed to seamlessly select between the primary 

(i.e. the solar panel) and backup power sources and an 

uninterruptable power supply (UPS) ensures continuous power 

delivery to the load. An AC/DC converter is used only if the 

ATS switches to the utility. A tunable power-conservative 

matching network (i.e. DC/DC converter) is used to convert 

the PV output voltage to the level (e.g. 12V) that is compatible 

with existing multi-core processors and systems.  

Today’s power supply unit (PSU) has multiple output 

rails [12] which can be leveraged to power different system 

components with different power supplies (e.g. solar/utilities). 

In this study, we assume that the processor, which contributes 

to the significant power dissipation in typical multi-core 

systems, is the only component powered by the renewable 

energy while the rest of the system is powered by the energy 

from the utilities. The output power of the PSU is allocated 

across all running cores with the objective of maximizing the 

overall workload performance. At the front end, both load 

current and voltage are measured via I/V sensors and the 

results are fed-back to the SolarCore controller, which is 

responsible for identifying and tracking the maximal power 

point. The controller adjusts the DC/DC converter through 

MPPT control signal and communicates with the processor 

through an adapter, which is responsible for per-core load 

tuning and workload performance optimization. 

We decompose solar energy management control into 

multi-core aware MPP tracking (detailed in Section 4.2) and 

dynamic load adaptation (detailed in Section 4.3). In our 

study, we use per-core dynamic voltage/frequency scaling 

(DVFS) [13] and per-core power gating (PCPG) for load 

adaptation on multi-core chips. The purpose of performing 

load adaptation is to move the solar array operating point close 

to the MPP under changing atmospheric conditions. To 

achieve the per-core DVFS, we use an on-chip voltage-

regulator module (VRM) [14] for each core to provide the 

appropriate supply voltage. The corresponding supply voltage 

is communicated between the SolarCore controller, the 

VRMs, and cores via a number of bits called the Voltage 

Identification Digital (VID), which has been implemented in 

commercial microprocessors. For example, the Intel Xeon 

processor employs a 6-bit VID to specify the input voltage 

from 0.8375 to 1.6V DC with 32 different voltage steps. Our 

techniques use optimization methods to maximize workload 

performance under the variable maximal power budget. 
 

4.2 Multi-core Aware MPP Tracking 
 

Our multi-core aware MPP tracking technique relies on 

successive tuning of both the DC/DC converter transfer ratio k 

and the multi-core load w. The SolarCore controller aims at 

coordinating the power supply converter and the multi-core 

load adaptation to achieve the maximal power drawn. In 

addition, our technique ensures 1) a correct tracking direction 

and 2) a stable load operating voltage   . 
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Figure 8: An overview of SolarCore power management architecture 

 
Table 1 summarizes the electrical behavior of load 

tuning. Tuning k or w can increase output power     , load 

voltage    and load current   , depending on the location of the 

operating point. By simultaneously adjusting k and w, one can 

increase the output current while maintaining constant output 

voltage. As a result, the operating point moves closer to MPP 

and the multi-core processor can utilize more power. Based on 

the above observations, we propose a three-step control 

strategy to perform MPP tracking, as shown in Figure 9. 

Step 1. The algorithm starts with a normal operating 

voltage (i.e.        ). Due to supply variation,     may not 

equal to     at each beginning phase of periodically triggered 

MPP tracking. In this step, the SolarCore controller will 

restore the output voltage to     by decreasing or increasing 

the load to an appropriate level. This step avoids system 

overloading and serves as preparation for the following 

stepwise tuning. 

Step 2. As Table 1 shows, the transfer ratio tuning 

direction that approaches MPP depends on the system’s 

current operating position. To determine the tuning direction, 

our techniques set the transfer ratio of the DC/DC converter 

from  to  and observe the current. An increase in 

output current suggests that the panel generates more power 

and the system is approaching to the MPP. In this case, the 

actual operating point is on the left side of the MPP (Figure 5-

b) and our algorithm proceeds to step (3) for load matching. 

On the other hand, a decrease in output current suggests a 

wrong tuning direction. In this case, we further decrease the 

transfer ratio by    , which results in a net change of k in 

transfer ratio. Consequently, our techniques resume the correct 

tuning direction and proceed to step (3) to perform load 

matching. 

Step 3. In this step, we tune the load until    equals    . 

Due to the adjustment of k in step (2), the output voltage 

changes as well. By increasing the load, we can change the PV 

operating point and decrease    until it reaches ddV .  

During each control period, our algorithm increases the 

load successively with the aid of tuning transfer ratio k, as 

discussed in steps (2) and (3). The load adaptation scheme 

used in steps (1) and (3) will be discussed in detail in Section 

4.3. Through the stepwise tuning of transfer ratio and load 

matching, our methods progressively adapt multi-core power 

consumption and eventually reach to the new MPP. The goal 

of SolarCore power management is appropriate coordination 

of the variable power supply and demand. Our MPPT-aware 

power control is orthogonal to the underlying processor 

microarchitecture (e.g. out-of-order vs. in-order) and core-

count (single-core/SMT vs. multi-core). For example, in the 

light of single-core processor, the chip-level dynamic 

voltage/frequency scaling (DVFS) or microarchitecture 

resource adaptation can be used for load tuning. 
 

Table 1: The characteristics of load tuning (    ,    and    are DC/DC output) 
Position Operation Power Load voltage Load current 

Left of MPP 

                             

                                       

                       

Right of MPP 
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Figure 9: The flowchart of SolarCore MPP tracking 
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4.3 Dynamic Per-Core Load Tuning 
In this work, we explore using DVFS to perform 

successive load tuning. To be more specific, we apply per-core 

DVFS to manage multi-core power at a fine granularity and 

achieve more effective maximum power tracking. There has 

been prior work [15] that formulates DVFS power control as 

linear programming optimization problem and using online 

linear programming to optimize power and performance trade-

offs has been proven to be efficient.  

The processor dynamic power model we assume in this 

study is         [16]. We further assume that: (1) the 

voltage scales approximate linearly with frequencies within 

typical operating ranges, i.e.         
 
, ,

, where n is the number of voltage levels and N 

is the total number of cores; (2) the total power drawn by a 

core is approximately a cubic function of its voltage level, 

i.e.        
             

 
   ; (3) the voltage scaling 

has little impact on IPC and the throughput            
of a 

core is proportional to its frequency; and (4) the available 

power for an individual core does not exceed its maximum 

power and all cores are homogeneous. Given the above 

assumptions, the per-core throughput can be expressed as 

( )     i i i i i iT IPC V bV d . The average throughput 

across all cores is 1
( ) i i i iT bV d

N
. Since the system 

working duration, which is subject to the solar power 

generation level, plays a key role in determining the overall 

performance, our goal is to maximize . This 

performance-time product (PTP) can be measured as the total 

instructions committed per day. Intuitively, to maximize the 

PTP, one needs to increase both the throughput and the system 

operation duration. 

In contrast to conventional power management problem, 

the solar power budget is not fixed, i.e.             

   
 
  

                 , where I and T is the sun 

irradiance and environment temperature, respectively. The 

unpredictable nature of PV output makes performance 

optimization much more challenging. In this paper, we 

propose throughput-power ratio (TPR) optimization, a cost-

effective PTP optimization method that can be performed 

along with load adaptation. The throughput-power ratio 

specifies the throughput speedup of a processor when 

additional power is available. When adjusting the core voltage 

by   , a power consumption change of         
    will 

occur. The relationship between throughput change and 

voltage scaling is given by        . Hence the throughput 

power ratio can be defined as  
  

  
 

  

     
  . Both    and    

can be derived using profiling information obtained from the 

performance counters and the current/voltage sensors at each 

beginning of MPP tracking. Given the throughput power ratio, 

our scheme identifies the appropriate core voltage setting 

through a heuristic process. The cores that exhibit large TPR 

will have higher priority to receive the available power. 

We store the core ID and per-core voltage level in a table 

sorted by the throughput-power ratio, as shown in Figure 10. 

As described in Section 4.2, the MPPT algorithm either 

increases or decreases the load, depending on the output 

characteristics of PV panel. Each load tuning is achieved by 

increasing or decreasing the voltage level and frequency of the 

selected core. When we increase the load, we choose the core 

with higher throughput-power ratio, which will maximize the 

performance by using additional power. When the load needs 

to be decreased, our scheme chooses the core with lower 

throughput-power ratio. Doing so decreases the multi-core 

power consumption to meet the power budget while 

minimizing the impact on the overall system performance. The 

above step is performed iteratively until the aggregated multi-

core power approximates the new budget. 

Figure 11 shows the per-core load adaptation scenario. 

The optimum load is achieved when the inflection point (the 

point where the slop of power trace changes sign) is reached. 

Since the inflection point can be stable operation states or 

transition states (i.e. depending on whether the inflection point 

is under the power budgets), the MPPT controller should not 

stop tuning immediately once an inflection point is met. For 

example, if the inflection point is above the power budget, the 

MPPT controller needs to decrease the load further. As a 

result, the system returns back to the stable load level and the 

optimum power consumption is met. Note that the load
 

Voltage levelCore ID
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rear

Front pointer will always choose the core 

with higher throughput-ratio value while 

has the capability of drawing more power 

Rear pointer will always choose the core 

with lower throughput-ratio value while 
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 // Eight cores are indexed in Core_ID[] 

 1. Update ai, bi for each core;

 2. Quick-Sort Core_ID[] based on the throughput-power ratio of each core;

 3. Restore front pointer to Core_ID[0]; restore rear pointer to Core_ID[7];

 4. if (additional power available == TRUE) { // We have additional power-headroom 

 5. if ( previous operation is to decrease the workload )

 6. break; // An optimum operating point is obtained

 7. else { // We still have to increase load successively 

 8. while (Core_ID[front] operates in its highest voltage level)

 9. front++;

 10. Increases the voltage level of Core_ID[front]; 

 11. }

 12. } 

 13. if ( power budget decrease == TRUE ) {  // We have to decrease the workload

 14. if ( previous operation is to increase the workload ) { 

// We are now above the power budget

 15. decrease the voltage level of Core_ID[rear];

 16. break; 

 17 } 

 18 else { 

 19.  while( Core_ID[rear] operates in its lowest voltage level )

 20. rear - -;

 21. Decrease the voltage level of Core_ID[rear];

 22 }

 23. }  
 

Figure 10: Per-core load adaptation policies 
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Figure 11: Per-core load adaptation scenario Figure 12: Pseudo code for per-core load tuning 
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adaptation cannot guarantee perfect utilization of the 

maximum power. On the other hand, the existence of a power 

margin is necessary since it improves the robustness of the 

system. Figure 12 shows the pseudo code of our per-core load-

tuning algorithm. The processor starts tuning its load when the 

controller detects a change in PV power supply. Successive 

load adaptation is performed at the beginning of each triggered 

tracking period. 

Note that our run-time load adaptation optimization 

applies to other components although the tuning knobs may 

vary. For example, the power tracking technique can be 

combined with dynamic disk speed control [17] to adjust the 

storage current drawn so that the optimal power consumption 

can be achieved. Exploring these alternatives and 

opportunities is beyond the scope of this paper. 

 

5. Experimental Methodologies 
We evaluated our design through heavily extended 

simulators and real-world solar traces. Our PV power model is 

built using the SPICE-based equivalent circuit simulations 

discussed in Section 2. The model takes irradiance and 

temperature profiles as input and generates the I-V and power 

profiles. We validated the correctness of maximal power point 

tracking algorithm using MATLAB and Simulink tool box 

before incorporating it into our architecture simulator. 

We used meteorological data from the Measurement and 

Instrumentation Data Center (MIDC) [18] of National 

Renewable Energy Laboratory. The MIDC provides real-time 

records from measurement stations located throughout the 

U.S. Those records cover a variety of meteorological data (e.g. 

irradiances, temperature, and wind speed) and have 

satisfactory accuracy. We chose locations that have different 

solar energy resource potentials, as shown in Table 2. For each 

location, we evaluated our design with daytime irradiance data 

(i.e. 7:30am~5:30pm) across different seasons (e.g. the middle 

of Jan., Apr., Jul. and Oct. in the year of 2009). We trigger the 

MPP tracking at each 10-minute interval. We observed that 

the tracking duration within each interval is less than 5ms. We 

applied sampling techniques in our simulations to capture the 

irradiance changes at a large time scale. 

We also compared the total solar energy drawn by 

SolarCore with that of battery-equipped standalone PV 

system. We assume that the battery is optimally charged using 

MPPT circuit and the multi-core processor runs with full 

speed using stable power supply. We assume that dynamic 

power monitor is used to ensure that all the solar energy stored 

in the battery is consumed in our simulation. We use de-rating 

factors [20] to estimate the upper bound of the utilization on 

conventional battery-equipped solar power systems. Typically, 

battery loss ranges from 5% to 25% [21] and a modern 

maximum power tracking controller has conversion efficiency 

between 93% ~ 97% [22]. We consider three levels of 

performance ranges, as shown in Table 3. 

We simulated a multi-core system comprised of 8 Alpha 

21264 processors, where each core has private L1 and L2 

caches. We assume a frequency of 2.5GHz and a 90nm 

technology with a maximum supply voltage of 1.45V. Table 4 

summarizes our core configuration. We used a cycle-accurate 

multi-core simulator integrated with the modified power 

models from Wattch [23] and CACTI [24]. Both dynamic and 

leakage power are modeled. We assume that the dynamic 

voltage and frequency scaling schemes employed in each core 

are similar to Intel’s SpeedStep techniques [25]: each core 

supports 6 frequency and voltage operating points and the 

frequency can be scaled from 2.5GHz down to 1GHz with a 

300MHz stepping. The voltage scales approximate linearly 

with frequency within typical operating ranges; six voltages 

ranging from 1.45V to 0.95V with a 0.1V stepping are used. 

To support DVFS, the Wattch and CACTI power models are 

extended to use the voltage and frequency as input and then 

adjust the power estimation for a core when the operating 

status changes. For the performance analysis, we used the 

performance-time products rather than IPC since the 

frequency varies across the entire program execution. 

We use workloads from the SPEC2000 benchmark suite 

shown in Table 5. All workloads were simulated using 

reference inputs. To form multi-programming workloads, we 

use a program’s average energy-per-instruction (EPI) and 

categorize the benchmarks as being high-EPI (EPI 15nJ), 

moderate-EPI (15nJ EPI 8nJ), or low-EPI (EPI 8nJ). 

We run each benchmark in their representative execution 

intervals and the EPI is obtained by calculating the average-

energy consumed per-instruction. In Table 5, the High-, 

Moderate- and Low- EPI workloads (H1, H2; M1, M2; L1, L2) 

consist of 8 benchmarks from each category. The High-

Moderate- and Moderate-Low-EPI workloads are formed 

using four benchmarks from each category. We generated both 

homogeneous and heterogeneous workloads. 
   

Table 2: The evaluated geographic locations [18, 19]  Table 3: Performance levels of battery-based PV systems 

Station Location 
KWh/  /day 

on average 

Solar energy 

potential 
 Levels High 

Moderate 

(typical) 
Low 

PFCI Phoenix, AZ > 6.0 Excellent  MPP Tracking efficiency 97% 95% 93% 

BMS Golden, CO 5.0 ~ 6.0 Good  Battery round-trip efficiency 95% 85% 75% 

ECSU Elizabeth City, NC 4.0 ~ 5.0 Moderate  Overall de-rating factors 92% 81% 70% 

ORNL Oak Ridge, TN < 4.0 Low  Efficiency range 81%~92% 70%~81% < 70% 

Table 4: Simulated machine configuration 

Parameter Configuration Parameter Configuration 
Frequency  2.5/2.2/1.9/1.6/1.3/1.0GHz ROB Size 98 entries 

Voltage  1.45/1.35/1.25/1.15/1.05/0.95V LSQ 48 entries 

Width  4-wide fetch/issue/commit Integer ALU 4 I-ALU, 2 I-MUL/DIV, 2 Load/Store 

Issue Queue 64 FP ALU 2 FP-ALU, 2 FP-MUL/DIV/SQRT 

ITLB 128 entries, 4-way, 200 cycle miss DTLB 256 entries, 4-way, 200 cycle miss 

Branch Predictor 2K entries Gshare10-bit global history  L1 I-/D- Cache 64KB, 4-way, 64 B/line, 2 ports, 3 cycle access 

BTB 2K entries, 4-way L2 Cache 2MB, 8-way, 128 B/line, 12 cycle access 

Return Address Stack 32 entries RAS  Memory Access  64 bit wide, 400 cycles access latency 


  



Table 5: The simulated multi-programmed workloads 

E
P

I 

High H1(art×8) H2 (art×2, apsi×2, bzip×2, gzip×2) 

Moderate M1(gcc×8 ) M2 (gcc×2, mcf×2, gap×2, vpr×2) 

Low L1(mesa×8) L2 (mesa×2, equake×2, lucas×2, swim×2) 

High-Moderate HM1(bzip×4, gcc×4) HM2 (bzip, gzip, art, apsi, gcc, mcf, gap, vpr) 

Moderate-Low ML1(gcc×4, mesa×4) ML2 (gcc, mcf, gap, vpr, mesa, equake, lucas, swim) 
 

Table 6: The evaluated power management schemes 
Algorithm MPPT Load adaptation Scheduling method 

Fixed-Power No DVFS Linear programming optimization with a fixed power budget 

MPPT & IC Yes DVFS Tuning individual core until reaching its highest/lowest V/F level 

MPPT & RR Yes DVFS Round-robin scheduling 

MPPT& Opt Yes DVFS Optimized scheduling based on throughput-power ratio 
 

6. Evaluation Results 
We compared the efficiency of SolarCore with various 

power management policies, as summarized in Table 6. The 

Fixed-Power is a non-tracking power management scheme 

which assumes a constant power budget during the entire 

workload execution. In contrast to SolarCore, MPPT&IC and 

MPPT&RR both apply tracking control techniques but employ 

different scheduling policies to perform load adaptation. To be 

more specific, MPPT&IC keeps tuning individual core until 

reaching its highest or lowest V/F level while MPPT&RR 

tends to distribute the power budget variation evenly across all 

the cores in a round-robin fashion. The MPPT&Opt (i.e. our 

default configuration for SolarCore) selects cores using the 

proposed throughput-power ratio optimization method.  

Since we are primarily interested in green energy 

powered duration, the operation duration we refer to in this 

paper will always be the daytime duration. In addition, the 

effective operation duration means the duration that electrical 

load successfully draws power from the solar panel. During 

effective operation duration, SolarCore performs maximal 

power point tracking and workload run-time optimization. 

Due to the intermittency of renewable resource, effective 

operation duration will be shorter than the operation duration. 
 

6.1 MPP Tracking Accuracy 
We first examined the MPP tracking accuracy across 

different workloads. Figures 13 and 14 provide a graphic view 

of the tracking results. In each Figure, we plotted the 

maximum power trace and the actual power extracted using 

MPP tracking. We present results for regular (e.g. Jan @AZ) 

and irregular (e.g. July @AZ) weather patterns. As can be 

seen, MPP tracking technique ensures that actual power 

consumption closely follows the ideal maximal power.  

For high EPI workloads (e.g. H1), large ripples in power 

tracking are generated due to the high variation in load power. 

Power ripples, together with the unpredictable nature of the 

environment, affect the use of renewable energy and the 

system reliability. Low EPI workloads and heterogeneous 

workloads are observed to have small ripples, as can be seen 

in Figures 13(b)-(c) and 14(b)-(c). The former manifests small 

power ripples since they have lower average energy per 

instruction, which results in relatively small power fluctuation 

amplitude; the latter exhibits small ripples because a mix of 

diverse workloads can smooth the power fluctuation and 

relatively steady power consumption is obtained. 

Our dynamic load adaptation scheme reduces the impact 

of load power ripples by leaving a small power margin 

between the actual load power consumption and the solar 

power budget. This power margin slightly degrades the 

tracking accuracy but improves the reliability. To quantify the 

impact of power margin on the tracking accuracy, we 

calculated the relative tracking error. In each tracking period t, 

the relative tracking error is defined as               , 

where   is the actual power consumption and    is the power 

budget. Table 7 shows the geometric mean of the errors on 

each geographic location across different weather patterns. 

Due to the reduced power margin, the low EPI workloads (e.g. 

L1) show relatively small tracking errors. Similarly, compared 

with H1, heterogeneous workloads (e.g. HM2) also have small 

tracking error as well.  
 

   
(a) H1 (high EPI, homogeneous) (b) HM2 (high EPI, heterogeneous) (c) L1 (low EPI, homogeneous) 

Figure 13. MPP tracking accuracy across different workloads (Jan. @ AZ) 

   
(a) H1 (high EPI, homogeneous) (b) HM2 (high EPI, heterogeneous) (c) L1 (low EPI, homogeneous) 

Figure 14: MPP tracking accuracy across different workloads (Jul. @ AZ) 

Table 7: The average relative error 
 

100 200 300 400 500 600
0

20

40

60

80

100

Time (min)

P
o
w

e
r 

(w
a
tt
)

 

 

Maximal Power Budgets

Actual Power Consumptions

100 200 300 400 500 600
0

20

40

60

80

100

Time (min)

P
o
w

e
r 

(w
a
tt
)

 

 

Maximal Power Budgets

Actual Power Consumptions

100 200 300 400 500 600
0

20

40

60

80

100

Time (min)

P
o
w

e
r 

(w
a
tt
)

 

 

Maximal Power Budgets

Actual Power Consumption

100 200 300 400 500 600
0

50

100

150

Time (min)

P
o
w

e
r 

(w
a
tt
)

 

 

Maximal Power Budgets

Actual Power Consumption

100 200 300 400 500 600
0

50

100

150

Time (min)

P
o
w

e
r 

(w
a
tt
)

 

 

Maximal Power Budgets

Actual Power Consumptions

100 200 300 400 500 600
0

50

100

150

Time (ms)

P
o
w

e
r 

(w
a
tt
)

 

 

Maximal Power Budgets

Actual Power Consumption



 Homogeneous Less homogeneous Less heterogeneous Heterogeneous 

H1 M1 L1 HM1 ML1 H2 M2 L2 HM2 ML2 

AZ 

Jan 10.0% 9.2% 7.7% 8.9% 7.1% 8.5% 7.4% 8.4% 6.9% 7.6% 

Apr 12.6% 9.2% 8.3% 10.6% 9.3% 10.7% 9.3% 9.0% 10.2% 8.3% 

Jul 10.0% 7.3% 7.7% 9.0% 7.6% 9.6% 7.1% 7.0% 7.9% 6.8% 

Oct 9.8% 7.8% 7.7% 8.6% 8.0% 7.0% 7.6% 7.4% 7.4% 6.6% 

CO 

Jan 14% 11.3% 10.8% 12.0% 10.6% 11.2% 10.0% 9.2% 9.0% 11.3% 

Apr 13.2% 8.9% 7.8% 10.8% 7.5% 9.7% 8.0% 6.8% 9.8% 8.9% 

Jul 10.1% 8.2% 7.6% 8.9% 7.9% 8.5% 7.6% 6.6% 8.1% 6.5% 

Oct 12.1% 9.2% 7.9% 9.2% 8.1% 9.5% 8.6% 7.8% 8.1% 7.0% 

NC 

Jan 13.0% 10% 11.4% 12.4% 10.4% 11% 8.9% 10% 13.3% 9.3% 

Apr 22.0% 17% 19% 18.5% 16.4% 21% 14.3% 16.3% 16.3% 13.8% 

Jul 11.6% 8.3% 5.7% 8.6% 5.4% 7% 4.4% 4.0% 4.9% 4.5% 

Oct 15.4% 14.1% 12.0% 14.3% 12.1% 14.2% 12.5% 11.9% 13.3% 11.1% 

TN 

Jan 10% 8.2% 6.6% 8.0% 6.00% 13.2% 6.1% 7.4% 9.0% 8.7% 

Apr 15.1% 14.4% 15.3% 16% 14% 13.1% 12.9% 13% 14.4% 12.9% 

Jul 13.4% 9.7% 8.5% 9.4% 8.5% 13% 9.0% 8.2% 7.7% 7.6% 

Oct 18.0% 13.8% 14.3% 14.7% 13.3% 12.9% 11.9% 13.4% 12.7% 11.6% 

 
 

        
EPI: High   Low 

6.2 Fixed Power Budget 
For the direct-coupled PV systems, the load starts to 

operate using solar power when the amount of renewable 

energy exceeds a power-transfer threshold. We evaluated the 

solar energy utilization on multi-core systems that use power-

transfer threshold as a fixed power budget. This fixed power 

budget ensures that the multi-core systems operate reliably 

with sufficient power. If the power supply from renewable 

power source falls below the power-transfer threshold, the 

multi-core system will switch to the secondary power source 

(e.g., grid utility). 

We simulated both homogeneous and heterogeneous 

workloads with high and low EPI. For each weather pattern, 

we calculated the effective operation duration under different 

power budget thresholds, as shown in Figure 15. The threshold 

affects processor performance-time product (PTP) in both 

throughput and effective operation duration. A higher power-

transfer threshold will make the multi-core processor run at 

higher voltages and frequencies but only for short durations. A 

conservative, low power-transfer threshold operating mode 

will have longer duration but lower clock frequencies. 

Intuitively, the processor should run under higher (lower) 

power budget to maximize its performance when the effective 

operation duration declines slowly (rapidly). Extensive 

simulations shown in Figures 16 and 17 further proof this. 

We calculated the accumulated energy drawn by the 

multi-core processor and the performance in terms of PTP. All 

the results are normalized to those obtained on SolarCore. As 

shown in Figures 16 and 17 (average results across all 

benchmarks), the maximal solar energy drawn does not 

guarantee maximal performance (e.g. July @CO and Apr 

@TN). The maximal workload performance may occur under 

a high power budget (e.g. Apr @AZ), a moderate power 

budget (e.g. Jan @TN) or even a low power budget (e.g. Apr 

@NC). Therefore, a single, optimal fixed power budget for the 

multi-core system does not exist. Even under the optimal fixed 

power budget, the best energy utilization and PTP that the 

Fixed-Power schemes can achieve is less than 70% of that 

yielded on maximum power tracking. In other words, 

SolarCore outperforms Fixed-Power control scheme by at 

least 43% (i.e.              ) in terms of both energy 

utilization and workload performance. 

6.3 Energy Utilization 
The energy utilization of SolarCore depends on the solar 

resource potential of the geographic location. When the PV 

generation is too low to power the load, SolarCore will draw 

power from the utility via transfer switch and the multi-core 

processor will act as a traditional CMP. We calculated the 

energy utilization (i.e. actual total solar energy consumed / 

theoretical maximum solar energy supply) with various load 

adaptation scenarios. As shown in Figure 18, the average solar 

energy utilization drops when the renewable resource potential 

is low (e.g. TN). For locations with abundant solar resource 

(e.g. AZ), SolarCore draws 5% more power compared to a 

typical battery equipped PV system which has an energy 

utilization upper bound of 81%.  

 

   
 

(a) Slowly decline (b) Linearly decline (c) Rapidly decline 

Figure 15: Operation durations on different power budget thresholds (x-axis: watts). The operation duration may decline 

slowly (a), linearly (b) or rapidly (c). 
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(a) AZ (b) CO (c) NC (d) TN 

Figure 16: Normalized solar energy usage under different fixed power budget (x-axis: watts) 
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(a) AZ (b) CO (c) NC (d) TN 

Figure 17: Normalized PTP under different fixed power budget (x-axis: watts) 

 
Figure 18: Average energy utilization across different geographical locations (The upper bound of utilization on 

battery-based systems is estimated using de-rating factors) 

  

Figure 19: Effective operation duration of  

SolarCore under different weather patterns 

Figure 20: Average solar energy utilization under 

different tracking durations  

The primary reason of low energy utilization in NC and 

TN is that long effective operation duration cannot be 

guaranteed. As shown in Figure 19, the effective operation 

duration ranges from 60% to 90% during the daytime, 

depending on the weather patterns. The effective operation 

duration in AZ is always longer and therefore, the average 

energy utilization is higher. Figure 20 shows the average 

energy utilization with different effective SolarCore operation 

duration. The solar energy utilization decreases significantly if 

SolarCore has to be powered by the backup supply for a long 

duration (e.g. Oct @NC and Oct @TN). Given that 80% of the 

daytime is operated using power tracking, SolarCore can 

guarantee 82% or more solar energy utilization on average. 

In addition to the weather patterns, different load 

adaptation methods and workload characteristics affect the 

utilization as well. In Figure 18, we observe that MPPT&Opt 

load adaptation method has 2.6% lower energy utilization 

compared with that of MPPT&RR. This is because 

MPPT&Opt relies on successively tuning low-power, high-

throughput cores to improve the performance. The 

optimization method that MPPT&Opt used implicitly reduces 

the overall load energy consumption while improving the 

overall performance. Compared with the high EPI workloads, 

low EPI workloads exhibit higher energy utilization due to the 

fine-grained load power tuning and the reduced power margin. 

By increasing the granularity of DVFS level, one can increase 

the control accuracy of MPPT and the power margin can be 

further decreased without significantly affecting the MPPT 

robustness. 
 

6.4 Performance Improvement 
We compared SolarCore with the high efficiency battery-

equipped systems. Battery-L denotes the lower bound of a 

high-efficiency battery-equipped system, which has a total 

energy conversion efficiency of 0.81. Battery-U denotes the 

upper bound of a high-efficiency battery-equipped system, 

which has a total energy conversion efficiency of 0.92. Figure 

21 shows the performance of SolarCore with different load 

scheduling methods across different weather patterns. All the 

results are normalized to Battery-L. 

In Figure 21, MPPT&IC shows the lowest performance 

because it concentrates the solar power into fewer cores. The 
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Figure 21: Normalized performance time product (PTP) with different load scheduling methods 
 

throughput-power ratio   
  

  
 

  

     
  shows that the 

performance return decreases when we allocate the limited 

available power to those high V/F level cores. MPPT&RR 

increases the performance by distributing the solar power to 

each individual core in a round-robin fashion. In this case, 

each core runs in a moderate V/F level with a relatively high 

performance per watt. The average normalized performance 

of MPPT&IC, MPPT&RR and MPPT&Opt is 0.82, 1.02 and 

1.13, respectively. The normalized performance of Battery-U 

is 1.14. As can be seen, with runtime throughput-power ratio 

optimization, MPPT&Opt improves the performance by 

37.8% compared with MPPT&IC and 10.8% compared with 

MPPT&RR. Compared with the most efficient battery-based 

MPPT systems, SolarCore yields less than 1% performance 

degradation. Moreover, SolarCore is environmental friendly 

and does not have the life-time problem as the expensive 

battery-equipped PV systems. 
 

7. Related Work 
To fully exploit the energy potential, systems powered 

by renewable source require power source aware control 

techniques [26, 27].  Pioneering work is most seen in low-

power embedded system area [28, 29, 30]. Li et.al [27] 

proposed using load matching [10, 31] to exploit the CPU 

slack time of a solar-powered wireless handhold system. 

Clark et.al [30] demonstrated a heuristic control scheme to 

manage a battery-less solar-powered RFID system. Stewart 

et.al [26] discussed the intermittency nature of renewable 

energy and proposed the power transfer system. Different 

from prior work, we take the first step to design a renewable 

energy aware power management technique to coordinate 

power provisioning control and load matching. Our technique 

enables joint optimization of solar energy utilization and 

workload performance.  

Many algorithms have been proposed for MPP tracking 

[3, 29, 32]. A detailed comparison between different MPP 

tracking methods can be found in [33]. Different approaches 

of modeling a PV panel is discussed in [8, 9]. In this paper, 

we show that the multi-core system has the potential to 

operate autonomously without relying on complex control or 

energy storage elements. 

Conventional multi-core power management techniques 

assume constant power supply and therefore they are largely 

workload-driven. The goals of these techniques are either 

reducing power consumption by improving power efficiency or 

maximizing the performance under limited power supply. For 

example, [15] proposed a variability-aware DVFS control 

method using linear programming to optimize average 

throughput based on given power budget. [13] showed that on 
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chip regulators have the potential of achieving fast fine-grained 

DVFS power control. There has been prior work that utilized 

DVFS to achieve multi-core power management [34, 35, 36, 

37, 38]. [34] investigated global power management and 

evaluated different control policies in light of high performance 

and power efficiency. [36] proposed a fine-grained power 

management scheme working on the nanosecond scale. In this 

study, we exploit DVFS for dynamic load tuning.  Different 

from conventional energy source, solar energy is not a constant 

power source and the solar power generated can vary 

significantly with different loads. 
 

8. Conclusions 
Computer systems operated using energy generated from 

conventional fossil fuel increases the total cost of ownership 

and causes environment impact. Clean and renewable energy 

sources such as photovoltaic power generation are one of the 

most promising technologies for the future of green 

computing in IT infrastructures. Unlike conventional energy 

sources, PV modules exhibit non-linear I-V characteristics 

and their output power changes with the variation of light 

intensity and ambient temperature. Therefore, the best design 

practice of solar energy driven high performance computing 

system requires 1) appropriate power provisioning control to 

harvest the renewable energy and reduce the impact of supply 

variation and 2) dedicated load adaptation schemes that 

optimize the workload performance.  

In this paper, we propose SolarCore, novel power 

management schemes for solar energy driven multi-core 

processors. While existing techniques seek to minimize multi-

core power dissipation under performance constraints or to 

maximize throughput for a given power budget, our 

techniques harvest the maximum amount of solar energy to 

maximize the power budget for optimal throughput without 

using short lifetime and expensive storage elements. 

Furthermore, SolarCore applies load optimization based on 

the workload throughput-power ratio to ensure that the 

dynamic load tuning across multiple cores achieves the 

optimal performance. Because of its ability to extract 

additional solar energy and its ability for load optimization, 

SolarCore boosts multi-core processor performance by 43% 

compared with conventional fixed power budget scheme and 

10.8% compared with round-robin load adaptation. We expect 

that the enabling techniques we proposed will open new 

research opportunities on multi-core power management in 

light of the clean, renewable energy. As our future work, we 

will explore the full-system based solar power management 

techniques for server architecture that includes other hardware 

components such as memory, disk and network interface. 
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