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Abstract ― The necessity for capping carbon emission has 
significantly restricted the potential of modern data centers. 
For this matter, both industry and academia are proactively 
seeking opportunities on cross-layer power management 
schemes that could open a door for sustainable high-
performance computing platform. In this paper we 
investigate an emerging trend in the IT industry: using 
promising onsite distributed generation (DG) techniques to 
provide premium clean energy to the computing load. 
 We develop data center power demand shaping (PDS), 
a novel technique that allows data centers to utilize onsite 
green energy efficiently. In contrast to prior design, PDS 
takes advantage of a so-far unexplored power supply 
feature, i.e., the load following capabilities of DG systems 
to avoid the high performance penalty issue incurred during 
supply tracking. In addition, PDS features two adaptive 
power management schemes: DGR Boost and UPS Boost. 
These two workload-aware optimization methods leverage 
mature computer tuning knobs to achieve attractive data 
center performance improvement. Using real-world data 
center traces and industry data of distributed generation 
systems, we show that our technique can come within 1.2% 
performance of an ideal oracle, which is roughly a 37% 
improvement over existing supply tracking based design. 
Our design could save over 100 metric tons of carbon 
emissions annually for a 10MW data center.  
 

1. Introduction 
 Computer system design inevitably enters the landscape 
of design for sustainability as the data center power 
footprint has become a global concern. In the past ten years, 
Google server’s electricity demand has increased almost 20-
fold [1]. The huge IT energy consumption not only 
increases the total cost of ownership (TCO) but also leaves 
profound impact on the environment. According to a 
McKensey Quarterly report, the annual CO2 emissions of 
computing systems will research 1.54 metric gigatons 
within eight years, which could make IT company among 
the biggest greenhouse gas emitters by 2020 [2]. 
Consequently, renewable energy powered data centers are 
gaining growing popularity in both IT industry and 
academia as a way to tackle the dual challenges of energy 
shortage and environmental issues [3-9].  
 Existing proposals on renewable energy-aware power 
management schemes largely emphasize adapting the 
computer load to the time-varying power budget [3-9]. We 

broadly categorize these techniques into two types: 1) load 
tuning based design; and 2) job scheduling based design. 
While the former approach leverages performance scaling 
techniques (e.g., DVFS and server power state tuning) to 
track the time-varying renewable power budget [3-5], the 
later approach schedules job requests based on the 
renewable energy availability [6-9]. Since these techniques 
are driven by variable and intermittent power supply, they 
typically suffer extended job turnaround time. They can 
hardly maintain desired instantaneous throughput and 
service availability without substantial utility grid support.  
 In this paper we present a fundamentally different 
design, which allows near-oracle performance of computing 
systems on a variety of green energy resources. The key 
idea of our approach is that we put emphasis on enabling 
renewable energy supply to follow data center power 
demand, rather than forcing the IT load to track the variable 
power budget. To achieve this goal, we leverage distributed 
generation initiated by the smart grid technology [10].  
 Distributed generation (DG) refers to a variety of small, 
modular electric generators near the point of use. In recent 
years, DG has gained tremendous interest as an alternative 
source of power for IT industry. According to the U.S. 
Environmental Protection Agency (EPA), using DG in data 
center design could achieve great energy savings, significant 
environmental benefits, and high power reliability [11].  
 As shown in Figure 1, DG system encompasses a wide 
range of green energy technologies, such as photovoltaic 
module (PV), wind power, fuel cell, and bio-fuel based gas 
turbine. While PV/wind power depends on environmental 
condition, the outputs of fuel cells and gas turbines are 
tunable. They can provide a key supporting service called 
load following [12], which refers to the use of online 
generation equipment to track the changes in customer loads. 
Therefore, one can take advantage of the load following 
capabilities of these tunable DG systems to meet the time-
varying IT power demand. Such design is non-trivial 
because it enables data center to run on renewable energy 
sources without compromising workload performance. 
  When employing distributed generation to build a better 
data center power provisioning architecture, challenges arise 
due to the unpredictable and fluctuating data center load. 
Figure 2 shows typical load following scenario that tracks 
customer load every 30 minutes. As can be seen, DG 
systems cannot provide fine-grained load demand following 
due to their limited response speed. 
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Figure 1: Distributed generation powered data center. 
The system can follow customer’s load power demand  Figure 2: Load following scenario. Frequent IT load 

fluctuation hinders efficient load following 
 
 To handle the moment-to-moment load power demand, 
DG systems typically rely on large energy storage elements 
[12]. Such design not only increases the TCO (due to 
storage cost), but also incurs up to 25% roundtrip energy 
loss. More importantly, without careful power management, 
the disturbing load can cause frequent and excessive battery 
discharging activities, which may degrade the lifetime of 
these expensive electrical elements and quickly deplete the 
stored energy that is crucial for handling emergencies. 
 We propose data center power demand shaping (PDS), 
a novel power management approach that enables high-
performance low-overhead data center operation on pure 
renewable energy sources. The novelty of PDS is two-fold. 
First, PDS intelligently trims data center load power and 
enables DG systems to follow the power demand efficiently. 
Second, PDS features two adaptive load tuning schemes that 
could boost data center performance and enable near-oracle 
operation during power demand trimming process. As a 
cross-layer power optimization scheme, our power 
management module resides between front-end distributed 
generation and back-end computing facilities to provide a 
coordinated tuning between the supply and load.  
 This paper makes the following contributions: 
• We propose sustainable data center design that 

leverages onsite distributed generators. We characterize 
load following, a so-far unexplored power provisioning 
scheme in data centers. We show that a well designed 
load power management scheme could help data center 
operators to achieve the optimal benefits of load 
following. This means 8% additional energy utilization 
improvement, 1.3X battery lifetime increase, and 
significant savings in energy storage cost. 
 

• We propose power demand shaping (PDS) mechanism 
for optimizing load following efficiency and workload 
performance in DG-powered data centers. Overall, PDS 
achieves 98.8% performance of an ideal oracle design. 
Compared to recent supply tracking based approach, 
PDS could improve the job turnaround time by 37% on 
average. To achieve the same performance as PDS, the 
state-of-the-art green data centers have to rely on utility 
power for about 50% of its runtime. Furthermore, PDS 
minimizes the overhead on energy storage devices, and 
improves the battery lifespan by up to 26%. 

The rest of this paper is organized as follows. Section 2 
introduces DG and microgrid. Section 3 characterizes load 
following. Section 4 proposes power demand shaping 
mechanism and our adaptive load tuning schemes. Section 5 
describes experimental methodologies. Section 6 presents 
our evaluation results. Section 7 discusses related work and 
Section 8 concludes this paper. 

2. Background 
The IT industry is actively looking for opportunities in 

non-conventional power provisioning solutions such as 
distributed generation. For example, Apple [13] and 
Microsoft [14] have built their data centers that incorporate 
fuel cell technology; eBay [15] also plans to install 30 large-
scale fuel cells which will provide 6MW power to its data 
center. HP [3] recently considers using bio-fuel based gas 
turbine in its Net-Zero data center. In this section, we 
introduce distributed generation technologies and discuss 
their impacts on data center design and operation.  

2.1 Distributed Generation and Micro-grid 
 Distributed generation (DG) [10, 11] is an emerging 
trend of generating power locally to provide reliable, secure, 
and sustainable electrical energy to its consumers. 
Distributed generation encompasses several promising clean 
energy technologies such as gas turbine, biomass power, 
and fuel cell. These non-conventional power generators are 
known as microsources or distributed energy resources 
(DERs) which are modular units of small capacity (typically 
between several kilowatts to tens of megawatts) [16].  
 In order to harness clean energy from DERs, microgrid 
is proposed as a local electricity distribution network that 
focuses on flexible and intelligent management of DG 
systems. The responsibility of microgrid is to dynamically 
control the power flow in response to any disturbance and 
load changes. Although microgrid can import/export power 
from/to the utility power line, it is usually the last resort due 
to the low transmission efficiency, high peak power cost, 
and sustainability consideration [12].  
 In this paper we focus our attention on minimizing data 
center’s reliance on conventional utility grid for reducing 
carbon footprint. Such design is also often preferable when 
the utility power is less reliable in some developing 
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countries. Further, for data centers that are built in remote 
areas, a grid-dependent operation can help to eliminate the 
expensive utility power line extensions (around $10k per km) 
[16]. 

2.2 Load Matching Challenge 
 Different from conventional bulk grid which has large 
amount of capacity inertia, distributed generation does not 
have reserved capacity [11]. The supply and storage of 
energy must be planned carefully in microgrid to ensure 
instantaneous demand and long-term energy balance [10].   
 In Table 1 we show the response speed of typical DG 
systems. Most energy storage devices have very fast 
response speed that could release power almost immediately 
(in ms level). As a result, they are widely used to handle 
moment-to-moment load oscillation and disturbances, which 
is referred to as regulation [12]. In contrast, gas turbines and 
fuel cells are typically too slow to meet the load power 
variation since the change of the engine speed or the 
chemical reaction in the fuel requires time. Therefore, they 
are used to track the intra- and inter-hour changes in 
customer loads, which is referred to as load following [12].  
 Although there is no strict rule to define the temporal 
boundary between regulation and load following, typically 
load following occurs every 10~15 minutes or more. It is 
not economically feasible to frequently adjust the output of 
distributed generators due to the increased performance cost 
and decreased fuel utilization efficiency.  
 The energy balance issue arises due to the fluctuating 
load in data centers and other computerized environments. 
Dynamic power tuning techniques (e.g., DVFS), frequent 
on/off power cycles, stochastic user requests, and data 
migration activities can cause varying degree of load power 
variation. Since distributed generators are generally placed 
near or at the point of energy consumption, they are often 
exposed to the full fluctuation of local IT loads rather than 
experiencing the averaging effect seen by larger, centralized 
power system. As a result, energy balancing becomes rather 
difficult in distributed generation powered data centers.  

DG Systems Response Speed Startup Time 
Lead-acid battery Immediate N/A 
Flywheel Immediate N/A 
Fuel cell 30 sec ~ 5 min 20~50 min 
Gas turbine 10s of seconds 2~10 min 

Table 1: Response speed of DG systems [17,18] 
 

3. Analyzing Load Following in Data Centers 
 In this section we characterize load following in data 
centers using real-world HPC workload traces and industry 
data of distributed generation systems (detailed in Section 5). 
We show that enabling load following in data centers is a 
challenging task. Conventional load following scheme 
results in sub-optimal energy utilization, low energy storage 
lifetime, and poor cost-effectiveness.  

3.1 Energy Utilization 
 The energy utilization problem arises as typical 
microsources are not able to respond rapidly to the frequent 
IT load variation. In Figure 3 we show the cumulative 
distribution functions (CDFs) of job runtime in HPC data 
centers. We consider both short-running workload (average 
job runtime < 1h) and long-running workload (average job 
runtime > 1h) traces. For short-running workload traces, we 
observe that more than 40% submitted jobs are finished 
with 100 seconds. For long-running workload traces, nearly 
30% of the submitted jobs show short runtime that does not 
exceed 10 minutes. Most of these short jobs will be granted 
with individual computing nodes, resulting in transient load 
power demand fluctuation.  
 Workload fluctuation can be the major obstacle of 
achieving high renewable energy utilization in a distributed 
generation powered data center. Figure 4 shows the energy 
utilization of data center with varying load following 
intervals. We dynamically adjust the DG power output 
based on the peak power demand of the last load following 
period. For a 15-min load following, the energy utilization 
is 97% on average.  For a 60-min load following, the energy 
utilization drops to 90% on average. Apparently, the energy 
efficiency decreases as load following becomes coarse-
grained. However, even if we perform load following on an 
hourly basis, the energy utilization still outperforms over-
provisioning (Over-P) based design which has an average 
energy utilization of 66%.  

(a) Short-running traces (b) Long-running traces 
Figure 3: CDF of workload runtime in a zoomed view. 
Short jobs may result in fine-grained load fluctuations 

3.2 Energy Storage Lifespan 
 Batteries are critical components in both distributed 
generation systems and uninterruptable power supply (UPS) 
systems. These energy storage devices are prone to 
electrical wear out under irregular charging and discharging 
regime [19]. Throughout the history of battery discharge 
event, two factors affect the battery failure rate significantly. 
The first is the depth of discharge (DOD), which indicates 
how much stored energy has been used (0% DOD = full 
capacity, 100% DOD = empty). The second factor is the 
discharge current which represents the rate of discharging. 
The battery lifetime will be decreased whenever the battery 
cell is discharged at a faster rate than the rated rate [20]. 
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Figure 4: The energy utilization decreases when load following becomes coarse-grained. Over-provisioning
based design (Over-P) is the worst-case which always generates the peak power (no load following capability) 
 

 In this study we use a battery lifetime evaluation 
method that captures the aforementioned two primary 
determinants of battery failure [20]. This technique predicts 
the battery lifespan based on manufacture’s battery 
performance data and the measured battery usage record of 
duration T. Assume the rated charge life (in Ah) is LR. The 
estimated lifetime is given by: 

=R R
eff act
i i i ii

TL TL
L

d A B d
=
∑ ∑

  ,                      (3.1) 

where deff is the effective discharge of a single discharge 
event, dact is the measured actual discharge, Ai is the scaling 
factor that represents the capacity degradation effect under 
high discharging rate, and Bi is the scaling factor that 
represents the lifetime degradation effect under high DOD. 
Both scaling factors are calculated from the best-fit 
functions of the manufacture’s data sheets: 

1( , )i R dA f C I=    (3.2) 
2 ( / )i R AB f D D=    (3.3) 

 In equations 2 and 3, Ai is a function of the rated amp-
hour capacity (CR) and the actual discharging current (Id); Bi 
is a function of the rated depth of discharge (DR) and the 
measured actual depth of discharge (DA). We model a 12V 
6-cell valve-regulated lead-acid battery (VRLA), which is 
widely used in today’s UPS systems.  Figure 5 shows the 
battery behavior under varying discharging current and 
DOD. While the rated capacity is 24Ah at a 20-hour 
discharging rate, the capacity drops to only 12Ah at a 15-
min discharging rate (15 min is the typical UPS ride-though 
duration). Compared to the 40% constant DOD operation, 
the battery life will decrease by 50% at constant 80% DOD.  

 
(a) Capacity vs dischage rate (b) Cycle life vs DOD 

Figure 5: Performance data of VRLA battery. High DOD 
and discharge rate will shorten the battery lifespan 

 In Figure 6, the load following policy is to adjust the 
distributed generation output based on the mean power 
demand of the last period. The minimal load following 
interval is 5-min and all the results at other interval values 
are normalized to it. Since the actual granularity of load 
following depends on several factors (e.g., the generator 
characteristic, control latency, and operation policy), the 
battery lifespan can vary significantly. If the best achievable 
(or economically feasible) load following interval is 30-min, 
the system will incur 57% battery lifetime degradation. This 
also implies that if the load power demand becomes less 
fluctuating, we can achieve 1.3X lifetime improvement.  

3.3 Cost Analysis 
 Depending upon the load following schemes, the total 
cost of ownership (TCO) may vary. The main reason is that 
each load following scheme requires different amount of 
onsite battery capacity. Poor load following management 
and bursty load power demand increase the burden of 
regulation significantly, and therefore require high-capacity 
energy storage devices.  
  In Figure 7 we show the amortized capital expenditure 
(CapEx) of batteries under varying capacities and load 
following intervals. We assume a 10MW data center scale 
for both short-running and long-running workloads. For 
each load tuning interval value, we calculate the minimum 
required battery capacity (i.e., 1X) that can safely meet the 
load power regulation requirement. We then scale up the 
battery installation capacity (up to 2X) to perform a 
sensitivity analysis. We calculate the amortized cost over 
the battery’s lifetime. As shown in Figure 7, small capacity 
does not necessarily mean cost saving since each battery cell 
in this case experiences more regulation events and fails 
quickly. Compared to battery capacity scaling, load 
following shows greater influence on the CapEx and results 
in up to 50% cost savings on batteries.  
Summary: Due to data center load power fluctuation, peak 
power based load following incurs energy cost while mean 
power based load following incurs battery capacity cost. 
Batteries are crucial energy regulation components but incur 
up to 57% lifetime degradation under fluctuating IT load. 
To improve overall design efficiency, we must intelligently 
integrate load following into data center operation.  
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Figure 6: Normalized battery lifespan under different load following intervals. Conventional load following 
schemes cannot handle the bursty load and therefore incur varying degree of battery wear-out 

 

(a) LANL (short-running workload) (b) Seth (long-running workload) 
Figure 7: Battery cost under different load following intervals and capacity. Due to frequent power demand 
fluctuation, small battery capacity does not show the cost advantage it should have 

 

4. Enabling Distributed Generation Powered 
Sustainable High-Performance Computing 

 In this section we propose power demand shaping 
mechanism to enable efficient load following in distributed 
generation systems. Our design overcomes many drawbacks 
of conventional load following such as low energy 
utilization, large battery requirement, and short battery 
lifespan. We first introduce the architecture of distributed 
generation powered data centers. Afterwards, we will 
demonstrate our adaptive load tuning scheme that 
intelligently coordinates DG system and the IT load to allow 
high-performance sustainable computing.   

4.1 Architecture Overview 
 Figure 8 depicts our distributed generation powered 
data center. We adopt typical microgrid power provisioning 
hierarchy for managing various distributed energy resources. 
The design consists of a group of radical feeders to provide 
power to electrical loads. Microsources are connected to the 
feeder through circuit breakers and appropriate power 
electronic interfaces (PEI). All the circuit breakers and 
power electronic interfaces are coordinated by the microgrid 
energy management module (EMM), which provides real-
time monitoring and autonomic control of the power 
generation [21]. Although microgrid can connect to the 
utility through a single point called point of common 
coupling (PCC), we focus on standalone microgrid due to 
sustainability and cost-effectiveness reasons. Such islanded 
mode is also a remarkable feature of microgrid to avoid 
power quality issue in the main grid [10, 21]. 
 The connected electrical loads may be critical or non-
critical. HPC servers are typically sensitive and mission-
critical loads that require stringent power quality and 
sufficient power budget. We assign these loads with 

controllable and stable microsources such as gas turbines 
and fuel cells. On the other hand, non-critical loads (such as 
normal data processing machines) can be curtailed without 
affecting customer benefits significantly. In Figure 8, the 
non-critical loads are powered by intermittent renewable 
power supplies. These loads are flexible enough to be 
lowered or shed as per necessity when power generation is 
not sufficient. In this study we are primarily interested in 
leveraging controllable microsources to follow the demand 
of critical data center load. In Figure 8, each server cluster is 
connected to the power distribution unit (PDU) via 
redundant power delivery paths to ensure uninterrupted 
operation in the event of PDU failure.  
 We use a power demand controller (PDC) to manage 
the server clusters. It keeps monitoring the job running 
status and the overall cluster power demand. It also 
coordinates with the job scheduler for the purpose of better 
computing resource allocation. Meanwhile, the controller 
communicates with the microgrid EMM to obtain current 
distributed generation levels and dynamically inform the 
EMM for necessary generation policy adjustment. The 
microgrid typically uses frequency droop control to monitor 
and adjust the on-site power generation [22]. This scheme 
uses a small change in the power bus frequency to 
determine the amount of power that each generator should 
put into the power bus.  
 Microgrid typically includes energy storage devices to 
provide necessary startup time for generators’ output to 
ramp up when system changes. In this study we leverage 
UPS system to provide necessary stored energy, as shown in 
Figure 8. Note that although our proposed technique also 
applies to centralized UPS, we choose distributed UPS 
system which shows higher efficiency and better power 
management capability [22]. 
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Figure 8: Architecture of distributed generation powered data center 
 

4.2 Power Demand Shaping Mechanism 
 In contrast to prior art which primarily focus on 
harvesting the time-varying renewable energy, we observe 
that one can leverage the load following capability of 
distributed generation to jointly achieve high-performance 
and sustainability. In this paper, we propose power demand 
shaping (PDS) technique to better utilize onsite distributed 
generation in modern HPC data centers. The idea is to aptly 
influence IT power demand to match the planned power 
usage curve that yields high load following effectiveness. 
 While one can transform the IT power demand into 
many different shapes, we found that a square-wave-like 
demand curve is the most convenient, as shown in Figure 9. 
In this case, the distributed generation system only needs to 
increase/decrease its generation at each end of the load 
tuning cycle (e.g., every 15 minutes) to meet the new power 
budget goal. Since the load power demand becomes less 
bursty and fluctuating after tuning, there is no need to install 
bulky energy storage devices onsite. In this paper we mainly 
leverage the UPS to handle the ramping period and the 
temporary power discrepancy between supply and load. By 
eliminating the unnecessary energy storage capacity, our 
design also becomes more cost-effective and sustainable.  
 Figure 9 demonstrates our power demand shaping 
mechanism in terms of power supply behavior and load 
performance status. The proposed scheme uses a two-step 
control in which data center load is adaptively managed and 
the distributed energy is carefully scheduled. The two steps 
are further described below:  
 Step 1: Maintain constant power demand 
 During each control period, the PDS controller uses 
power capping to maintain a constant power demand. 
Assume the original load power demand (i.e., the expected 
power consumption without any load tuning) is L; we scale 
down the load performance whenever L exceeds the power 
demand goal D. If at certain point L drops below D, the data 
center will increase its load performance, and thereby revert 
to its original power demand shape. 
 To maintain a constant power demand, we need to 
dynamically tune the node performance level when data 
center load varies. There are various scheduling schemes. In 
this paper we adjust the node frequency in a round-robin 

manner for simplicity and fairness. In addition, one can use 
a priority-based scheme. It associates each application with 
a priority and makes a scheduling choice based on the 
priorities. For example, a group of nodes with high priority 
gets higher frequency. 
 Depending on the system’s hardware characteristics and 
BIOS support, the actual performance scaling policy may 
vary. In this paper we take advantage of performance states 
(a.k.a. P-states) to dynamically adjust CPU frequency to 
match the required budget. This is a technique to manage 
power by running the processor at a less-than-maximum 
clock frequency. We do not use voltage scaling because it 
may not yield noticeable cubic power saving in the real 
measurement [24]. It has been shown that the power-to-
frequency curve for both DFS and DVFS can be 
approximated as a linear function [24]. As a result, we use 
only frequency scaling in our design and optimization for 
simplicity and practicality.  
 Step 2: Re-schedule DG generation 
 In contrast to existing power capping scenario, PDS 
deals with time-varying power capping budget. At the end 
of each control period, the controller will inform the 
distributed generation EMM to adjust the generation level 
for the next load following period.  
 To calculate the amount of generation adjustment, PDS 
calculates the mean value of the original power demand in 
the past control period. The actual DG power adjustment is 
selected from the mean value and current demand 
measurement, depending on whichever is greater. After that, 
the distributed generation will gradually increase its output 
and we assume a 1-min power ramping duration for the 
generators. During this period, we leverage onsite UPS 
storage to provide necessary power support.   
 In addition to the scheduled generation adjustment, the 
controller also assigns a bonus power budget for two 
reasons. First, after a period of time, the UPS requires 
recharge to retain its full capacity. In this case, the PDS will 
assign additional generation in the next period based on the 
required charging power. Second, PDS features an adaptive 
load performance scaling scheme which intelligently 
leverages DG energy and UPS energy for boosting the load 
performance (see Section 4.3 for details).  



 

 Definition:
TL: Load following interval 
L: Power demand of current load 
P: Mean demand in the last control interval 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 

for Each load tuning timestamp tick 
        if tick % TL == 0             // update power budget 
                Budget ← max(P, L);   
        else    // maintain constant power demand 
                L ← load power measurement 
                if load demand changes 
                        ΔPLF ←  (Budget – L) 
                        Adjust load performance based on ΔPLF 
    end if 
      end if 
 end for 

Figure 9: Power demand shaping Figure 10: Power demand shaping algorithm 
 
 In Figure 10 we show the pseudo code of power 
demand shaping. The controller monitors the data center 
load every tick (i.e., every second in our design) and adjusts 
node frequency based on the discrepancy between the 
budget and the original demand. At the end of each cycle TL, 
the controller adjusts the budget for a new demand goal.  

4.3 Adaptive Load Performance Scaling 
  Strict power demand shaping facilitates load following 
but comes with performance degradation. To this end, we 
propose adaptive load performance scaling that helps PDS 
to improve job performance while maintaining high load 
following effectiveness. The key idea is to use a relaxed 
power demand shaping policy that allows workload to 
explore additional energy and opportunities. 

 DGR Boost: The first optimization scheme helps to 
fine-tune the distributed generation level. Since we have no 
oracle knowledge of the incoming task, adjusting DG 
generation based on historical average unavoidably incurs 
prediction error. All the active jobs under this circumstance 
suffer low processor speed and the negative impact can last 
as long as the load tuning interval. To solve this problem, 
we propose DGR Boost optimization (Figure 11) which 
leverages the build-in over-clocking capabilities of modern 
processor nodes to minimize the job delay.  
 To enable DGR Boost, the PDS controller keeps the 
timing statistics of each active job during runtime. In any 
given control period, the associated computing node may 
spend different time ti on different frequency Fi

PDS due to 
the time-varying demand-supply mismatch. Assume F is the 
full frequency without performance scaling; we define a 
job’s normalized progress as: 

1 (1 )PDS
i

j iPDS
ii

T F FNP t
t FT

μ μ⎛ ⎞+ −
= = ⎜ ⎟⎜ ⎟

⎝ ⎠
∑∑          (4.1) 

In equation 4.1, TPDS is the time the task spends under power 
demand shaping and T is the time the program would spend 
if no performance scaling were applied. Since frequency 
scaling only changes the CPU time, we use mean CPU 

utilization μ  to estimate the proportion of runtime that is 
affected by power demand shaping. If NP always equals to 1 
then PDS is equivalent to a normal job dispatcher that has 
no performance scaling.   
 In DGR Boost scheme, we use NP to evaluate the 
degree of job slowdown. System throughput is then defined 
as the mean NP across all the active jobs.  

1

1 J

k
k

STP NP
J =

= ∑     (4.2) 

At each end of the load following cycle, if STP is lower than 
a preset goal, the PDS controller will assign bonus power 
budget to the load. Meanwhile, to actually leverage this 
power bonus, the controller further enables CPU frequency 
boost mode on each node. Such frequency boost mode is 
well supported in the AMD Turbo Core [25] and the Intel 
Turbo Boost Technology [26]. By occasionally increase the 
CPU speed, we can catch up important deadline and avoid 
performance degradation incurred in strict demand shaping.  

UPS Boost: This scheme fine-tunes intra-cycle load 
power. The main idea is that for short jobs that cannot gain 
the benefits of DGR Boost, we can leverage the UPS stored 
energy to avoid significant performance degradation.  

In typical HPC data centers, users are required to 
submit their job runtime estimations to enable backfilling, 
which can help maximize cluster utilization. In this study 
we use job runtime to sort out short jobs.  The short jobs 
here are defined as tasks that will finish before current load 
following cycle ends. In Figure 12, UPS Boost scheme will 
first find out all the short jobs that have low normalized 
progress. These jobs are very likely to miss their deadline 
without additional performance boost. Afterwards, the 
controller will check available UPS stored energy and use 
bin-packing method to power a group of selected short jobs.  

Since UPS Boost can improve job performance based 
on accurate runtime estimates, it encourages users to not 
over-estimate their job runtime. One can use a pricing 
model [8] to further improve runtime estimation accuracy 
and thereby increase the effectiveness of UPS Boost. 



 

LF TurboDG P P←Δ + Δ

( , )Turbo turboP f J FΔ =

1
1 J

kkSTP NP
J == ∑

 

, ( ) ( 0.9)?j jj J runtime T NP∃ ∈ < ∧ <

 

Figure 11:  Flowchart of the DGR Boost scheme Figure 12: Flowchart of the UPS Boost scheme 
 

5. Experimental Methodologies 
 We develop a HPC data center simulation infrastructure 
that takes real-world workload traces as input. Our discrete-
event simulator puts each user’s request into a queue and 
waits to grant allocation if computing nodes are available. 
Each job request in the trace has exclusive access to its 
granted nodes for a bounded duration. Such trace-driven 
discrete-event simulation framework has been adopted by 
several prior studies on investigating data center behaviors 
and facility-level design effectiveness [6, 27, 28].  
 We model an IBM System x3650 M2 (2.93G Intel 
Xeon X5570 processor) high-performance server which 
supports Intel Turbo Boost technology. While the number of 
processor performance states (P-states) is processor specific, 
we assume 12 different P-states as indicated in [29]. The 
minimum frequency is 1.6GHz and the normal frequency is 
2.9GHz. In Turbo Boost mode, the processor could 
temporarily increase the CPU frequency by up to 14%. We 
only increase the frequency moderately (i.e., 10%) when 
turbo boost is enabled. 
 Our power model uses CPU utilization as the main 
signal of machine-level activity. There has been prior work 
showing that CPU utilization traces (sampling periods range 
from tens of seconds to minutes) can provide fairly accurate 
server-level power prediction [30]. According to the 
published SPEC power data, the modeled system consumes 
244 Watts at 100% utilization and 76.3 Watts when idle [31]. 
Note that our estimates of benefits from power demand 
shaping are conservative; in the real world, data center 
workload could cause much more brief power spikes than 
what the simulator can capture [32], causing even worse 
performance degradation on non-PDS based design.  
 We simulate the power behavior of distributed 
generation system on per-second time scale which is in tune 
with our data center simulator. The distributed generator 
adjusts its output on a coarse-grained interval (10-minute as 
default value) and batteries respond to the fluctuating 
computing load. We adopt microsource optimization model 
HOMER in our simulator [33]. Developed by the National 

Renewable Energy Laboratory, HOMER simulates both 
conventional and renewable energy technologies and 
evaluates the economic and technical feasibility of a large 
number of power system options.  
 Table 2 shows the performance parameters we used in 
our evaluation. All the parameter values are carefully 
selected base on manufacturer specifications, government 
publications and industry datasheet. For example, we use 
published emission factors to calculate carbon emissions 
[34]. We assume a 1-minute constant duration for the 
distributed generation to ramp up when perform load 
following. The battery cycle life is set to be 10,000 times 
and we calculate the capacity degradation of battery cell 
based on its discharging profile which includes detailed 
information of each discharging event.  
 

Inputs Typical Value Value Used 
Battery life cycle 5,000 ~ 20,000 times 10,000 times 
Ramping time 10 sec ~ 5 min 1 min 
Rated DOD 0.8 0.8 
Battery Efficiency  75% ~ 85% 80% 
Battery cost  $1 ~ $3 per Ah $2 per Ah 
Emission factors of grid 0.6kg ~ 1kg CO2/KWh 0.9 kg/KWh 

Table 2: DG parameters used in the evaluation [16-20]
 We use a real-world workload trace from a well-
established online repository [35]. These workload logs are 
collected from large production systems around the world 
and have been scrubbed by the administrator to remove 
anomalous data that could skew the performance evaluation 
on different scheduling schemes [36]. We use five key task 
parameters of each trace file: job arrival time, job start time, 
job completion time, requested duration, and job size in 
number of granted computing nodes. As shown in Table 3, 
we select six 1-week workload traces that have different 
mean utilization level and mean job runtime. Our simulator 
uses batch scheduling, the standard method for sharing 
computing resources among multiple users. The job 
scheduling policy is first come first serve (FCFS). We 
examine the data center load and distributed generation 
budget at each fine-grained simulated timestamp. 



 

Trace Description Avg. Load  Mean Inter-arrival Time  Avg. Job Run Time 

LANL Los Alamos Lab’s 1024-node connection machine 56% 4.9 min  31.6 min 
Short SDSC San Diego Supercomputer Center’s Blue Horizon HPC 60% 3.7 min 33.0 min 

Atlas Lawrence Livermore Lab’s 9216-CPU capability cluster 46% 10.6 min 36.8 min 
Seth A 120-node European production system 85% 20.5 min 6.2 h 

Long MCNG A 14-cluster data center, 806 processors in total 89% 2.2 min 11.1 h 
RICC A massively parallel cluster with 8000+ processors 52% 0.9 min  16.6 h 

Table 3: The evaluated data center workload traces [35] 
 

6. Results 
 In this section we discuss the benefits of applying 
power demand shaping to distributed generation powered 
data centers. In Table 4, Oracle is an ideal design that has a 
priori knowledge of load patterns and could always meet the 
fluctuating data center power demand with no performance 
overhead. It represents the optimal energy balance scenario 
that one can achieve with renewable energy resources. 
Different from Oracle, LF is a conventional load following 
based scheme that has heavy reliance on energy storage. ST 
represents existing power supply driven design that aims at 
managing the computational workload to match the 
renewable energy supply [4, 6, 8]. PDS-s is our proposed 
power demand shaping mechanism without optimization. 
PDS-r is the relaxed power demand shaping that features 
adaptive workload-aware performance scaling.  

6.1 Performance 
 Performance is one of the key driven forces of our 
power demand shaping technique. Although the then-novel 
concept of tracking renewable power budget has shown 
great success on reducing IT carbon footprint, it cannot 
ensure performance and sustainability simultaneously.   
 Table 5 evaluates the performance degradation of 
supply tracking based design under different wind energy 
intensity. We have scaled the wind power traces so that the 
average wind power budget equals the average data center 
power demand. When renewable energy generation drops or 
intermittently unavailable, we scale down the node 
frequency and defers job execution if it is necessary.  

 The results in Table 5 show that data centers designed 
to track the variable power supply may incur up to 8X job 
runtime increase. The geometric mean value of turnaround 
time increase is 59%. It also shows that workload 
performance heavily depends on renewable power variation 
behavior and data center load pattern. We have observed 
that occasionally the renewable energy variation pattern is 
totally uncorrelated with the load power demand. There is 
no guaranteed performance lower bound since both the user 
behavior and environment conditions are stochastic. 
 In contrast to supply tracking based design, load 
following fundamentally changes this situation. Figure 13 
shows the mean job turnaround time under varying load 
following interval. All the results are normalized to Oracle, 
which has no performance scaling and maintains full-speed 
server operation with sufficient power budget.  The average 
job turnaround time increase of PDS-s is 8.0%, which 
outperforms supply tracking based design most of the time. 
Our optimized scheme, PDS-r, shows 1.2% mean 
performance degradation compared to Oracle. This means 
that power demand shaping with adaptive load tuning (i.e., 
DGR Boost and UPS Boost) could yield a 37% 
improvement over existing supply-tracking based design. 
 In addition to the mean performance statistics, Figure 
14 further investigates the worst-case scenario in terms of 
the mean job turnaround time of the worst 5% jobs. We 
observe that PDS-s and PDS-r shows 47% and 9.6% 
performance degradation, respectively. Therefore, PDS-r 
shows better performance guarantee in terms of the worst-
case performance degradation. 
 The state-of-the-art green energy-aware scheduling 
schemes normally rely on utility grid as backup [4, 6, 8]. To 
achieve the same performance as PDS-r, these designs have 
to increase their reliance on the utility, as shown in Figure 
15. The percentage of time that utility power is used is 
between 30% and 70%. The geometric mean value across 
all workloads and renewable generation levels is 51%. 
Heavy reliance on utility means increased carbon footprint, 
which goes against the original intention of sustainability.  
6.2  Battery Lifetime 
 The reason we do not use load following directly is that 
existing load following scheme requires substantial support 
from batteries. Aggressive charging/discharging event result 
from IT load fluctuation shortens the lifetime of these 
expensive devices and depletes the stored energy quickly. 
Power demand shaping is advantageous because it requires 

Scheme Description 

Oracle Ideal power provisioning with no performance overhead 
LF Existing load following based design 
ST Existing supply tracking based design 
PDS-s PDS without optimization ( i.e., uses strict power budget ) 
PDS-r PDS + adaptive load tuning (DGR Boost & UPS Boost)  

Table 4: The evaluated power management schemes 

LAN SDSC Atlas HPC MCNG RICC 

200 W/m2 2.92 1.60 1.64 7.25 1.31 1.24 
400 W/m2 2.10 1.51 1.66 9.27 1.12 1.29 
600 W/m2 2.89 1.41 1.37 5.91 1.08 1.10 
800 W/m2 5.27 1.34 1.30 7.00 1.06 1.08 

Table 5: Mean job turnaround time of ST under different 
renewable generation levels ( normalized to Oracle ) 



 

Figure 13: Job turnaround time under varying load following interval. All the results are normalized to Oracle
 

(a) PDS-s (b) PDS-r 
Figure 14: Mean turnaround time of the worst 5% jobs. All the results are normalized to Oracle

 

Figure 15: To compete with PDS-r, even state-of-the-art 
designs have to heavily rely on the utility power

 
much fewer regulation services and allows one to better 
explore UPS-based energy balance management. In the 
following discussion, we assume the UPS experiences 4 
discharge cycles per day on average due to normal data 
center operation and maintenance needs. We evaluate the 
UPS lifetime based on the additional effective discharge 
cycles that result from load following and PDS. 
 In Figure 16-(a) we evaluate the impact of load 
following on distributed UPS systems. The lifetime 
degradation due to load following varies between 3% and 
21%, depending on the data center load behavior. When we 
increase the interval of load following cycles, the battery 
wear out is intensified.  This is because too much of the load 
power fluctuation will show up as intra-cycle regulation if 
the time chosen for load following is too long.  
 Compared to conventional load following, PDS results 
in much lower UPS stress. In Figure 16-(b), both PDS-s and 
PDS-r shows less than 3% battery lifetime degradation. 
Although PDS-r explores additional stored energy to 
perform performance boost, its impact on UPS system is 
very similar to that of PDS-s. Note that for power demand 
shaping mechanism, the battery wear out problem is 
alleviated when we increase the interval of load following 
cycles. This trend is different from what we observed in LF. 

The reason is that batteries are mainly used to provide 
power shortfall during generator’s ramp-up period in PDS 
based system. When we increase the load following 
intervals, we also lower the frequency of generator ramp-up, 
the dominant factor of battery discharging.  
 Another advantage of power demand shaping is that it 
allows one to use conventional centralized UPS system to 
assist power demand shaping. The drawbacks of centralized 
UPS system is that it cannot provide a fraction amount of 
energy – all the data center load has to be switched between 
the main supply and UPS. Consequently, during each UPS 
ride-through, the battery cells have to experience much 
higher discharge current. The immediate result of this is 
significantly decreased UPS lifetime. As shown in Figure 17, 
LF in this case results in 35% lifetime degradation on 
average. The lifetime degradation of PDS-s and PDS-r in 
this case is 6% and 7%, respectively. Therefore, we believe 
power demand shaping still maintains acceptable overhead 
and can be applied to centralized UPS systems.  

6.3 Environmental Impact 
 We evaluate the environmental impact of DG powered 
data centers in terms of the annual emission savings. We 
mainly consider carbon dioxide which is the most important 
gas within the context of greenhouse gas emissions. Since 
the distributed generation system support a variety of fuels, 
the carbon footprint may vary. The results shown in Figure 
18 are based on a 10MW data center. Low-carbon fossil 
fuels such as natural gas and diesel, although not 100% 
sustainable, could still reduce 38 and 12 metric tons of CO2 
per year. If we use bio-fuel (as well as hydrogen) based 
distributed generation, we could achieve 100 metric tons per 
year on average. Note that with our proposed schemes, 
neither of these emission savings is at the cost of decreased 
data center performance or availability. 
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(a) LF (b) PDS 
Figure 16: Battery lifetime degradation under various power management schemes (with distributed UPS)

Figure 17: Battery lifetime degradation under various power management schemes (with centralized UPS)
 

Figure 18: Annual greenhouse gas emission savings
 

7. Related Work 
While energy-/power- aware architecture has become 

a research focus since long time ago, designing green 
data centers (especially renewable energy powered 
computing systems) gained its popularity only recently. 
Here we highlight a number of representative works that 
strive to improve IT sustainability in different aspects. 

Objectives: The renewable energy driven computing 
system design is reverent to managing power variability 
problems in supply/load and the associated power/energy 
costs. For example, Li et al. [5] have investigated the 
optimal solar power allocation on multi-core system for 
maximally harvesting the solar energy and improving the 
overall throughput. Sharma et al. [4] have explored the 
performance tradeoffs between cache’s hit rate and 
access fairness with intermittent power constraints. Goiri 
et al. [8, 9] focused their attention on both job deadline 
and power cost in a renewable energy powered data-
processing cluster. Recent studies have also explored the 
load balancing overhead between renewable energy 
powered clusters and utility grid powered clusters [6, 37]. 
The main concern in these studies is that renewable 
energy power budget varies with time and the computing 
load must be adaptable to match the supply.  

Cost-effectiveness is also a key design objective. For 
example, Le et.al [38] propose algorithms that minimizes 
fossil fuel-based energy consumptions; Liu et.al [39] 
discuss load balancing schemes on distributed systems. 
These proposals manly rely on power price arbitrage to 
increase the profit of data center operation. More recent 
work on carbon-aware energy capacity planning for data 
centers looked at both on-site renewable energy 
generations and off-site green energy purchases [40]. 
This work adds further motivation for us to consider 
distributed generation in data center design. 

 Mechanisms: While designing a green computing 
platform can be a complex undertaking, there are many 
techniques and mechanisms available to support the 
transition. Some examples include: power/cost capping 
[38], dynamic voltage/frequency scaling of processors [5], 
fast power state switching (a.k.a. power cycling) [4], 
virtual machine adaptation [6, 41, 42], and dynamic job 
dispatching [8, 9, 43], etc. At the facility level, it is often 
beneficial to design flexible and adaptable power 
management schemes to handle the power variability in 
supply and demand side [44].  

There have been prior studies discussing the role of 
hardware and infrastructure in renewable energy powered 
systems. For example, one can leverage grid-tie inverter 
to provide utility backup [45] or use energy storage 
devices [46, 47, 48] to compensate for the intermittent 
renewable generation shortfall. In this paper we focus our 
attention on minimizing data center’s reliance on the 
utility grid and energy storage for both sustainability and 
cost-effectiveness considerations. Recent proposal on 
data center peak power shaving leverages distributed 
UPS systems to improve power capping efficiency [23]. 
This design provides us valuable guidelines for exploring 
UPS-based energy balance management.  
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8. Conclusions 
 Distributed generation (DG) systems are gaining 
popularity and their installed capacity is projected to 
grow at a faster pace. We expect this trend to continue, as 
the energy crisis and environmental problem become 
increasingly crucial to our planet.  
 In this paper we investigate how the incoming smart 
grid incentive would impact the design and optimization 
of data centers. We propose distributed generation 
powered data center that leverages the load following 
capability of onsite renewable generation to achieve low 
carbon footprint without compromising performance. We 
have developed novel power demand shaping technique 
(PDS) to improve the load following efficiency in data 
centers while boosting the workload performance with 
two adaptive load tuning schemes: DGR Boost and UPS 
Boost. Overall, PDS could achieve 98.8% performance of 
an ideal oracle design and outperform existing supply-
tracking based approach by 37%. In addition, our design 
reduces electrical stress on batteries and could improve 
battery lifetime by up to 26%. The unique feature of load 
following based design makes this work a step forward 
toward the goal of incorporating clean energy resources 
into IT systems. We expect that our work could provide 
valuable guidelines for data center designers in the green 
computing and smart generation era. 
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