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Introduction 
 
The purpose of this lab was to study the MIPS2000 Reduced Instruction Set Computer (RISC). 
The first step in this complex assignment was to prepare an Executable Problem Statement (EPS) 
that will allow the project developer to understand the details of the problem. In this case, the 
Instruction Set Architecture (ISA) of the MIPS2000 must be studied in order to understand the 
implications of reducing the instruction set and address modes from those presented in the 
Complex Instruction Set Computer (CISC) Sweet16. The EPS will take the form of a MIPS2000 
instruction set simulator that is similar to the one used for the Sweet16. 
 
Since only the Instruction Set Architecture of the MIPS2000 is being examined, the C program 
mipssim.c will simulate only the “high-level” behavior of the architecture. This will come in the 
form of a Harvard architecture, which implies separate program and data memories with their 
own address and data buses. In addition, The MIPS2000 processor supports a “Load/Store” 
architecture, which means that only Load and Store instructions have access to data memory 
outside of the CPU. 
 
 
 
Component Design and Validation 
 
There are three basic instruction formats in the MIPS2000 processor: R-Type, I-Type, and J-
Type. The instruction set for this processor is therefore divided into three groups based on the 
instruction format. The MIPS2000 simulator developed in this lab, mipssim.c, was designed 
around the concept that instructions belonging to the same group have similar implementations. 
 
 
A. R-Type Instruction Implementation 
 
All R-Type instructions have the format shown in Figure 1 below. 
 

 
Figure 11: R-Type instruction format 

 
As with all MIPS2000 instructions, the R-Type instructions are 32-bits wide. This format is ideal 
for logic and arithmetic operations—the type of operations that make up the bulk of the R-Type 
instructions. As illustrated in Figure 1, R-Type instructions can specify two source registers and 
one destination register. However, some R-Type instructions only specify one source register 
(for example, the shift instructions). 
 

                                                 
1 “lab7.pdf” by Michel A. Lynch and Matthew Radlinski. http://www.hcs.ufl.edu/~radlinsk/eel4713/ 
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The opcode for all R-Type instructions is 0x00. This is because the only real difference between 
the executions of one R-Type instruction versus another is the ALU function. The 6-bit 
“operation” field of each instruction corresponds to the function select of the MIPS2000 ALU. 
Thus all R-Type instructions can have the same opcode because they all operate on data 
contained in registers, and they all alter the contents of a single destination register as a result of 
the specific ALU function performed. 
 
The simulator developed in this lab effectively modeled the operation of a general 
microprocessor in that its main program consisted of a fetch/decode/execute cycle. The fetch 
portion of the cycle involved retrieving four Bytes from memory, and incrementing the Program 
Counter to point at the next instruction word. Since the smallest addressable unit of memory is 
the Byte, retrieving a full 32-bit instruction word required this procedure of four consecutive 
Byte fetches. The code for instruction fetch is shown below in Listing 1. 
 
  /* Instruction Fetch                        */ 
  ir.db.upper_byte   = Pmem[prog_cntr]; incPC; 
  ir.db.upmid_byte   = Pmem[prog_cntr]; incPC; 
  ir.db.lowmid_byte  = Pmem[prog_cntr]; incPC; 
  ir.db.lower_byte   = Pmem[prog_cntr]; incPC; 
  print_ir(); 

Listing 1: Instruction fetch code 
 
The next part of the cycle involves decoding the instruction. This is accomplished in the 
simulator via a “switch” statement that examines the opcode of each instruction. Since all R-
Type instructions have the same opcode (0x00), a special switch statement, nested within the 
first, was used to direct the program flow to the proper location. A sample of this program 
structure is shown in Listing 2 below. 
 

/* Instruction Decoder   */ 
switch((unsigned)ir.R_instr.opcode){ 
 
// R-Format Instructions 
 case SPECIAL: 
  switch((unsigned)ir.R_instr.func){ 
  case ADD: 
   printf("ADD:\n"); 
   // REGS[RD] := REGS[RS] + REGS[RT] 
   reg[ir.R_instr.rd] = reg[ir.R_instr.rs1] +  
          reg[ir.R_instr.rs2]; 
   break; 
  case ADDU: 
   printf("ADDU:\n"); 
   // REGS[RD] := REGS[RS] + REGS[RT] 
   reg[ir.R_instr.rd] = reg[ir.R_instr.rs1] +  
          reg[ir.R_instr.rs2]; 
   break; 
  case SUB: 
   printf("SUB:\n"); 
   // REGS[RD] := REGS[RS] - REGS[RT] 
   reg[ir.R_instr.rd] = reg[ir.R_instr.rs1] –  
          reg[ir.R_instr.rs2]; 
   break; 

 

Listing 2: Instruction Decode stage 
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From this program segment the simplicity of the R-Type instructions is evident. Most of these 
instructions involve performing some operation on the contents of two registers and storing the 
results in a third register. 
 
Shifting is slightly more complicated since some shifts (arithmetic shifts in particular) require 
that data be sign-extended. This was accomplished with the use of the bitwise shift operator in C. 
With the data temporarily treated as a signed quantity, the left and right shift operators (<< and 
>>, respectively) automatically preserve the sign. Listing 3 below shows a portion of the code 
developed to handle such situations. 
 
 case SRA: 
  printf("SRA:\n"); 
  // REGS[RD] := Sign_Extended(REGS[RT] >> SHAMT) 
  printf("   shamt: %02d\n",(int)ir.R_instr.shamt); 
  if((reg[ir.R_instr.rs2] & SIGN_MASK) == SIGN_MASK) { 
   temp = reg[ir.R_instr.rs2]; 
   temp = temp >> ir.R_instr.shamt; 
   reg[ir.R_instr.rd] = temp; 
  } 
  else { 
   reg[ir.R_instr.rd] = reg[ir.R_instr.rs2] >> ir.R_instr.shamt; 
  } 
  break; 
 case SRAV: 
  printf("SRAV:\n"); 
  // REGS[RD] := Sign_Extended(REGS[RT] >> REGS[RS]) 
  printf("   shamt: %02d\n",(int)reg[ir.R_instr.rs1]); 
  if((reg[ir.R_instr.rs2] & SIGN_MASK) == SIGN_MASK) { 
   temp = reg[ir.R_instr.rs2]; 
   temp = temp >> ir.R_instr.rs1; 
   reg[ir.R_instr.rd] = temp; 
  } 
  else { 
   reg[ir.R_instr.rd] = reg[ir.R_instr.rs2] >> reg[ir.R_instr.rs1]; 
  } 
  break; 
 

Listing 3: Shift operations 
 
One R-Type instruction that may not immediately appear to be an R-Type is the jump register 
instruction. This instruction alters the program flow by setting the Program Counter to the 
address contained in a specified register. This instruction, along with the similar JALR 
instruction, was relatively simple to implement and is shown below in Listing 4. 
 

case JR: 
  printf("JR:\n"); // PC := REGS[return_address_register]; 
  prog_cntr = reg[RA]; 
  break; 

case JALR: 
  printf("JALR:\n"); 
  // Unconditionally jump to the instruction whose address is in register rs. 
  // Save the address of the next instruction in register rd (default: R31). 
  if(ir.R_instr.rd == 0) { 
   // RD not specified (zero). Store RA in default register (R31). 
   reg[RA] = prog_cntr; 
  } 
  else { 

reg[ir.R_instr.rd] = prog_cntr; 
} 

  prog_cntr = reg[ir.R_instr.rs1]; 
  break; 
 

Listing 4: Jump operations 
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B. I-Type Instruction Implementation 
 
All I-Type instructions have the format shown in Figure 2 below. 
 

 
Figure 22: I-Type instruction format 

 
This format is ideal for logic and arithmetic operations involving immediate data as well as 
various load and store instructions. As illustrated in Figure 2, I-Type instructions can specify two 
sources of data, one being a register and the other being 16-bit immediate data. As with the R-
Type instructions, there is also a destination register specified. The “immediate data” field of the 
instruction is sometimes interpreted as a 16-bit offset, depending on the nature of the instruction. 
 
Implementing the arithmetic and logic I-Type instructions was very much like implementing 
their R-Type counterparts. The only difference is that the second source of data is a 16-bit 
immediate value instead of a 32-bit register value. Listing 5 below shows examples of these I-
Type instructions. 
 
 case ANDI: 
   printf("ANDI:\n"); 
  // REGS[RD] := REGS[RS] & IMMEDIATE_DATA 
  reg[ir.I_instr.rd] = reg[ir.I_instr.rs1] & ir.I_instr.immd; 
  break; 
 case ORI: 
  printf("ORI:\n"); 
  // REGS[RD] := REGS[RS] | IMMEDIATE_DATA 
  reg[ir.I_instr.rd] = reg[ir.I_instr.rs1] | ir.I_instr.immd; 
  break; 
 case XORI: 
  printf("XORI:\n"); 
  // REGS[RD] := REGS[RS] ^ IMMEDIATE_DATA 
  reg[ir.I_instr.rd] = reg[ir.I_instr.rs1] ^ ir.I_instr.immd; 
  break; 
 

Listing 5: I-Type instructions 
 
Another category of I-Type instructions are the PC-Relative branch instructions. These 
instructions test a specific condition and alter the program flow based on that condition. For 
example, the BLEZ RS, label instruction causes the program flow to jump to label if it is the case 
that the contents of register RS are less than or equal to zero. 
 
Branch instructions use a signed 16-bit instruction offset field; hence they can jump 215 – 1 
instructions (not bytes) forward or 215 instructions backwards. This differs from jump 
instructions in that jump instructions have a 26-bit address field and can therefore jump farther 
forward and backwards. 

                                                 
2 “lab7.pdf” by Michel A. Lynch and Matthew Radlinski. http://www.hcs.ufl.edu/~radlinsk/eel4713/ 
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A portion of the code for some branch instructions is shown below in Listing 6. 
 
 void branch() 
 { 
  // PC-relative branch 
  printf("   Branch taken\n"); 
  if((ir.I_instr.immd & IMMED_SIGN_MASK) == IMMED_SIGN_MASK) { 

   printf("      Negative offset: -%04X\n",  
          ((~(ir.I_instr.immd) + 0x0001) << 2)); 

   prog_cntr = prog_cntr - ((~(ir.I_instr.immd) + 0x0001) << 2); 
  } 
  else { 
   printf("      Positive offset: %04X\n", (ir.I_instr.immd << 2)); 
   prog_cntr = prog_cntr + (ir.I_instr.immd << 2); 
  } 
 }  
 
 // more code in between 
 
 case BEQ: 
  printf("BEQ:\n"); 
  // if(REGS[RS] == REGS[RT]) {PC := PC + OFFSET;) 
  // else {PC := PC + 4;} 
  if(reg[ir.I_instr.rs1] == reg[ir.I_instr.rd]) { 
   branch(); 
  } 
  else { 
   printf("   Branch not taken"); 
  } 
  break; 
 case BLEZ: 
  printf("BLEZ:\n"); 
  // if(REGS[RS] <= 0]) {PC := PC + OFFSET;) 
  // else {PC := PC + 4;} 
  if(((reg[ir.I_instr.rs1] & SIGN_MASK) == SIGN_MASK) | 
     (reg[ir.I_instr.rs1] == ZERO_MASK)) { 
   branch(); 
  } 
  else { 
   printf("   Branch not taken"); 
  } 
  break; 
 

Listing 6: Branch instructions 
 
As shown in Listing 6 above, all the branch instructions rely on the branch() method to alter the 
program flow according to the 16-bit signed offset imbedded in the instruction. 
 
The third category of I-Type instructions consists of load and store instructions. These 
instructions either read from or write to the Data Memory. Since MIPS2000 is a 32-bit processor, 
many loads and stores will involve 32-bit data addressed with a word-aligned address. However, 
since it is very common for processors to deal with 8-bit Bytes (for character manipulation, etc.), 
loads and stores can also deal with variable-length data flows. 
 
Sign extension also comes into play when dealing with loads. When loading a signed 8-bit (or 
16- or 24-bit) quantity, it is necessary to preserve the sign of that data when it is transferred to a 
32-bit register. This requirement is handled with the use of “if” statements that determine 
whether sign extension is necessary during a particular load. 
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Since the smallest addressable unit of memory is a Byte, loads and stores need not occur at word-
aligned addresses. However, it should be noted that it is not possible to load (or store) a word 
across a word-aligned boundary in one instruction (although several instructions could be used 
together to accomplish this task). 
 
The most important aspect of all load and store instructions is that they all utilize index-with-
offset addressing. That is to say that each load and store instruction specifies an offset (stored in 
a register) to the memory location indicated by the label in the assembly language instruction. 
For example, the instruction LB RT,RS, address loads register RT with the Byte at memory 
location (address + [RS]). A portion of the code for some load and store instructions is shown 
below in Listing 7. 
 
 case LB: 
  printf("LB:\n"); 
  // REGS[RT] := Dmem[REGS[RS] + OFFSET] 
  if((ir.I_instr.immd & IMMED_SIGN_MASK) == IMMED_SIGN_MASK) { 
   printf("   Negative offset: -%04X\n", (~(ir.I_instr.immd) +  

0x0001)); 
   address = reg[ir.I_instr.rs1] - (~(ir.I_instr.immd) + 1); 
  } 
  else { 
   printf("   Positive offset: %04X\n", (ir.I_instr.immd)); 
   address = reg[ir.I_instr.rs1] + ir.I_instr.immd; 
  } 
  temp = Dmem[address] & 0X000000FF; 
  if((temp & BYTE_SIGN_MASK) == BYTE_SIGN_MASK) { 
   // byte being loaded is negative (must sign extend) 
   reg[ir.I_instr.rd] = (temp | 0XFFFFFF00) & WORD_MASK; 
  } 
  else { 
   // byte being loaded is positive 
   reg[ir.I_instr.rd] = temp & WORD_MASK; 
  } 
  break; 
 case SH:  
  printf("SH:\n"); 
  // Dmem[REGS[RS] + OFFSET] := REGS[RT] 
  if((ir.I_instr.immd & IMMED_SIGN_MASK) == IMMED_SIGN_MASK) { 
   printf("   Negative offset: -%04X\n", (~(ir.I_instr.immd) +  

0x0001)); 
   address = reg[ir.I_instr.rs1] - (~(ir.I_instr.immd) + 1); 
  } 
  else { 
   printf("   Positive offset: %04X\n", (ir.I_instr.immd)); 
   address = reg[ir.I_instr.rs1] + ir.I_instr.immd; 
  } 
  Dmem[address] = reg[ir.I_instr.rd] & 0X0000FF00; 
  Dmem[address + 1] = reg[ir.I_instr.rd] & BYTE_MASK; 
  print_Dmem(); 
  break; 
 

Listing 7: Load and store instructions 
 
Since the MIPS2000 processor supports a “Load/Store” architecture, it is only with the I-Type 
Load and Store instructions that Data Memory may be accessed. 
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C. J-Type Instruction Implementation 
 
All J-Type instructions have the format shown in Figure 3 below. 
 

 
Figure 33: J-Type instruction format 

 
This format enables program jumps that alter the program flow with a greater range than the 
branch instructions. As illustrated in Figure 3, J-Type instructions have a 26-bit target address. 
This target address always specifies a memory location that is on a word-aligned boundary. 
Therefore, the actual target address is four times the 26-bit quantity specified in the “target” field 
(or “Destination Address / 4” field). 
 
Because each target address, after being shifted to accommodate for the word-alignment, still 
only specifies 28 bits of the 32-bit address, a paging scheme is used to discern the exact jump 
address. The 4 GB memory space of the MIPS2000 is divided into sixteen 256 MB “pages.” 
Each page is specified by the most-significant nibble of the address. When a jump instruction is 
encountered in a program, the 28-bit word-aligned address specified by the “target” field of the 
instruction is concatenated with the most-significant nibble of the Program Counter. This 
essentially means that the programmer can jump to any location within the current 256 MB page. 
Jumping across page boundaries is not explicitly supported but can be accomplished in software. 
 
The code for the two J-Type jump instructions is shown below in Listing 8. 
 
// J_type instructions 
 case J: 
  printf("J:\n"); 
  // PC := TARGET 
  printf("Jump within page: %01X\n", (prog_cntr >> 28)); 
  prog_cntr = ((ir.J_instr.offset << 2) & WORD_MASK) | (prog_cntr &  
       UPPER_DIGIT_MASK); 
  printf("Target address: %08X\n", prog_cntr); 
  break; 
 case JAL:  
  printf("JAL:\n"); 
  // PC := TARGET 
  // REGS[return_address_register] := RETURN_ADDRESS 
  reg[RA] = prog_cntr; 
  printf("   Jump within page: %01X\n", (prog_cntr >> 28)); 
  prog_cntr = ((ir.J_instr.offset << 2) & WORD_MASK) | (prog_cntr &  
       UPPER_DIGIT_MASK); 
  printf("   Target address: %08X\n", prog_cntr); 
  printf("   Return address: %08X\n", reg[RA]); 
  break; 
 

Listing 8: Jump instructions 

                                                 
3 “lab7.pdf” by Michel A. Lynch and Matthew Radlinski. http://www.hcs.ufl.edu/~radlinsk/eel4713/ 
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The complete code for the MIPS2000 simulator, mipssim.c, may be found in Appendix A, 
Program 4. The entire code for the mipssim.h file may be found in Appendix A, Program 5. 
 
 
 
System Design and Validation 
 
Once the code for the MIPS2000 simulator was written, two test programs were designed to 
verify the functionality of the simulator. In order to be thorough, almost every instruction 
implemented in the simulator was explicitly utilized in the test programs. 
 
 
A. System Test 1: mips_test.asm 
 
A special test program was written to isolate and test a majority of the MIPS2000 instructions 
implemented in the simulator (save for the store instructions). Although the resulting assembly 
program had no obvious function, it allowed for the examination of each instruction. Appendix 
C, Program 24 lists the code for the mips_test.asm program. Program 23 in the same appendix 
contains the macro file that facilitates the assembly of the mips_test.asm and other MIPS2000 
assembly programs. 
 
This test program was assembled with UPASM and simulated with the MIPS2000 simulator 
created in this lab. See Appendix D, Simulation 4 for the complete simulation results. After 
analyzing the simulation output, it was determined that all the instructions tested executed as 
designed. 
 
 
B. System Test 2: mips_test_store.asm 
 
Another test program was written to isolate and test the MIPS2000 store instructions 
implemented in the simulator. Listing 9 on the next page shows the resulting assembly program. 
(also see Appendix C, Program 25 for the code for the mips_test_store.asm program). 
 
This test program was assembled with UPASM and simulated with the MIPS2000 simulator 
created in this lab. See Appendix D, Simulation 5 for the complete simulation results. After 
examining the simulation output, it was determined that the store instructions performed as 
desired. 
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* MIPS_TEST_STORE.ASM - Program that tests the operation of the MIPS  
*                        simulator 
*              Orged in ROM ($0000) 
* Author: Casey T. Morrison, EEL 4713, 3/20/2004 
 
 nolist 
 include "mips.mac" 
 list 
 
 ORG $0000 
 
 li R20,$1234 
 sll R20,R20,16 
 ori R20,R20,$5678 
 li R21,$F00D 
 sll R21,R21,16 
 ori R21,R21,$BEEF 
 jal sub1 
 j done 
 
**************************************************** 
* Subroutine 1: Test store instructions            * 
**************************************************** 
 
sub1: sb R20,R0,store1 
 li R14,$0001 
 swl R20,R14,store1 
 sw R21,R0,store2 
 
exit1: jr R31 
 
done: GFO 
 
* DATA *********************** 
store1: ds.b 4 
store2: ds.b 4 
 
 end 
 

Listing 9: MIPS_Test_Store.asm code 
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Conclusion 
 
A. Summary 
 
The differences between the MIPS2000 RISC machine and the Sweet16 CISC machine are more 
apparent now that both have been simulated in C. The most marked distinction is in the 
instruction format and length. While the Sweet16 supported variable-length instructions of 
multiple addressing modes, the MIPS2000 features fixed-length instructions with a limited 
number of addressing modes. 
 
The advantages of fixed-length instructions are very much apparent even after limited exposure 
to the MIPS2000 processor. The logic involved in executing each instruction was drastically 
reduced with the presumption that every instruction was no more than 32-bits long. In addition, 
the limited number of addressing modes allowed for less variation in the actual execution of the 
instructions. 
 
In designing a simulator, practical knowledge of the fundamental operation of each instruction 
was acquired. While the hardware necessary to implement these instructions was not explored at 
all, the overall function of the processor was replicated and, in the process, more accurately 
understood. 
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Introduction 
 
The purpose of this lab was to study and construct the MIPS2000 general architecture. This 
involved implementing a five-stage pipeline that supported 43 instructions. The reduced 
instruction set nature of MIPS2000 greatly simplified the architecture and allowed for a 
relatively high throughput. The multi-stage pipeline design, however, increased the complexity 
of the data flow as well as the propensity for data dependencies and other hazardous situations. 
 
In contrast to the Sweet16, the MIPS2000 microprocessor has a fixed-length instruction word and 
a 32-bit Address/Data bus. Since the assumption in building the MIPS2000 processor was that 
memory is fast and large, it is not an encumbrance to repeatedly fetch 32-bit instructions from 
memory. Thus the MIPS2000 was designed to execute only a handful of instruction, but it was 
also optimized to potentially execute instructions at a rate of one per clock cycle. This is the 
essence behind the MIPS2000 microprocessor—that by keeping the instruction set relatively 
small, the throughput can be increased greatly provided that memory is sufficiently fast. 
 
 
 
Component Design and Validation 
 
As mention previously, the MIPS2000 utilizes a five-stage pipeline to decrease the Cycles Per 
Instruction (CPI) of the processor. The five stages are Instruction Fetch (IF), Instruction Decode 
(ID), Execute (EX), Memory Access (MEM), and Write Back (WB). In between each stage is a 
pipeline register that stores the status of the previous stage’s control and data signals. This 
structure allows multiple instructions to be executing at once in the architecture. 
 
The five stages of the MIPS2000 were designed separately according to their individual 
functions and requirements. In addition, the four pipeline registers (IF/ID, ID/EX, EX/MEM, and 
MEM/WB) were designed individually such that they may store whatever data is needed for the 
next stage(s). 
 
 
A. Instruction Fetch Stage 
 
During the Instruction Fetch (IF) stage, the first stage of the MIPS2000 pipelined processor, there 
is a Program Counter (PC) that addresses the Program Memory in order to retrieve the next 
instruction for execution. Despite its name, the program counter is not a counter so much as it is 
a register. The input of the PC comes from another stage of the pipeline (the MEM stage) and 
determines the location of the next instruction to execute. In anticipation of sequential instruction 
execution, the IF stage automatically calculates the PCplus4 address by adding 4 to the current 
PC value and storing the results in a register. The instruction word obtained from the Program 
Memory if formatted according Figure 1 on the next page depending on the type of instruction. 
The various fields of the instruction word are saved in the IF/ID Pipeline Register so that they 
may be propagated through the architecture. 
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Figure 14: Instruction word format 

 
The MIPS2000 Instruction Fetch stage was designed according to the schematic in Figure 2. 
 

 
Figure 2: Instruction Fetch Stage 

                                                 
4 “lab8.pdf” by Michel A. Lynch and Matthew Radlinski. http://www.hcs.ufl.edu/~radlinsk/eel4713/ 
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The first component, the Program Counter, was created in VHDL. It was designed to be a 32-bit 
register with synchronous clear and hold signals that will be utilized in future labs. See 
Appendix F, Specification Sheet 11 for a complete description of this component. See Appendix 
B, Component 10 for the VHDL code for Prog_Cntr. 
 
The adder used to compute the PCplus4 value was also created in VHDL. It utilized the 
ieee.std_logic_arith library to perform the addition of the current PC value and the constant 
number four. See Appendix F, Specification Sheet 12 for a complete description of this 
component. See Appendix B, Component 11 for the VHDL code for PC_Inc. 
 
The final component in the Instruction Fetch stage is the Program Memory. This asynchronous 
Read Only Memory (ROM) device consists of four 4Kx8 LPM_ROM components from the 
Max+Plus II mega_lpm library. These four ROMs comprise the upper-byte, upper-middle-byte, 
lower-middle-byte, and lower-byte of the instruction word. In order to combine these four ROMs 
into one 4Kx32 ROM, bits 13 through two of the MIPS2000 address bus are used to address each 
ROM. Thus every address between word-aligned boundaries actually addresses the same 
location in each ROM. Since every instruction is word-aligned, there is never a need to access 
any Program Memory address other than a word aligned address (an address ending in 0x0, 0x4, 
0x8, or 0xC). See Appendix F, Specification Sheet 13 for a complete description of the 
MIPS2000 Program Memory. 
 
These components were graphically combined, and the result is shown in Figures 3a and 3b 
below. See Appendix F, Specification Sheet 14 for a complete description of the IF_stage 
component. 
 

 
Figure 3a: Instruction Fetch stage 
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Figure 3b: Instruction Fetch stage 

 
 
B. Instruction Decode Stage 
 
The Instruction Decode (ID) stage of the pipeline is responsible for determining and preparing 
the operands for execution in the subsequent stage. This stage of the pipeline was designed based 
on the schematic shown in Figure 4 below. 
 

 
Figure 4: Instruction Decode Stage 
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The first component in the Instruction Decode stage, the 32x32 Register Array, was designed in 
VHDL as a dual-output array of 32-bit registers. Like the Register Array used in the Sweet16, the 
MIPS2000 Register Array supports the addressing of three registers (one input and two outputs) 
at any given time. For reasons that will be discussed in future labs, this component was designed 
such that a read and a write could take place in a single clock cycle. In the event of a read and 
write from/to the same register, the VHDL code specifies that the data to be written is also 
passed through to the output. See Appendix F, Specification Sheet 15 for a complete description 
of the MIPS2000 Register Array. See Appendix B, Component 12 for the VHDL code for 
Reg_Array_32x32. 
 
The second component in the ID stage is the Sign Extender. This VHDL component 
conditionally sign extends the immediate data from the Instruction Register. The only 
instructions for which this component does not sign extend the immediate data are the logical 
immediate instructions (andi, ori, and xori). See Appendix F, Specification Sheet 16 for a 
complete description of the Sign Extender. See Appendix B, Component 13 for the VHDL code 
for Sign_Extender. 
 
These components were graphically combined, and the result is shown in Figure 5 below. See 
Appendix F, Specification Sheet 17 for a complete description of the ID_stage component. 
 

 
Figure 5: Instruction Decode Stage 

 
 
C. Execute Stage 
 
The Execute (EX) stage of the pipeline is responsible for making all necessary calculations—
whether they are for the purposes of computing a result, an address, or a condition. This stage of 
the pipeline was designed based on the schematic shown in Figure 6 on the next page. 
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Figure 6: Execute Stage 

 
The first and most prominent component of this stage is the Arithmetic Logic Unit (ALU). This 
unit actually consists of two sub-units, the ALU_32_Turbo and the Barrel_Shifter_AL_32. The 
former is an adaptation of the standard MIPS2000 ALU. In addition to the basic functions of the 
provided MIPS2000 ALU, the ALU_32_Turbo supports an “exclusive or” operation, a “nor” 
operation, as well as an additional branch condition evaluation operation. See Appendix F, 
Specification Sheet 18 for a complete description of the ALU_32_Turbo. See Appendix B, 
Component 14 for the VHDL code for this unit. 
 
Since the MIPS2000 ISA supports operations with immediate data, there is a two-input 32-bit 
multiplexer at the B-side of the ALU_32_Turbo. This multiplexer selects the type of data that the 
ALU_32_Turbo will perform computations with—either register data or sign-extended 
immediate data. See Appendix F, Specification Sheet 19 for a complete description of this 
component. See Appendix B, Component 15 for the VHDL code for this multiplexer. 
 
The second sub-unit of the ALU is the 32-bit Barrel Shifter. This component is responsible for 
performing all shift operations. The source for the shift amount can either be the contents of a 
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register or the immediate data. For this reason, the shift amount input to the Barrel Shifter is 
selected from two possible sources via a two-input 5-bit multiplexer (See Appendix F, 
Specification Sheet 21 and Appendix B, Component 17 for descriptions of this multiplexer). The 
Barrel Shifter has other inputs to determine whether the shift is arithmetic or logical and whether 
the direction is to the left or to the right. See Appendix F, Specification Sheet 20 for a description 
of this component. See Appendix B, Component 16 for the VHDL code for the Barrel Shifter. To 
select between the output of the ALU Turbo and the Barrel Shifter, another two-input 32-bit 
multiplexer is used. The final output of the ALU is representative of the opcode, and the two 
sub-units (the ALU Turbo and the Barrel Shifter) may be thought of as one unit—the ALU. 
 
The component responsible for generating all of the control signals necessary for the proper 
operation of the Execution Stage is the Execution Stage Controller. This VHDL component 
examines the opcode and function code of the instruction to determine how to manipulate the 
data passed to the Execution Stage by the Instruction Decode Stage. See Appendix F, 
Specification Sheet 22 for a description of this controller. See Appendix B, Component 18 for 
the VHDL code for the Execution Stage Controller. 
 
The final component in the Execution Stage is the Branch Address Generator. This VHDL unit 
simply sums the sign-extended immediate data and the PCplus4 value propagated from the 
previous stage to produce the branch target address. See Appendix F, Specification Sheet 23 for 
a complete description of this unit. See Appendix B, Component 19 for the VHDL code for the 
Branch Address Generator. 
 
These components were graphically combined, and the result is shown in Figure 7 below. See 
Appendix F, Specification Sheet 24 for a complete description of the EX_stage component. 
 

 
Figure 7: Execution Stage 



Page 20 of 54 MIPS2000 RISC Processor Casey T. Morrison 
  

D. Memory Access Stage 
 
The Memory Access (MEM) stage of the pipeline is responsible for storing data to or retrieving 
data from the Data Memory. In addition, the source of the next Program Counter address is 
determined in this stage. The MEM stage of the pipeline was designed based on the schematic 
shown in Figure 8 below. 
 

 
Figure 8: Memory Access Stage 

 
The first component of the Memory Access stage is the Data Memory. This 4Kx32 RAM is 
comprised of four instances of a 4Kx8 LPM_RAM_DQ from the mega_lpm library. The 12-bit 
address bus is connected to the output of the ALU from the previous stage. The input data (for 
memory writes) is connected to the B_Data signal propagated through from the Instruction 
Decode stage. The output data (for memory reads) is passed on to the next stage. Each of the four 
4Kx8 RAMs has its own write enable signal such that the smallest writeable unit of data is a 
byte. See Appendix F, Specification Sheet 25 for a complete description of the Data Memory. 
 

PC[31..28] 
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The next components within the MEM stage are responsible for controlling the flow of data in to 
and out of the Data Memory. The Memory Control is composed of two control units, the 
MEM_Writer and the MEM_Reader units. The MEM_Writer modifies the data that will be 
written to the Data Memory, and it sets the Write Enable signals accordingly. This component 
examines the opcode and the effective address of the current instruction to determine how to 
prepare the data for writing. With byte and half-word data writes supported in the MIPS2000 
ISA, this unit is responsible for directing the data to its proper destination. See Appendix F, 
Specification Sheet 26 for a description of this component. See Appendix B, Component 20 for 
the VHDL code for the MEM_Writer unit. The MEM_Reader modifies the data read from the 
memory so as to accommodate different types of load instructions (i.e. lb, lw, lh, etc.). See 
Appendix F, Specification Sheet 27 for a description of this component. See Appendix B, 
Component 21 for the VHDL code for the MEM_Writer unit. 
 
The final component in the Memory Access Stage is the Next PC Source Selector. This consists 
of a four-input 32-bit multiplexer that selects one of four possible sources for the next Program 
Counter value: the PCplus4 value, the Jump address, the Branch address, or the address 
contained in a register (i.e. the Return Address register). See Appendix F, Specification Sheet 28 
for a description of the four-input 32-bit multiplexer. See Appendix B, Component 22 for the 
VHDL code for this component. 
 
The component responsible for generating the select signal for the Next PC Source Selector is 
the NextPC_Gen unit. This VHDL component examines the opcode and function code of the 
instruction to determine where the Next PC value should be selected from. See Appendix F, 
Specification Sheet 29 for a description of the NextPC_Gen unit. See Appendix B, Component 
23 for the VHDL code for this component. 
 
These components were graphically combined, and the result is shown in Figures 9a (below), 9b 
(next page), and 9c (next page). See Appendix F, Specification Sheet 30 for a complete 
description of the MEM_stage component. 
 

 
Figure 9a: Memory Access Stage 



Page 22 of 54 MIPS2000 RISC Processor Casey T. Morrison 
  

 
Figure 9b: Memory Access Stage 

 

 
Figure 9c: Memory Access Stage 
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E. Write Back Stage 
 
The Write Back (WB) stage of the pipeline is responsible for selecting the data that is to be 
written back to the register array. In addition, the instruction must be examined to determine if, 
in fact, a write back should occur. The Write Back stage of the pipeline was designed based on 
the schematic shown in Figure 10 below. 
 

 
Figure 10: Write Back Stage 

 
The first component of the Write Back stage is the C-Data Selector. This is a VHDL description 
of a three-input 32-bit multiplexer that selects between the three possible sources of data for the 
write back register: the Data Memory, the ALU, or the PCplus4 value (for storing return 
addresses). See Appendix F, Specification Sheet 31 for a description of this multiplexer. See 
Appendix B, Component 24 for the VHDL code for the Mux3_32 component. 
 
The next component of the Write Back stage is the C-Address Selector. This is a VHDL 
description of a three-input 5-bit multiplexer that selects between the three possible sources of 
the address for the write back register: the rd field of the Instruction Register, the rt field of the 
Instruction Register, or a hard-coded value 0x31 (default Return Address Register). See 
Appendix F, Specification Sheet 32 for a description of this multiplexer. See Appendix B, 
Component 25 for the VHDL code for the Mux3_5 component. 
 
The final component in the Write Back Stage is the Write Back Controller. This unit determined 
the select signals for the aforementioned multiplexers as well as the Write Enable signal for the 
Register Array. These decisions are based on the instruction opcode and function code. See 
Appendix F, Specification Sheet 33 for a description of this controller. See Appendix B, 
Component 26 for the VHDL code for the WB_Controller component. 
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These components were graphically combined, and the result is shown in Figure 11 below. See 
Appendix F, Specification Sheet 34 for a complete description of the WB_stage component. 
 

 
Figure 11: Write Back Stage 

 
 
F. Pipeline Registers 
 
In between each of the five stages lies a pipeline register. These registers are responsible for 
storing the instruction that is currently in the stage, as well as a variety of other signals that need 
to be propagated through the architecture. For example, since the NextPC value is not calculated 
until the Memory Access stage, the PCplus4 signal must be propagated through the IF, ID, and 
EX stages so that is may be chosen as the NextPC in the MEM stage. 
 
To construct the four pipeline registers, several registers of various sizes were built in VHDL. 
One such register, the Instr_Reg component, was used in each pipeline register to store the 
current instruction word. 
 
Figures 12 through 15 on the next pages show all four pipeline registers. Note that all Intr_Reg 
components are clearable so that upon a system reset, all instructions in the pipeline will default 
to NOPs. 
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Figure 12: IF/ID Pipeline Register 

 
 

 
Figure 13: ID/EX Pipeline Register 
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Figure 14: EX/MEM Pipeline Register 
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Figure 15: MEM/WB Pipeline Register 

 
See Appendix F, Specification Sheets 35 through 38 for descriptions of the various components 
that comprise the pipeline registers. See Appendix B, Components 27 through 30 for the VHDL 
code for these components. 
 
 
 
System Design and Validation 
 
A. MIPS2000 Complete Design 
 
Once all the individual stages and pipeline registers were constructed, the MIPS2000 
microprocessor was assembled according to the schematic drawing in Figure 16 on the next 
page. 
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Figure 16: MIPS2000 pipelined datapath 
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The assembly of the complete datapath was trivial once all of the individual stages and inter-
stage pipelines were created. The resulting design is shown in Figures 17a, 17b, 17c, and 17d 
below and on the next page. 
 

 
Figure 17a: MIPS2000 complete architecture 

 
 

 
Figure 17b: MIPS2000 complete architecture 
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Figure 17c: MIPS2000 complete architecture 

 
 

 
Figure 17d: MIPS2000 complete architecture 

 
This system was functionally compiled to eliminate all errors. See Appendix F, Specification 
Sheet 39 for a description of the MIPS2000 component. 
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B. System Test: Lab8_test.asm 
 
In order to test the operation of the newly constructed MIPS2000 microprocessor, a test program 
was written. This program, Lab8_test.asm, evaluated a variety of arithmetic, logic, immediate, 
load, store, branch, and jump functions. Listing 1 below shows the program developed to 
evaluate the performance of the MIPS2000. 
 

 nolist 
 include "mips.mac" 
 list 
 
 ORG $0000 
 
 li R2,$9ABC 
 li R3,$1234 
 li R4,16 
 li R5,$D 
 li R6,$5678 
 li R7,$B0 
 add  R20,R3,R3 
     sub  R20,R2,R3 
     and  R20,R2,R6 
     or   R20,R2,R3 
 xor R20,R2,R3 
 sll R21,R2,16 
 addi R20,R3,$20F6 
 ori R20,R3,$0055 
 xori R20,R6,$5678 
 slt R20,R6,R2 
 sltu R20,R6,R2 
 
 jal sub1 
 nop 
 nop 
 nop 
 and R20,R0,R0 
 bne R0,R0,finish 
 nop 
 nop 
 nop 
 
 bgez R6,finish 
 nop 
 nop 
 nop 
 
 ORG $00B0 
sub1: sw R6,R0,data1 
 sb R2,R0,data2 
 jr R31 
 nop 
 nop 
 nop 
 
finish: li R9,$EEEE  
 lw R10,R0,data1 ;Check if previous store was successful 
 lb R11,R0,data2 
 
 GFO 
 
 ORG $00D0 
data1 1 
data2 ds.l 1 
 
 end 

Listing 1: Lab8_test.asm 
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It is important to notice that following every load, branch, jump, and other data-dependant 
instructions, NOPs have been inserted to avoid hazards. In Lab 9, the architecture will be 
adjusted to mitigate and compensate for these hazards; however in this lab, those hazards are 
avoided all together by inserting NOPs after all instructions that may cause a data dependency. 
 
This program (also found in Appendix C, Program 26) was compiled with UPASM and 
converted into four Memory Initialization Files (MIFs). This is the file format for the four 
Program Memory ROMs contained in the IF stage as well as the four Data Memory RAMs 
contained in the MEM stage. In order to convert the assembled s-record into four MIFs, the 
S2MIF program used earlier for the Sweet16 had to be adapted to generate the appropriate MIFs. 
As a result, four S2MIF programs were created, one for each ROM/RAM in the MIPS2000 
architecture. See Appendix A, Program 6 through 9 for the s2mif0, s2mif1, s2mif2, and s2mif3 C 
programs. 
 
When the Lab8_test.asm program was simulated on the MIPS2000 architecture, the results 
demonstrated that the design worked properly. See Appendix E, Waveform Simulation 14 for the 
complete simulation results. 
 
 
 
Conclusion 
 
A. Summary 
 
The MIPS2000 is very modular in nature with its five-stage pipeline and multiplexer-oriented 
design. This characteristic allowed each individual part to be tested and verified prior to the 
assembly of the entire processor. 
 
With a pipelined datapath such as that utilized in the MIPS2000, the Cycles Per Instruction (CPI) 
rate can be dramatically improved since up to four instructions can be “executed” at any given 
time. Although the concept of pipeline registers greatly improves the CPI of the machine, it is 
also makes it susceptible to hazardous situations in which data conflicts and discrepancies occur. 
This topic will be discussed at length in Lab 9, in which several strategies will be implemented to 
lessen the effects—and perhaps avoid all together—of data dependencies and hazards. 
 
 
B. Questions 
 
1) Which component in the MIPS integer pipeline is used to determine the clock rate of the 

entire pipeline? Why? 
 

The slowest component in the MIPS2000 integer pipeline is used to determine the clock rate, 
for the clock rate cannot exceed the inverse of the largest propagation delay through the 
circuit. This component happens to be the 32-bit ALU (the adder in particular) since the 
assumption in MIPS is that the memory is fast. 



Page 33 of 54 MIPS2000 RISC Processor Casey T. Morrison 
  

2) Are the program and data memory sizes reasonable for this computer? What should happen 
to the propagation time for the memories when they are realized using components that have 
a size appropriate for this machine? 
 
The Program and Data Memory sizes (currently 4KB) are not that reasonable considering 
that they each have a potential of being 1GB given the size of the address bus. When larger 
memories are implemented in this architecture, the propagation time for the memories will 
increase accordingly. The generally rule for memory is that larger means slower, and this will 
be the case if the memory sizes are increased to a more “reasonable” size. 
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Introduction 
 
The purpose of this lab was to study and construct the MIPS2000 advanced architecture. This 
involved making modifications to the general architecture designed in Lab 8. The MIPS2000 
microprocessor designed in Lab 8 was susceptible to two types of hazards:  data hazards and 
branch hazards. For this reason, several NOP instructions had to be manually inserted into the 
code to avoid data dependencies, data hazards, and branch hazards. 
 
To mitigate the effects of these hazards, this lab focused on three hardware solutions: 
forwarding, stalling, and branch prediction. Forwarding attempts to resolve data dependencies, 
stalling handles situations in which forwarding is insufficient, and branch prediction attempts to 
reduce the cost associated with branches. Since each is a hardware solution, the original code 
that was executed on the Lab 8 version of MIPS2000 will still execute on the advanced MIPS 
architecture, except with a markedly better performance. 
 
 
 
Component Design and Validation 
 
As mention previously, the MIPS2000 advanced architecture features three hardware 
improvements from its Lab 8 counterpart. Forwarding, stalling, and branch prediction all attempt 
to avoid hazardous situations and improve performance. 
 
 
A. Forwarding 
 
In some instances, a pipelined datapath (such as the MIPS2000) may encounter data 
dependencies during execution. For example, the code sequence below incurs two data 
dependencies involving register R1. 
 
 ADD R1,R2,R3 
 SUB R5,R4,R1 
 ORI R6,R1,$1234 
 
The result of the addition of registers R2 and R3 is not stored back into the Register Array until 
the Write Back stage. However, the following two instructions require that data before it is 
actually available in the Register Array. 
 
The solution to this type of situation is “Forwarding.” The result of the addition of registers R2 
and R3 is computed in the Execute stage. Thus if this result is required for the subsequent 
instructions, it may be “forwarded” to the Execute stage of those instructions. This bypasses the 
Register Array and ensures that the following instructions are using the correct data. 
 
Forwarding is accomplished with multiplexers and a Forwarding Unit. The multiplexers are 
placed at the input to the ALU so that the Forwarding Unit may decide which data the ALU will 
operate with. If the conditions for forwarding are met, then the Forwarding Unit selects the 
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forwarded data as the input to the ALU. The multiplexer scheme implemented in the Execute 
stage is shown below in Figure 1.  
 

 
Figure 1: Forwarding scheme 

 
The Max+Plus II graphical realization of this scheme is shown below in Figure 2. See Appendix 
F, Specification Sheet 31 for a description of the Mux3_32 component. 
 

 
Figure 2: Forwarding Multiplexers in Max+Plus II 

 
The control signals for the two forwarding multiplexers are generated by the Forwarding Unit. 
This VHDL component examines the various conditions that indicate a need for forwarding and 
issues the corresponding control signals. The conditions used to determine the control signals are 
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shown below in Listing 1. See Appendix F, Specification Sheet 40 for a description of this 
component. See Appendix B, Component 31 for the VHDL code for the Forwarding Unit. 
 
 -- Determine ForwardA 
 if ((WB_stage_WE = '1') and (MEM_WB_RD /= "00000") and (EX_MEM_RD /= ID_EX_RS) and  
          (MEM_WB_RD = ID_EX_RS)) then 
  ForwardA <= "01"; 
 elsif  ((MEM_stage_WE = '1') and (EX_MEM_RD /= "00000") and (EX_MEM_RD = ID_EX_RS)) then 
  ForwardA <= "10"; 
 else 
  ForwardA <= "00"; 
 end if; 
 
 -- Determine ForwardB 
 if ((WB_stage_WE = '1') and (MEM_WB_RD /= "00000") and (EX_MEM_RD /= ID_EX_RT) and  
          (MEM_WB_RD = ID_EX_RT)) then 
  ForwardB <= "01"; 
 elsif ((MEM_stage_WE = '1') and (EX_MEM_RD /= "00000") and (EX_MEM_RD = ID_EX_RT)) then 
  ForwardB <= "10"; 
 else 
  ForwardB <= "00"; 
 end if; 
 

Listing 1: Forwarding control logic 
 
With the new Forwarding Unit and multiplexers in place, the Execute stage was successfully 
modified to handle most data dependencies. Figure 3 below shows the new Execute stage 
graphical design. See Appendix F, Specification Sheet 41 for a description of the EX stage 
component. 
 

 
Figure 3: Execute stage with Forwarding capabilities 
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B. Pipeline Stalling 
 
Some data dependencies cannot be solved with forwarding. For example, the code segment 
below contains a data dependency that is not resolved until the first instruction is done with the 
MEM stage. 
 

LW R1,4(R2) 
XOR R2,R3,R1 
SLL R4,R1,16 

 
The output of the data memory cannot be forwarded to the EX stage in time for the XOR 
instruction to execute with the proper operands. Forwarding will work for the SLL instruction 
because the XOR instruction serves as a delay slot. This means that the output of the data 
memory is available in time for the EX stage of the SLL instruction. 
 
To resolve the hazard created by this type of data dependency, the most practical solution is to 
stall the pipeline for one clock cycle so that the output of the data memory may then be 
forwarded to the EX stage should it be needed. Using this method, the dependency must be 
recognized early on in the pipeline—in the ID stage to be exact. Using a VHDL-described 
Hazard Detection Unit, a stall signal may be issued throughout the pipeline to avoid the hazard. 
 
When a stall is issued, a couple registers must hold their data, while others must clear their 
output. In order to preserve the correct sequence of instructions in the pipeline, the Program 
Counter and the IF/ID Pipeline Register must hold their data. In addition, the ID/EX Pipeline 
Register must clear its data so that the stall (implemented as a NOP instruction) may be inserted 
into the pipeline. The holding and clearing of registers is accomplished with some VHDL 
modifications. 
 
The Hazard Detection Unit in the ID stage uses a series of logic equations to determine is a 
hazard will be encountered. It uses a Load Detection Unit to determine if an instruction will be 
loading data from memory to a register (See Appendix F, Specification Sheet 42 and Appendix 
B, Component 32 for a description of the Load Detection Unit). This is accomplished by 
examining the opcode of the instruction in the ID/EX Pipeline Register. Listing 2 below shows 
the logic used to detect hazards in the pipeline. See Appendix F, Specification Sheet 43 for a 
description of the Hazard Detection Unit. See Appendix B, Component 33 for the VHDL code 
for this component. 
 
 if  (ID_EX_MemRead = '1' and ((ID_EX_RT = IF_ID_RS) or (ID_EX_RT = IF_ID_RT))) then 
  Stall <= '1'; 
 else 
  Stall <= '0'; 
 end if; 
 

Listing 2: Hazard Detection logic 
 
After modifying the ID stage to include the Hazard Detection Unit, the resulting graphic design 
is shown in Figure 4 on the next page. See Appendix F, Specification Sheet 44 for a description 
of the modified ID stage. 
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Figure 4: Instruction Decode stage with Hazard Detection 

 
 
C. Branch Prediction 
 
In a pipelined processor (such as the MIPS2000) it is often beneficial to employ a branch 
prediction scheme to improve the performance of the machine. Since the next Program Counter 
address is not calculated until the MEM stage, the three instructions in the pipeline before the 
MEM stage may turn out to be the wrong three instructions when the next PC is calculated. To 
avoid this problem in Lab 8, three NOPs were inserted following every branch and jump so as to 
avoid the possibility of executing the wrong instructions following a branch/jump. 
 
In this lab, the “assume not taken” strategy was adopted to modestly predict the outcome of 
branches. Using this strategy, all branches and jumps were “assumed” not to be taken, and the 
three following instructions were fed into the pipeline. During the MEM stage, if the 
branch/jump was, in fact, not taken, then the prediction was correct and execution continues 
uninterrupted. If, however, the branch condition evaluates to true, and the branch was supposed 
to be taken, then the pipeline must be flushed and execution must stall. 
 
Since the three instructions following the branch/jump do not reach the WB stage by the time the 
prediction is evaluated, The consequences of executing these instructions through the EX stage is 
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negligible. If the prediction was found to be incorrect, then the IF/ID, ID/EX, and EX/MEM 
Pipeline Registers must be cleared and the pipeline must begin executing the proper instructions. 
When the IF/ID, ID/EX, and EX/MEM Pipeline Registers are cleared, this is equivalent to 
inserting NOPs into the pipeline. The penalty, therefore, for a mis-predicted branch is three clock 
cycles. 
 
The simple hardware used to issue the Flush_Pipeline command was added to the MEM stage of 
the pipeline. If the source of the next Program Counter value is either the branch target address 
or the jump target  address, then the prediction was wrong, and the pipeline must be flushed. 
Figure 5 below shows this hardware in detail. 
 

 
Figure 5: Hardware for issuing Flush_Pipeline command 

 
The Flush_Pipeline was brought out of the MEM_Stage component and used to trigger the clear 
signal on the modified IF/ID, ID/EX, and EX/MEM Pipeline Registers. When a Flush_Pipeline 
is issued, these registers will all clear their outputs—in effect filling those stages of the pipeline 
with NOPs. See Appendix F, Specification Sheet 45 for a description of the modified MEM stage 
component. 
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System Design and Validation 
 
A. MIPS2000 Complete Design 
 
Once all the aforementioned improvements were made, the individual components of the 
MIPS2000 microprocessor were assembled into one graphic design. The assembly of the 
complete datapath was trivial once all of the individual stages and inter-stage pipelines were 
modified from their Lab 8 version. The resulting design is shown in Figures 6a, 6b, 6c, and 6d 
below and on the next pages. 
 

 
Figure 6a: Instruction Fetch Stage 

 
 

 
Figure 6b: Instruction Decode Stage 
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Figure 6c: Execute Stage 

 
 

 
Figure 6d: Memory Stage 
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Figure 6e: Write Back Stage 

 
This system was functionally compiled to eliminate all errors. See Appendix F, Specification 
Sheet 46 for a description of the MIPS2000 component. 
 
 
B. System Test: Lab9_test.asm 
 
In order to test the operation of the newly constructed MIPS2000 microprocessor, a test program 
was written. This program, Lab9_test.asm, evaluated a variety of arithmetic, logic, immediate, 
load, store, branch, and jump functions that created dependencies and hazards. Listing 3 on the 
next page shows the program developed to evaluate the performance of the MIPS2000. 
 
The bolded registers in Listing 3 represent those registers that are involved in a data dependency 
or hazard. The first data dependency encountered (annotation 1) can be solved with forwarding 
since the result of the subtraction (computed at the end of the EX stage) may be forwarded to the 
beginning of the EX stage for the following addition. 
 
The second data hazard (annotation 2) cannot be solved with forwarding. The load into register 4 
and the subsequent and using register 4’s data is impossible to resolve with forwarding. This 
hazard will be resolved by the Hazard Detection Unit with the run-time insertion of a NOP 
instruction in between the load and the and. The remaining dependencies in that sequence will be 
resolved with forwarding. 
 
Throughout the test program there are several branch and jump instructions. These instructions 
will employ the “assume branch not taken” scheme when they are encountered in the pipeline. If 
the branch was not supposed to be taken at run-time, then the subsequent instruction will have 
already been fed into the pipeline. If the branch was supposed to be taken at run-time, then the 
prediction was wrong and the MEM stage of the pipeline will issue a pipeline flush to prevent the 
wrong instructions from completing their execution. 
 
This program was compiled with UPASM and separated into four Memory Initialization Files 
(MIFs) using the four S2MIF programs created in Lab 8. These MIFs were loaded into the Data 
and Program Memories and the project was simulated using the Max+Plus II Waveform Editor. 
See Appendix E, Waveform Simulation 15 for the complete results of the simulation. 
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* LAB9_TEST.ASM - Program that demonstrates the features added 
*                   in Lab 9. 
* Author: Casey T. Morrison, EEL 4713, 4/3/2004 
 
 nolist 
 include "mips.mac" 
 list 
 
 ORG $0000 
 
 lw R5,R0,data1 
 lw R6,R0,data2 
 lw R7,R0,data3 
 lw R8,R0,data4 
 
 sub R1,R6,R5 
 addi R2,R1,$959B ; result should be 1 
 
 jal sub1 
done: beq R0,R0,done 
 
sub1: bgez R1,skip1 
 
 xor R1,R5,R5 ; set R1 = 0x00000000 
 nor R2,R0,R0 ; set R2 = 0xFFFFFFFF 
 
skip1: sltu R3,R2,R1 ; if working properly, R3 = 0x00000001 
 
 lw R4,R0,data5 
 and R4,R4,R5  ; result should be: R4 = 0x12245008 
 or R4,R4,R6  ; result should be: R4 = 0x1234D0DE 
 sub R4,R4,R6  ; result should be: R4 = 0x00001000 
 beq R4,R8,skip2 
 
 li R4,$EEEE  
 
skip2: ori R4,R4,$0234 
 jr R31 
 
 GFO 
 
 ORG $0080 
data1: dc.l $12345678 
data2: dc.l $1234C0DE 
data3: dc.l $FADE1EEF 
data4: dc.l $00001000 
data5: dc.l $BEEFF00D 
 end 

 Listing 3: Lab9_test.asm 
 
 
 
 
 
 
 
 
 
 
 
 
 

1

2
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Conclusion 
 
A. Summary 
 
The improvements upon the Lab 8 general MIPS2000 design made in this lab greatly improved 
the performance of the microprocessor. The hardware was adapted to handle various types of 
data dependencies and hazards. Because of these modifications, the programmer no longer needs 
to worry about manually inserting NOPs into the program to ensure dependency-free code. 
 
The performance of this machine can improve even more with the adoption of a more effective 
branch prediction scheme. For example, making use of a Branch History Table or a Branch 
Prediction Buffer would significantly reduce the frequency of branch mis-predictions. Other, 
more advanced performance boosts (such as out-of-order execution, branch delay slot, etc.) can 
also improve the throughput of the machine. 
 
 
B. Questions 
 
1) What would be required in the way of a hardware modification to cause the machine to fetch 

instructions from the “destination address” of a branch if the branch was toward a lower 
memory address or continue with the instructions immediately following the branch if the 
branch was toward a higher memory address. 
 
To accomplish this task you would need to add a new combinatorial logic block that detects 
if the branch offset is negative (if the most-significant bit is a one). If this is the case, then an 
adder dedicated to this task would compute the “destination address” and immediately feed 
that into the Program Counter. Otherwise, the combinatorial logic block would instruct the 
Program Counter next address selector to choose the NextPC value (PC + 4) as the next 
Program Counter address. 

 
2) Would the strategy in question 1 result in a means of branch prediction that was more 

efficient than the one chosen for our machine in lab? Why? You can use the sorting program 
for actual numerical evidence. 
 
The strategy in question 1 would probably be better than the “assume not taken” strategy 
implemented in this lab. If a branch is toward a lower address, then this branch is most likely 
associated with a loop in the code. By nature, loops generally execute more than once, so 
predicting that the loop branch will be taken—as this scheme does—is a sound strategy that 
will certainly boost performance. If the destination is a higher address, then the branch is 
most likely not associated with a loop and it would be equally wise to “assume not taken” as 
it would be to “assume taken.” 
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3) If a program consisted of a large number of loads and stores, what would the effective 
instruction execution rate be? It is not necessary to be numerically explicit, just give your 
analysis of how you would approach the problem given your integer pipeline and a 
hypothetical program that does a lot of data moving. You should check the assembler 
language version of the sorting program to see if it is such a program. 

 
 If a program had a lot of loads and stores, it could potentially run into many data hazards. If 

the program frequently loaded data into a register then attempted to store that data to 
memory, this would just as frequently cause a stall in the pipeline due to the data hazard 
created by the load/store dependency. Thus the instruction execution rate could potentially be 
33% slower than if there were no load/store dependencies. This is because for every 
load/store dependency, there must be one stall. If every load and store created a dependency, 
this would lead to one stall for every load/store, hence a 33% reduction in execution rate. 
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Introduction 
 
The purpose of this lab was to study the behavior of an instruction cache for the MIPS2000 
microprocessor. Instead of a separate Program Memory, this lab introduced the concept of an 
Instruction Cache that works in tandem with an all-purpose memory. This two-way set 
associative cache would theoretically reduce the penalty associated with reading instructions 
from memory. Since caches are often close in proximity to the microprocessor, their information 
may be read much faster than main memory’s. Therefore with certain schemes caches can 
greatly reduce the memory read time for a microprocessor. 
 
In general, caches can provide performance benefits by means of spatial and temporal locality. 
Spatial locality takes advantage of the concept that if an item in memory is referenced, then 
items whose addresses are close by will tend to be referenced soon. Temporal locality capitalizes 
on the fact that if an item in memory is referenced, then it will tend to be referenced again soon. 
The specific cache structure chosen in this lab will utilize both localities to maximize 
performance. 
 
 
 
Component Design and Validation 
 
A. Instruction Cache Structure 
 
There are various cache structures each with their own advantages. In this lab, a two-way set 
associative cache with “least-frequently used” replacement strategy was utilized for its spatial 
and temporal locality advantages. In this Instruction Cache, each cache line is four MIPS2000 
instructions long, and each cache set consists of two lines. With four sets total, the Instruction 
Cache has an overall size of 128 bytes. Figure 1 shows the structure of the Instruction Cache. 
 

 
Figure 1: Instruction Cache structure 

 
With this structure in mind, the MIPSsim header file (mipssim.h) was modified to support the 
aforementioned cache structure. In doing so, several requirements were imposed so that the 
resulting structure would be compatible with the operation and function of the cache. The 
strategy developed was to separate the data aspects of the cache from the address aspects. In 
addition, the data portion of the cache was further divided into instruction data and status data. 
 
Several structures were created to help map the MIPS2000 addresses into cache addresses. The 
least significant two bits of every MIPS2000 instruction address are always zero due to the byte-
addressable nature of the system memory. The next two bits (bits two and three) were used to 
address the four instruction words that each cache line contained. The two subsequent bits (bits 
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four and five) were used to distinguish between the four sets that the cache contained. Finally, 
the remaining 26 bits were used as the tag for the cache entry. As a result of this strategy, the 
following C structures were created. 
 

#ifdef B_ENDIAN 
struct block 
 { 
  unsigned block_addr: 30; 
  unsigned block_off: 2; 
 }; 
#else 
struct block 
 { 
  unsigned block_off: 2; 
  unsigned block_addr: 30; 
 }; 
#endif 
/* 
          31                                                  2 1         0 
         +-----------------------------------------------------+-----------+ 
         |                     block_addr                      | block_off | 
         +-----------------------------------------------------+-----------+ */ 
 
#ifdef B_ENDIAN 
struct slot 
 { 
  unsigned line_addr: 28; 
  unsigned word_index: 2; 
  unsigned block_off: 2; 
 }; 
#else 
struct slot  
 { 
  unsigned block_off: 2; 
  unsigned word_index: 2; 
  unsigned line_addr: 28; 
 }; 
#endif 
/* 
          31                                     4 3          2 1         0 
         +----------------------------------------+------------+-----------+ 
         |               line_addr                | word_index | block_off | 
         +----------------------------------------+------------+-----------+ */ 
 
#ifdef B_ENDIAN 
struct line 
 { 
  unsigned tag: 26; 
  unsigned set_index: 2; 
  unsigned word_index: 2; 
  unsigned block_off: 2; 
 }; 
#else 
struct line 
 { 
  unsigned block_off: 2; 
  unsigned word_index: 2; 
  unsigned set_index: 2; 
  unsigned tag: 26; 
 }; 
#endif 
/* 
          31                         6 5         4 3          2 1         0 
         +----------------------------+-----------+------------+-----------+ 
         |            tag             | set_index | word_index | block_off | 
         +----------------------------+-----------+------------+-----------+ */ 

 
Listing 1: C Structures for Instruction Cache 
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These structures were united to form the cache address union. Listing 2 below shows the 
resulting C Union. 
 

union cache_address  
 { 
  struct word addr; 
  struct block b_addr; 
  struct slot s_addr; 
  struct line l_addr; 
 }cache_addr; 
/* 
cache_addr.b_addr.block_off-----------------------------------------+ 
cache_addr.b_addr.block_addr--------+                               | 
          31                        |                         2 1   |     0 
         +--------------------------v--------------------------+----v------+ 
         |                     block_addr                      | block_off | 
         +----------------------------------------+------------+-----------+ 
         |               line_addr                | word_index | block_off | 
         +----------------------------------------+------------+-----------+ 
         |            tag             | set_index | word_index | block_off | 
         +----------------------------+--+--------+-------+----+-----------+ 
         |  upper_byte   |  upmid_byte   |  lowmid_byte   |   lower_byte   | 
         +-------^-------+------^--------+--------^-------+-------^--------+ 
                 |              |                 |               | 
                 +---------+    |                 |               | 
                           |    |                 |               | 
cache_addr.addr.upper_byte-+    |                 |               | 
cache_addr.addr.upmid_byte------+                 |               | 
cache_addr.addr.lowmid_byte-----------------------+               | 
cache_addr.addr.lower_byte----------------------------------------+ 
*/ 
 

Listing 2: C Union for Cache_Address 
 
With the cache address structure in place, the cache data components were created. The space in 
the cache for the actual instruction words was represented as a three-dimensional array. The first 
index of the array addresses the set, the second index addresses the “way” or half of the cache, 
and the third index addresses the specific word within the four-word line. The three-dimensional 
illustration of this structure is shown below in Figure 2. 
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\Figure 2: Instruction Cache data structure 
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The other component of the cache data is the status information. Each cache entry has tag bits, a 
valid bit, and a frequency associated with it. The cache status was organized into a two-
dimensional array. The first index of the array (first dimension) is used to distinguish between 
the four sets in the cache. The second index (second dimension) is used to select the tag bits, 
valid bit, or frequency of the two entries (one in the first half of the array, one in the second). 
Figure 3 below illustrated the structure of the cache status array. 
 

Set # Freq. 0 Freq. 1 Tag 0 Tag 1 Valid 0 Valid 1 
0       
1       
2       
3       

Figure 3: Instruction Cache status array 
 
See Appendix A, Program 10 for the complete mipssim.h code. 
 
 
B. Instruction Cache Operation 
 
The operation of the Instruction Cache was described in the MIPS2000 simulator (mipssim.c). 
For each instruction fetch, the accessCache() method was called to retrieve the desired 
instruction word from the cache. In the event that the instruction was not in the cache, a cache 
miss was recorded and the instruction (along with the three instructions surrounding it) were 
retrieved from main memory and placed in the cache. If the desired instruction was in the cache, 
then a cache hit was recorded and the instruction was returned. 
 
When cache misses occur and the cache must be updated with the desired information, a decision 
must often be made regarding the replacement strategy. Since this cache is two-way set 
associative, there can be two sets of four instruction words that map to the same cache line. Thus 
when a third group of four instruction words is to be written to an already full cache set, one of 
the two groups already in the cache must be replaced. In this lab, the “Least-Frequently Used” 
(LFU) cache replacement strategy was employed. When a cache entry must be replaced, the 
entry that is least-frequently used is the one selected for replacement. 
 
Keeping track of the frequencies was left to the accessCache() method. When an existing entry 
was accessed, its frequency was incremented in the cache status array. When a new entry was 
placed in the cache, it was assigned a frequency of one, meaning that it had been accessed one 
time. 
 
The primary role of the accessCache() method is to determine if the desired instruction is in the 
cache (cache hit) or if it is not (cache miss). This is done by comparing the upper 26 bits of the 
address with the tag bits of the two cache lines in the set specified by bits four and five of the 
address. If this comparison  is successful, and the data in the cache is valid, then a cache hit has 
occurred. If the comparison is negative, or if the data is not valid, then a cache miss has occurred, 
and the desired instruction must be fetched from main memory. See Appendix A, Program 11 for 
the C code for the MIPS2000 simulator complete with cache simulation. 
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System Design and Validation 
 
A. MIPS2000 Complete Simulator 
 
Once the header file (mipssim.h) and the C file (mipssim.c) were modified to support a two-way 
set associative Instruction Cache, the project was compiled and rid of all errors. The simulator 
was designed to keep track of the overall number of cache hits and cache misses during the 
execution of a program. In addition, the cache hit rate and cache miss rate were calculated for 
additional performance statistics. 
 
 
B. System Test 1: Bubble Sort 
 
In order to test the operation of the MIPS2000 simulator complete with Instruction Cache, 
several test programs were run to evaluate performance and accuracy. The first test program was 
a precompiled version of Bubble Sort. This sorting algorithm repeatedly compares two adjacent 
numbers in an array and swaps them if they are out of sorted order. 
 
After simulating the Bubble Sort program on the MIPS2000 simulator, it was determined that the 
newly implemented cache structure performed as desired and even offered some promising 
results in terms of the hit/miss rate. The total hit rate during the execution of the Bubble Sort 
program was 74.5% (589 out of 791 cycles) and the miss rate was 25.5% (202 out of 791 cycles). 
This indicated that the structure chosen for the Instruction Cache was beneficial to the 
performance of the machine, since an overwhelming majority of the instruction fetches resulted 
in cache hits. See Appendix D, Simulation 6 for an abbreviated listing of this simulation. 
 
 
C. System Test 2: Insertion Sort 
 
To further test the behavior of the MIPS2000 simulator, another sorting program was run. The 
precompiled Insertion Sort program was simulated and analyzed. As with the Bubble Sort, a 
favorable hit/miss rate resulted from the simulation. This time, 67.5% of cache accesses were 
hits, and only 32.5% were misses. In addition , the function of the program (to sort data) was not 
hindered by the addition of the cache function. See Appendix D, Simulation 7 for an abbreviated 
listing of this simulation. 
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Conclusion 
 
A. Summary 
 
The two-way set associative Instruction Cache implemented in this lab can prove to bring great 
performance benefits to the MIPS2000 microprocessor. By taking advantage of spatial and 
temporal locality, this cache structure saw hit rates of more than 75%. With fetches from main 
memory being much more costly than fetches from the cache, this hit rate translates into a real 
performance boost. 
 
More performance benefits may be achieved by increasing the associativity of the cache. With 
more associativity, temporal locality can be enhanced and the overall cache performance may 
increase. However, with more associativity comes a more complex replacement scheme. In 
addition, more hardware must be added to accomplish the comparisons necessary. In addition, 
the benefits of spatial locality may be increased with a larger cache block size. This entails 
storing more instruction words into the cache each time an instruction is fetched from main 
memory as a result of a cache miss. Although this would increase performance, it would also 
involve additional hardware. 
 
Cache schemes can be implemented with data memory as well as program memory. When doing 
this, a new level of complexity is added. Strategies must be developed to handle situations in 
which data is written to memory. With the right strategy, however, the performance benefits can 
heavily outweigh the hardware/complexity additions.  
 
 
B. Questions 
 
1. What interesting things did you notice about the instructions following the load and branch 

instructions produced by the C compiler? Why were there sometimes instructions instead of 
NOPs following branches? Could this code run on our VHDL simulator and why? If not, 
what changes would we have to make to the VHDL simulator to execute this code? 

  
The C compiler inserted instructions following loads and branches in accordance with the 
“branch delay slot” and “load delay slot” schemes. In other words, the compiler recognized 
the need to stall after a load or branch, and it inserted an independent instruction after a load 
or a branch so that work could still be done in these situations. If the compiler could not find 
a satisfactory independent instruction, it would insert a NOP instead. 
 
This code could not run on the existing VHDL simulator because that design uses the 
“assume not taken” strategy instead of the “branch delay slot” strategy. In the existing VHDL 
simulator the instruction following a branch will begin execution, but could be cleared if it is 
discovered that the branch was supposed to be taken. Thus the instruction in the branch delay 
slot will not always get executed. 
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In order to execute this code on the VHDL simulator, the next address decision must be 
moved forward to the EX stage so that the decision to branch or not can be made immediately 
after the branch delay slot instruction has entered the pipeline. Thus the correct execution 
path can be decided in time, and there would be no need to flush the pipeline. 

 
2. Using a 4 to 1 ratio between CPU speed and main memory speed, estimate, using methods 

shown in reference 1, the cache performance of the final MIPSsim as it executes the sort 
program. Remember that the NOPs introduced by the compiler must still be counted since 
they compensate for shortcomings in the integer pipeline. 
 
After executing the Bubble Sort program, the following performance statistics were 
observed. 
 
Cache type Total cycles # Hits # Misses Cost Performance Ratio 
MIPS2000 791 598 202 1397 
Perfect 791 791 0 791 

766.1
791

1397
=  

Figure 4: Cache performance comparison 
 

3. If the data cache for the MIPS2000 was added, what new behaviors were needed in the 
implementation? 

 
 In order to implement a data cache, a strategy must be developed in order to handle memory 

writes. Write Back and Write Through are two common strategies employed to handle such 
situations. 

 
4. The authors of reference 1 suggested that the cost of a cache-miss should affect the choice of 

data replacement algorithms. Is the cost of a cache-miss for our cache(s) high or low 
compared with the cost of a “page-fault” in the computer’s main memory? Hint: scan 
section 7.4 in reference 1. Realize that main memory is just a cache for the swapping area on 
the hard drive. What is the typical access time to data on the hard drive? How does this 
compare with the typical access time to data in main memory, in cache? The answer is in the 
speed ratios. 

 
 A page fault costs significantly more than a cache miss. The typical access time for RAM is 5 

to 120 ns, while the typical access time for the hard disk is 10 to 20 million ns. Thus the cost 
for a page fault is between 167,000- and 4,000,000-times greater than the cost of a cache 
miss. 


