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1 Introduction

While conventional adaptive filters allow for the dynamic adjustment of performance based on a
sequence of inputs and error measurements, a recent publication [1] by Arenas-Garcia, Figueiras-
Vidal, and Sayed claims that improved performance may be achieved with the combination of
multiple filters of this sort.

The objective of this experiment was to verify (or dispute) the claims of the authors and to
evaluate the performance of a convex combination of two adaptive filters when applied to an
economic time series. The problem of filtering economic data is complicated by the inherent
non-stationarity of time series of this sort. It goes without saying that highly-accurate filters that
can predict future values of such time series would be very valuable. As a result, this problem
has been studied thoroughly and has proven to be a very difficult and complex one.

2 Convex Combination of Two Adaptive Filters

The authors of [1] propose an adaptive filter structure illustrated in Figure 2.1 below. As shown
in the figure, updates are made to each component filter, as well as to the combination filter
based on various error measurements and rules.
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Figure 2.1: Adaptive convex combination of two transversal filters

The output of such a filter is defined by the following equation,

y(n) = A(n)y,(n) +[1=A(m)]y,(n),
where y1(n) and y,(n) are outputs of the two transversal filters, and A(n) is a mixing scalar
parameter that lies between zero and one. With a properly chosen A(%), the combination filter can
effectively extract the best properties of the individual filters w,(n) and w,(n).
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A nonlinear adaptation of the mixing parameter is proposed according to the following sigmoidal
function:

1
A(n) = sgmla(n)] = l-l-e—’“(”)’

which appropriately ranges from zero to one in a manner depicted in Figure 2.2.
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Figure 2.2: Sigmoid function
The variable a(n) that defines A(n) is updated via the following recursive relation:
a(n+1) = a(n) + p,e(n)y,(n) = y,(M]AM)[1 = A(n)].
An important result of this adaptation rule is that the stochastic gradient noise and the adaptation

speed near M(n) = 1 and A(n) = 0 are reduced. This allows the combination filter to perform close
to the individual filter corresponding to A(n) = 1 or M(n) = 0.

To avoid a situation where the adaptation of a(n) ceases as M(n) — 0 or A(n) — 1, the authors
propose a restriction on a(n) such that a(n) € [-a",a'] and A(n) € [1- A", X'], where A" = sgm[a].

A modification to the mixing parameter is proposed as follows:

0, a(n)<-a’ +¢
A, (n)=3A(n), —a" +e<a(n)<a’ —¢
1 a(n)>a" —¢

where ¢ is a small positive constant.

With this structure in place, the authors of [1] assert that y,(n) is universal with respect to its
components. This means that it performs, in steady-state, at least as well as the best component
filter, and, in some cases, better than both component filters. Likewise, y(#) is shown to be
nearly universal, meaning it can perform as close as desired to the best component filter.
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2.1 Notation

For purposes of performance analysis, the authors define some notation and variables. In
addition, other performance metrics are defined for the purposes of evaluating the prediction
accuracy of this architecture.

Table 2.1.1: Notation and variables

Variable description Definition Conditions

. N N For component filters
gi(n)zwo_wi(n) ._1 2
Weight error vector =1,

E(n) = w, —w(n) For combination filter

e, (n) =& (nyi(n)
A priori errors i=1,2

e, (n)=&" (n)ii(n)

_zT =
e, (n)=¢ (n+1u(n)
A posteriori errors i=1,2
_gaT -
e,(n)=¢&" (n+Du(n)

For individual filters

J, (©)=limE{e’ (n)}
’ n—w > .
Excess mean-square error i=1,2
(EMSE)

J e (0) = }lgg E{ej (n)} For combination filter

Cross-EMSE of the J, ,(0)=limE{e, (n)e,,(n)} Steady-state correlation between
component filters - n—> ’ ’ the component filters

|d(n) - y(n)

Percent error e, = |d( )| -100% Percent error in magnitude
n

2.2 Universality of the Combination Filter

The two combination schemes proposed earlier, y(n) and y, (n), were examined by the authors

in terms of their steady-state performance. In general, it is difficult to evaluate the EMSE for
each scheme. However, there exist two cases in which this evaluation can be simplified.

1. If imE{a(n)} =a", then the EMSEs may be simplified to
Jex (OO) ~ Jex,l (OO)
Jex,u (OO) = Jex,l (w) b

where J, () is the EMSE for the second combination scheme, y, (7).

ex,u
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2. If limE{a(n)} = —a", then the EMSEs may be simplified to

Jex (OO) ~ Jex,Z (CD)
Jex,u (OO) = Jex,Z (OO) >

The authors introduce the differences

A‘]i = Jex,i (CD) - Jex,lZ (@), l = 17 2’ ’

which measure the difference between the individual EMSEs and the cross-EMSE. The
following three cases were examined in regard to AJ, .

1.

AJ, <0 and AJ, 20 (ie. J, (0)<J, ,(0) <, ,(0)):

It can be shown that in this case, both combination schemes perform like their best
component filter. This can be stated as
Jex (OO) ~ Jex,l (OO)
Jex,u (OO) = Jex,l (OO) .

AJ, 20 and AJ, <0 (ie. J, (0)=J, ,(0) =], ,(0)):

It can also be shown that in this case, the behavior of the overall filter is as good as its
best element. This can be stated as

Jex (OO) ~ "]ex,2 (CX))
Jex,u (OO) = Jex,Z (OO) .
AJ, >0 and AJ, >0 (i.e. J, ,(0) </, () and J, ,(0) <], ,(0)):

It can be shown that in this case, both combination filters outperform the two component
filters. This can be stated as

Jex (OO) < min {Jex,l (OO)’ Jex,2 (CX))}
S e () <min{J,  (20),J 5 ()} .

This analysis leads to the conclusion that the first combination scheme, y(n), is nearly universal,

1.e., its steady-state performance is at least as good as that of the best component filter. It can also
be concluded that the second combination scheme, y,(n), is universal in the sense that it

performs at least as well as the best element in the mixture. In fact, both schemes are capable of
outperforming their components in certain circumstances. These conclusions are summarized in
Table 2.2.1.

Table 2.2.1: EMSEs of two combination schemes as a function of E{a(0)}

E{a(0)}=—a" |-a" <Bla(w)} <-a" +¢|-a" +e<Bla(w)}<a’ -¢|a* — g <E{a(w)} < a*|E{a(x)} =a"

Jex (CD) ~ ']ex,2 (w) < min {‘]ex,l (OO)’ Jex,2 (CD)} ~ Jex,l (w)

J v () =J s (0) <min{J, (), ()} =J i (0)
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3 Combination of Two NLMS Filters

The performance of an adaptive convex combination of two Normalized Least-Mean-Square
(NLMS) filters that differ only in step-size was analyzed. The input data for this system consists
of a semi-stationary economic time series. In particular, the closing stock price for Texas
Instruments (TXN) from March 27, 2002 to March 16, 2006 was used as a data source.

3.1 Simulation Environment

A mathematical implementation of the proposed adaptive filter structure was constructed in
Matlab (see Appendix A for the Matlab code). As previously illustrated in Figure 1 (page 2), the
overall structure of the combination filter consists of two component filters that are adjusted by
their respective prediction errors, and the combined prediction is formed by mixing the outputs
of each component filter in a convex manner.

Each component filter is a Normalized Least-Mean-Square (NLMS) filter. The reasons behind
this design decision are two-fold [2]:
1. The NLMS filter mitigates the gradient noise amplification problem, which can arise
when the tap-input vector u(n) is large.

2. The rate of convergence of the NLMS filter is potentially faster than that of the
conventional LMS filter for both uncorrelated and correlated data.

As previously mentioned, the combination filter draws its input data from 1000 samples of an
economic time series (TXN closing price). This data spans from March 27, 2002 (sample 999) to
March 16, 2006 (sample 0). Figure 3.1.1 below shows the input sequence used to excite the
combination filter.

TXN Closing Price
o e e [P, R A
¢ o5 v \V\J‘M\\m/"\/\ /\.r\/\/“\/“ A o
i= ALY VT w AT
£ T T et Nl
OOQ‘BB?\’&E&?E&E&%ﬁ%@ﬁé&%%%ﬁ?%@ﬁ@%%@E%§@§§%ﬁﬁ&@ﬁﬁ%éﬁ@&%%é@%@
Sample number

Figure 3.1: Input data sequence i (n)

The NLMS filters used in this environment are each built around an M-tap transversal filter. The
tap weights for each filter are updated according to the following recursive equation [2].

Z
S +|am)|’
e,(n) =d(n)—w," (n)ii(n),

where /i, is the adaptation constant for the i™ filter, #(n) is the M-by-1 tap input vector at time

W, (n+1) =, (n)+ ii(n)e, (n), i=12

step n, 0 is a small positive constant offset, and d(n) is the desired response at time step n.
Figure 3.1.2 on the following page illustrates the structure of an M-tap NLMS transversal filter.
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Figure 3.2: NLMS transversal filter structure

The combination of the two NLMS filters was accomplished by applying both the universal and
the nearly-universal mixing schemes developed by the authors.

3.2 Experimental Procedures

Prior to the simulation of the combination filter, numerous individual NLMS filters with
different adaptation constants were simulated. Figure 3.2.1 below shows the plot of the mean-
square error (MSE) for each filter over time.
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Figure 3.3: MSE for different values of 1
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Several attempts were made to find the adaptation constant that produced the smallest MSE. The
result of these trials indicated that the optimum adaptation constant was 0.345. Optimum, in this
case, refers to the adaptation constant that achieves the minimum MSE over the duration of the
simulation (particularly towards the end of the simulation).

Once this optimum adaptation constant, ,,, was determined, several simulation cases were

considered. In each case, the component NLMS filters utilized three taps. Adaptation constants
were selected with the optimum value of 0.345 in mind. When such a combination filter is
implemented in the real world, z,, will not be known. Therefore, the selection of z, and ,

will be arbitrary to some degree. Categorizing the selection of z, and x, into the following
cases will help understand the possible outcomes of a combination filter.
1' Case]: ﬁl >ﬁ0pt’ ﬁZ >ﬁopt
2 Case 2: ﬁl < ﬁopt’ ﬁZ < ﬁopt
3. Case3.a: f, <[y, Hy > l,,
4

ﬂopt - ﬂl‘ << /Llapt - 1112‘

Case 3b /ul < Iuopt? /'l2 > /’lopt’ /unpt _lul‘ ~ /’lopt _ﬂZ‘

3.3 Experimental Results

Several trials were run with different adaptation constants for each NLMS filter. Trials in each of
the aforementioned cases were conducted, and the results follow.

Case 1 - ﬁl > ﬁnpt? ﬁz > ﬁ()pt

In this case, both component filters have an adaptation constant that is greater than the optimal
value. Assume, without loss of generality, that z, <,. The adaptation constant of the first

NLMS filter, therefore, is closest to the optimal value. As a result, the combination filter tended
towards unity (i.e. A(o0) =1), which means that the first component filter eventually became the

only component of the combination. Furthermore, the performance of the combination
approached that of the first component filter. In the long-run, the component filter would, at best,
perform as good as the best component (filter one). Figure 3.3.1 shows the progression of the
mixing parameter over time. Figure 3.3.2 shows the MSE for each component filter, as well as
the combination.
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Figure 3.4: Progression of mixing parameter for Case 1
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Figure 3.5: MSE for Case 1
Case 2 - ﬁl < ﬁopt’ ﬁZ < ﬁopt

In this case, both component filters have an adaptation constant that is less than the optimal
value. Assume, without loss of generality, that zz, > 77, . The adaptation constant of the first

NLMS filter is again closest to the optimal value. As before, the combination filter tended
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towards unity (i.e. A(o0) =1). As a result, the performance of the combination approached that of

the first component filter. Figure 3.3.3 below shows the progression of the mixing parameter
over time. Figure 3.3.4 shows the MSE for each component filter, as well as the combination.
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Figure 3.7: MSE for Case 2
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Case 3'a - ﬁl < ﬁopt’ ﬁZ > ﬁopt’ ﬁopt - ﬁl‘ << ﬁopt - ﬁZ‘

In this case, the component filter adaptation constants straddle the optimal value. Assume,
ﬁopt - /’71‘ <<
NLMS filter is still closest to the optimal value. As before, the combination filter tended towards
unity (i.e. A(o0) =1), though in a less immediate manner; and the performance of the

combination approached that of the first component filter. Figure 3.3.5 below shows the
progression of the mixing parameter over time. Figure 3.3.6 shows the MSE for each component
filter, as well as the combination.

without loss of generality, that Hyp — ﬁz‘ . The adaptation constant of the first
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Figure 3.8: Progression of mixing parameter for Case 3.a
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Case 3.b— [i, < [i,,. il, > IL,,. |i,, - | ~|@,, - IL|

In this case, the component filter adaptation constants straddle the optimal value, and both are
approximately the same “distance” away (in terms of their corresponding MSE performance).
The adaptation constant of the first NLMS filter is no longer necessarily closer to the optimal
value. Unlike the previous cases, the combination filter did not clearly favor one filter or the
other. In fact, the mixing of the two components continued well into the simulation. This case

meets the authors’ criteria for universality. They assert that if the following is true,

—a" +e<Ela(o)}<a —¢,
then both combination schemes yield a lower MSE than either of the components. Similarly, this
experimental case shows that component mixing continues well into the simulation (and
theoretically forever), and as a result, the combination outperforms the component filters. Figure

3.3.7 below shows the progression of the mixing parameter over time. Figure 3.3.8 shows the
MSE for each component filter, as well as the combination.
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Figure 3.10: Progression of mixing parameter for Case 3.b
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4 Conclusions

After implementing the authors’ proposed filter design with two NLMS filters, and using
economic data as the input sequence, I was able to verify the most important claims of the
authors. These are:
e [fthe mixing parameter approaches a steady-state value of either unity or zero, then the
combination filter will perform equivalent to the corresponding component filter.
e If the mixing parameter does not approach a steady-state value of either unity or zero,
then the combination filter outperforms both component filters in steady-state.

Furthermore, these conclusions offer some insight into the selection of adaptation constants for
NLMS filters. If it is the case that the combination filter approaches one of the component filters,
then this indicates that the corresponding component filter has a “more optimal” adaptation
constant for the given input sequence. Likewise, if the combination filter does not tend towards
one component or the other, then this indicates that the optimal adaptation constant lies
somewhere in between the adaptation constants of the component filters.

After conducting exhaustive simulations with different parameters, I determined that this
particular filter structure is not well-suited for the prediction of semi-stationary economic data.
Although the MSE seemed to be fairly low, the percent error, as shown in Figure 4.1, was less
than desirable. It is likely that a well-educated economist could form day-to-day guesses that
result in a smaller percent error.

Percent Error
T T T I I I I |

i i : Best component filter
b A B s T e S A e e Combination (scheme 2) | _|

percent

Figure 4.1: Percent error for combination and best component
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Appendix A: Matlab Code

main.m
function main(sim type, I, O, k 1, k 2)

% Function: main ()
% File name: main.m

% Description: Main function that handles setup, simulation, and data
% plotting.

% Notes:

S w(n+tl) = w(n) + mu(n)[p - R*w(n)]

% J(n+l) = E{|e(n+l) "2}

% e(n+l) = d(n+l) - wH(n+1l)*x(n+1)

% w(n+l) = w(n) + (mu~/(a+mu(n)))x(n)e' (n)

o©°

Identify Global variables

% System-level parameters
global numIterations;

global filterOrder;

global closing price;

global input;

global maxDatalIndex;

global minDatalIndex;

global predicted;

global desired;

global error;

% Filter-level parameters
global mu tildel mu tilde2;
global wl w2;

global predictedl predicted?2;
global errorl error2;

global k1l k2;

global alpha;

global mul mu2;

global MSE1l MSEZ2;

global alpha;

% Other variables

global stationary nonstationary;
% Data boundary definitions

global stationary min stationary max;
global nonstat min nonstat max;

Q

% Initialize data boundaries

stationary min = 1;
stationary max = 1000;
nonstat min = 3001;

nonstat max = 4000;
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% Set global variables

filterOrder = 0;

numIterations = I;

k1l =k 1;

k2 =k 2;

stationary = 1;

nonstationary = 2;

if (sim type == stationary)
maxDataIndex = stationary min + filterOrder + numlterations - 1;
minDatalIndex = stationary min;

elseif (sim_ type == nonstationary)
maxDataIndex = nonstat min + filterOrder + numIterations - 1;
minDataIndex = nonstat min;

else
error ('"Error (main.m): Invalid simulation type');

end;

Q

% Initialize environment

initialize environment () ;

% Import price change data

temp closing price xlsread('txn data.xls');
$temp closing price xlsread('AR3 data.xls');

o)

% Resize data
closing price

temp closing price(:,1);

% Plot input data

$plotInputData() ;

% Resize price change data

input closing price (minDatalIndex:maxDatalIndex) ;

% Desired(n) input (n+1)
if (sim_type == stationary)

desired [input (2: (stationary max-stationary min+l)) ;
closing price (maxDataIndex+1)];
elseif (sim type == nonstationary)

desired [input (2: (nonstat max-nonstat min+l)) ;
closing price (maxDataIndex+1l)];
else

error ('Error
end;
closing price(size(closing price))];

(main.m): Invalid simulation type');

o
°

Simulate new method
simulate () ;

% Plot data
plotData() ;

initialize_environment.m

function initialize environment ()
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% Function: initialize environment ()
% File name: initialize environment.m

% Description: Initialization function that zeros out all matrices/vectors

o\

Identify Global variables
% System-level parameters

global numIterations;

global filterOrder;

global pc data;

global input;

global maxDataIndex;

global minDatalIndex;

global predicted schemel predicted scheme2;
global error schemel error scheme2;

global percent e schemel percent e scheme2;
global MSE schemel MSE scheme2;

global MSE generic;

global desired;

global error;

global error generic;

global w generic;

global schemel scheme2;

global lambda lambda u;

global a a_u;

global a plus;

global epsilon;

global best percent error;

global best MSE;

global mu_a;

% Filter-level parameters

global mu tildel mu tilde2;

global wl w2;

global predictedl predicted?2;

global errorl error2;

global percent errorl percent error2;
global k1l k2;

global alpha;

global mul mu2;

global muc;

global MSE1l MSEZ2;

global alpha;

o)

% Initialize constants

alpha = 0.5;
schemel = 1;
scheme2 = 2;
%a_plus = 1.5;
a plus = 5;
epsilon = 0.001;
mu_a =1.6;

Q

% Initialize matrices/vectors
predicted = zeros (numlIterations) ;
predictedl zeros (numIterations) ;
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predicted?2 = zeros (numlIterations);

wl = zeros (filterOrder,numlIterations);
w2 = zeros (filterOrder,numIterations);
w_generic = zeros (10, filterOrder,1000) ;
errorl = zeros (numlterations);
error?2 = zeros (numlIterations);
percent errorl = zeros(numlIterations);
percent error2 = zeros(numlIterations);

error generic = zeros(10,1000);

MSE generic = zeros(10,1000);

mul = zeros (numlIterations);

mu?2 = zeros (numlIterations) ;

error = zeros (numIterations);
lambda = zeros (numIterations);
lambda (1) = 0.5;

lambda u = zeros (numlIterations);
lambda u (1) = 0.5;

a = zeros (numIterations);

a(l) = 0.5;

au = zeros (numlterations);

a u(l) 0.5;

MSE schemel = zeros (numlIterations) ;

MSE scheme2 = zeros (numIterations);

error schemel = zeros(numIterations);
error_scheme2 = zeros(numlterations);
percent e schemel = zeros(numlIterations);
percent e scheme2 = zeros(numIterations);
best percent error = zeros(numlIterations);
best MSE = zeros (numIterations);
simulate.m

function simulate ()

% Funct
$ File

% Description:

o\

Ident
% Syste
global
global
global
global
global
global
global
global
global
global
global

ion: simulate ()
name: simulate.m

Casey T. Morrison
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Simulation function that handles component filters,

combination filters, and performance metric gathering.

ify Global variables

m-level parameters
numIterations;
filterOrder;
pc_data;

input;
maxDataIndex;
minDatalIndex;
predicted;
desired;

error;

schemel schemeZ2;
percent errorl percent error2;
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global
global
global
global
global
global

% Filt
global
global
global
global
global
global
global
global
global
global

% Data
global
global

% Set
maxN =

% Simu
for n

o)

°

co

o

°

Cco

%

be
be

o)

°

up

o

°

up

%

best percent error;

best MSE;

a a u;

mu_a;

error_schemel error scheme2;
lambda lambda u;

er-level parameters
mu tildel mu tilde2;
wl w2;

predictedl predicted2;
errorl error2;

k1l k2;

alpha;

mul mu?2;

muc;

MSE1l MSEZ2;

alpha;

boundary definitions
stationary min stationary max;
nonstat min nonstat max;

global variable
numIterations;

late iteratively

= l:maxN

Simulate component filter 1
mponent filter(l,n);

Simulate component filter 2
mponent filter(2,n);

Record best-performing component filter
st MSE (n) = min (MSE1l (n),MSE2 (n)) ;

Casey T. Morrison
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st _percent error(n) = min(percent errorl(n),percent errorl(n));

Compute mixing parameter for combination scheme 1
date mixing(schemel,n);

Compute mixing parameter for combination scheme 2
date mixing(scheme2,n);

Simulate combination filter

combination filter(n);

oS
°

a(
predic

a_
predic
end;

Update adaptation variable

n+l) = a(n) + mu_a*error schemel (n)* (predictedl (n)
ted2 (n)) *lambda (n) * (1 - lambda(n)):;

u(n+l) = a u(n) + mu _a*error scheme2 (n)* (predictedl (n)
ted2 (n)) *lambda u(n)* (1 - lambda u(n));

component_filter.m

functi

on component filter (filterNumber,n)
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% Function: component filter ()
% File name: component filter.m

% Description: Simulation function that handles component filters.

o

Identify Global variables

% System-level parameters
global numIterations;
global filterOrder;
global pc data;
global input;

global maxDatalIndex;
global minDataIndex;
global predicted;
global desired;
global error;

% Filter-level parameters

global mu tildel mu tilde2;
global wl w2;

global wol wo2;

global EMSEl EMSE2;

global predictedl predicted2;
global errorl error2;

global percent errorl percent error2;
global k1 k2;

global alpha;

global mul mu2;

global muc;

global MSE1l MSEZ2;

% Identify local variables

w = zeros (filterOrder,1); % Current tap weight vector

e = 0; % Current error: desired - predicted
percent e = 0; % Current percent error

MU = 0.5; % Current step size

% Determine which filter to simulate
if (filterNumber == 1)

% Set variables for component filter number 1
w = wl(:,n); Use previously-calculated weight vector
= k1; Use step-size parameter set at top-level
elseif (filterNumber == 2)

% Set variables for component filter number 2
= w2(:,n); Use previously-calculated weight vector

= k2; Use step-size parameter set at top-level

o\ ~
o° o° oe

~ =

o\°

else

error ('Error (component filter.m): filterNumber not in the expected range
[(1,21.");
end;

[)

% Simulate component filter
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if

(n < filterOrder)

Cannot simulate unles input is at least as large as the filter order
wNext = zeros(filterOrder,1):;

u zeros (filterOrder, 1) ;

WO = zeros (filterOrder,1);

o 3

=

else

the

oo°

Define input sequence
= input(n:-1:n-filterOrder+1);

o

o\°

Calculate prediction
=w' * u;

=

oo

Calculate errors in prediction
e = desired(n) - y;
if (desired(n) == 0)
percent e = 0;
else
percent e = 100*abs(desired(n) - y)/abs(desired(n));
end;
% Start with big mu for speeding the convergence then slow down to reach
correct weights
if n < 20
MU = 0.5;
else
% Use adaptive step to reach the solution faster mu = k * 2/M*r (0)
MU = k/(alpha+var(u));
end
% Calculate next tap weight wvector
wNext = w + ((MU * e)/(alpha + u'*u)) * u;

end;

% Update metrics/outputs for this iteration

if (filterNumber == 1)
errorl (n) = e;
percent errorl (n) = percent e;
predictedl (n) = vy;
wl(:,n+1) = wNext;
mul (n) = MU;
if (n < 30)
MSE1 (n) = 0;
else
MSE1L (n) = mean ( (errorl (30:n)) ."2);
end;
elseif (filterNumber == 2)
error2(n) = e;
percent error2(n) = percent e;
predicted?2 (n) = vy;
w2 (:,n+1) = wNext;
mu?2 (n) = MU;
if (n < 30)
MSE2 (n) = 0;
else
MSEZ2 (n) = mean ((error2(30:n)) ."2);

end;
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else

[

% Error case handles above
end;

update_mixing.m

function update mixing(scheme,n)

% Function: update mixing (scheme,n)
% File name: update mixing.m

% Description: This funtion updates the value of the mixing parameter
% lambda.

% Identify Global variables

% System-level parameters

global numIterations;

global filterOrder;

global closing price;

global input;

global maxDataIndex;

global minDatalIndex;

global predicted;

global desired;

global error;

global schemel scheme?2;

global a a u;

global a plus;

global epsilon;

global mu_a;

global lambda lambda u;

global error schemel error scheme2;
% Filter-level parameters
global mu_tildel mu_tilde2;
global wl w2;

global predictedl predicted2;
global errorl error2;
global k1 k2;

global alpha;

global mul mu2;

global muc;

global MSE1l MSEZ2;

global alpha;

[)

% Identify local variables

if (scheme == schemel)

lambda (n) = 1/(1 + exp(-a(n)));
elseif (scheme == scheme?)

if (a_ u(n) <= -1*a plus + epsilon)

lambda u(n) = 0;
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elseif (a_u(n) >= a plus - epsilon)
lambda u(n) = 1;
else
lambda u(n) = lambda (n);
end;
else
error ('Error (update mixing): Invalid scheme selected (not in the set
{schemel, scheme2}).');
end;

combination_filter.m

function combination filter (n)

% Function: combination filter()
% File name: combination filter.m

% Description: Simulation function that handles the combination filter.

o

Identify Global variables

% System-level parameters

global numIterations;

global filterOrder;

global pc data;

global input;

global maxDataIndex;

global minDatalIndex;

global predicted schemel predicted scheme2;
global desired;

global error schemel error scheme2;
global percent e schemel percent e scheme2;
global schemel scheme2;

global lambda lambda u;

global a;

global a plus;

global epsilon;

global mu_a;

global MSE schemel MSE schemeZ2;

% Filter-level parameters
global mu_tildel mu tilde2;
global wo wl w2;

global EMSE;

global predictedl predicted?2;
global errorl error?2;
global k1l k2;

global alpha;

global mul mu2;

global muc;

global MSE1l MSEZ2;

global alpha;

Q

% Compute the predictions at time n
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predicted schemel (n)
) *predicted?2 (n) ;
predicted scheme2(n) = lambda u(n)*predictedl (n) + (1 -
lambda u(n)) *predicted2 (n);

lambda (n) *predictedl (n) + (1 - lambda (n)

o)

% Compute the errors at time n
error_schemel (n) = desired(n) - predicted schemel (n);
error scheme2 (n) desired(n) - predicted scheme?2 (n);

% Comute the percent error at time n
if (desired(n) == 0)
percent e schemel (n) = 0;
percent e scheme2(n) = 0;
else
percent e schemel (n)
predicted schemel (n)) /abs
percent e scheme2 (n)
predicted scheme2 (n))/abs
end;

100*abs (desired(n) -
desired(n));

100*abs (desired(n) -
desired(n));

—_ 1~

% Update metrics for this iteration

if (n < 30)
MSE schemel (n) = 0;
MSE scheme2 (n) = 0;
else
MSE schemel (n) = mean((error schemel (30:n))."2);
MSE scheme2 (n) = mean((error scheme2(30:n))."2);
end;

plot_data.m

function plotData (null)

% Function: plotData ()
% File name: plotData.m

% Description:

% System-level parameters

global numIterations;

global filterOrder;

global pc data;

global input;

global maxDataIndex;

global minDataIndex;

global predicted schemel predicted scheme2;
global desired;

global error schemel error scheme2;

global percent e schemel percent e scheme2;
global MSE schemel MSE schemeZ2;

global generic MSE;

global generic error;

global best percent error;

global best MSE;
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global lambda lambda u;

% Filter-level parameters

global mu tildel mu tilde2;

global wl w2;

global wol wo2;

global EMSEl EMSEZ2;

global predictedl predicted2;

global errorl error2;

global percent errorl percent error2;
global k1 k2;

global alpha;

global mul mu2;

global muc;

global MSE1l MSEZ2;

oo

Data plots
n = minDatalIndex:maxDataIndex;
= l:numIterations;
{
% Input sequence
subplot (2,1,1);
plot (n,input(n)); grid on;
xlabel ('n');
ylabel ('ul[n]"');
axis ([l numIterations 0 1]); axis 'auto y';
title ('Input Sequence');
%}
% {
% Output sequence
subplot(1,1,1);
plot(n,desired(n), 'm-',n,predicted schemel(n), 'g-',n,predicted scheme2 (n), "k-
.'); grid on;
legend ('desired', 'Combination (scheme 1)', 'Combination (scheme 2)"')
xlabel('n'");
ylabel ('d[n], yl[n], y2[n]');
axis ([l numIterations 0 1]); axis 'auto y';
title('Desired and Predicted Output Sequences');

5}

o°

o 3

% Mean-square error
%subplot (3,1,1);
figure(1l);
plot (n,MSE1l (n), 'b-',n,MSE2 (n), 'r-',n,MSE schemel (n), 'g-',n,MSE scheme2 (n), "k-
'); grid on;
legend ('Component 1', 'Component 2', 'Combination (scheme 1)', 'Combination
(scheme 2)"'")
xlabel ('n'");
ylabel ('"MSE[n]"'");
title ('Mean-Square Error');
%1
% Filter taps
$subplot(3,1,2);
figure (2);
if (filterOrder == 3)
plot3 (squeeze (wl(1l,n)),squeeze(wl(2,n)),squeeze(wl(3,n)), 'b-"); grid on;
hold on;
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plot3 (squeeze (w2 (1,n)), squeeze (w2 (2,n)),squeeze(w2(3,n)),'r-");
legend ('Component 1', 'Component 2'")
xlabel ('wl') ;
ylabel ('w2');
zlabel ('w3');
elseif (filterOrder == 2)
plot (squeeze (wl(l,n)),squeeze(wl(2,n)), 'b=-"); grid on; hold on;
plot (squeeze (w2 (1l,n)),squeeze(w2(2,n)),'r-"); hold off;
legend ('Component 1', 'Component 2'")
xlabel ('wl');
ylabel ('w2'");
else
plot(n,wl(l,n), 'b-"); grid on; hold on;
plot(n,w2(1l,n),'r-"); hold off;
legend ('Component 1', 'Component 2'")
xlabel('n'");
ylabel ('wl(n)");
end;
title('Progression of tap weights');
% MSE for component filters
figure(3);
plot(n,MSEl(n), 'b-',n,MSE2 (n), 'r-"); grid on;
legend ('Component 1', 'Component 2'")
xlabel('n');
ylabel ('MSE[n]"');
%$axis ([0 1000 1 100]);
title ('Mean-Square Error');

Q

figure (4);

plot(n,best MSE(n), 'm-',n,MSE schemel (n),'g-"'); grid on;
legend ('Best component filter', 'Combination (scheme 1)"')
xlabel ('n'");

ylabel ('MSE[n]"');

%$axis ([0 1000 1 100]);

title ('Mean-Square Error');

% MSE for universal combination filter and best component filter
figure (5);

plot(n,best MSE(n), 'm-',n,MSE scheme2 (n), 'k-'); grid on;

legend ('Best component filter', 'Combination (scheme 2)"')
xlabel('n');

ylabel ('MSE[n]"');

$axis ([0 1000 1 1001);

title ('Mean-Square Error');

%}

% Lambda

figure (6);

plot (n,lambda(n), 'g-',n,lambda u(n),'k-"); grid on;

legend ('Lambda', 'Lambda u')

xlabel('n');

ylabel ('lambda[n]"'");

axis ([0 1000 O 11);

title('Progression of Lambda');

p = 900:1000;

4/28/2006

hold off;

% MSE for nearly-universal combination filter and best component filter
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[)

% Percent error for component filters

figure (3);

plot (p,percent errorl(p), 'b-',p,percent error2(p),'g-"); grid on;
legend ('Component 1', 'Component 2'")

xlabel('n'");

ylabel ('percent');

axis ([900 1000 1 1571);

title('Percent Error');

% Percent error for nearly-universal combination filter and best component
filter

figure (4);

plot (p,best percent error(p),'r-',p,percent e schemel(p),'k-"); grid on;
legend ('Best component filter', 'Combination (scheme 1)"')

xlabel('n'");

ylabel ('percent');

axis ([900 1000 1 1571);

title('Percent Error'):;

% Percent error for universal combination filter and best component filter
figure(5);

plot (p,best percent error(p),'r-',p,percent e scheme2(p),'k-"); grid on;
legend ('Best component filter', 'Combination (scheme 2)"')

xlabel('n');

ylabel ('percent');

axis ([900 1000 1 1571);

title('Percent Error'):

o

{

% Progression of mu

%subplot (3,1, 3);

figure(3);

plot (n,mul(n), 'b-"'); grid on; hold on;
plot(n,mu2(n), 'r-"'); hold off;

legend ('Component 1', 'Component 2'")
xlabel('n'");

ylabel ("mu(n)"');

title('Progression of mul and mu2');

5}



