
Page 1 of 69 Sweet16 CISC Processor Casey T. Morrison

Lab No. 0
Casey T. Morrison

EEL 4713 Section 2485 (Spring 2004)
Lab Meeting Date and Time: Monday E1-E3

TA: Grzegorz Cieslewski

I have performed this assignment myself. I have performed this work
in accordance with the Lab Rules specifies in 4713 Lab No. 0 and the

University of Florida’s Academic Honesty manual. On my honor, I have
neither given nor received unauthorized aid in doing this assignment.

Page 2 of 69 Sweet16 CISC Processor Casey T. Morrison

Introduction

The goal of this lab was to implement the Sweet16 Instruction Set Architecture (ISA) in the C
programming language. In doing so, the Fetch/Decode/Execute process that is at the heart of the
Instruction Set Processor will be examined in depth. By programming the Sweet16 ISA in C, a
simulator can be made that replicates the behavior of the Sweet16 microprocessor with specific
input. This simulator will become an “executable problem statement” which represents that an
understanding has been reached regarding the problem specification.

The program that was designed to accomplish the given task is sw16sim.c. This program will
take source files (.s) compiled by an adapted assembly language compiler (UPASM) and produce
print statements which indicate the inner workings of the simulated processor. The program tries
to replicate the internal processes of the Sweet16 as closely as possible so as to more accurately
predict the outcome of the assembly language programs that will be run on the Sweet16. In the
end, the simulator will serve as a platform on which we may analyze the details of the
implementation of this processor.

Component Design and Validation

In designing a simulator for the Sweet16 microprocessor it was imperative that the program
reproduce the internal architecture as closely as possible. The program sw16sim.c, designed in
large part by Dr. Michel A. Lynch, deals in structures and objects that mirror the components of
the Sweet16 microprocessor.

The basic implementation of every instruction in the Sweet16 ISA involves three steps: Fetch,
Decode, and Execute. The Fetch portion of this cycle is the same for each instruction. In essence,
the first, and possibly only, instruction word is “fetched” by retrieving the data at the memory
location pointed to by the Program Counter (PC). This is accomplished in the simulator by
addressing an array of bytes (the memory) with the PC. The instruction word is loaded into a
temporary register one byte at a time (something unlike the actual implementation of Sweet16).

In the decode portion of the code, the upper byte of the instruction is compared against the
opcodes in the instruction set. When a match is found, the execution path of the program is
redirected to the portion of code that handles that particular instruction. Once this is done, the
operands are fetched in preparation for the execution phase. Based on the type of address mode
that the particular instruction employs, a subroutine is called to retrieve the operands and store
them into temporary registers. For example, the ADDI instruction makes use of the Immediate
address mode, and thus the ADDI program segment calls the Immediate() subroutine to fetch the
two words that are to be added.

Finally, with the operands waiting in temporary registers, subroutines may be called to handle
the execution of the instruction. Examples of this include subroutines to add, subtract, bitwise
and, bitwise or, etc. Included in the execution phase is the setting/clearing of the status flags.

Page 3 of 69 Sweet16 CISC Processor Casey T. Morrison

Subroutines were created to handle the two flag update requirements. Once the execution is
complete, the program repeats the process, grabbing a new instruction from memory.
The flowchart of the main routine in the Sweet16 simulator is shown below in Figure 1. It
illustrates the Fetch/Decode/Execute nature of main().

Start

End

Print Statements

Load EPROM

Display proper
usage format

Load RAM

Load RAM

Display memory

Initia lize PC and
SP

Display register
contents

Display register
contents

Execution
terminated; print
final cycle count

Display register
contents

Display
Instruction Cycle

Number, PC
value, IR value,

and Opcode

Arguments
< 2

Arguments
> 2

Fetch

Decode

Execute

Flowchart for main()

N

N

Y

Y

Figure 1: Flowchart for main method

Page 4 of 69 Sweet16 CISC Processor Casey T. Morrison

All instructions that have the same address mode obtain their operands in the same manner.
Using this principle, the main() subroutine was greatly simplified with the use of subroutines that
retrieved operands based on the address mode. For example, the subroutine for the absolute
address mode (shown below in Listing 1) uses the data in the second word of the instruction to
point to the data that is to be used as one of the operands.

/*
 Absolute address mode function - Big Endian
*/
void absolute()
{
 df.db.upper_byte = mem[*pc]; incPC;
 df.db.lower_byte = mem[*pc]; incPC;
 printf(" ABSOLUTE Data Address: %04X,", (unsigned)df.d.data);
 temp = df.d.data;
 df.db.upper_byte = mem[(unsigned)temp];
 df.db.lower_byte = mem[(unsigned)temp + 1];
 temp1 = reg[(int)ir.instr.r1];
 temp2 = df.d.data;
 printf(" Data: %04X\n", (unsigned)df.d.data);
}

Listing 1: Absolute address mode handler

Any instruction that employs the absolute address mode will perform some data manipulation on
the contents of r1 and the data pointed to by the second word of the instruction. After calling this
subroutine, those data will be stored in the first and second temporary registers, respectively.

With a standard location for operands, like temporary registers one and two, operations can then
be performed on this data in a generalized manner. For example, the add() subroutine (shown
below in Listing 2) is employed by all instructions that add without carry.

/*
 add() is used to complete addition operations with no carry input
*/
void add()
{
 temp = temp1 + temp2; //data is stored in temp1 and temp2
 reg[(int)ir.instr.r1] = temp & WORD_MASK; /* write-back the result into the reg array
*/
 printf(" ADD: reg[%d] = %04X + %04X = %04X\n",(int)ir.instr.r1, temp1, temp2,
reg[(int)ir.instr.r1]);
}

Listing 2: Addition method

This subroutine assumes that the data is already stored in the temporary registers. Once a
procedure like this is called and executed, it is often necessary to call a special subroutine to set
(or clear) the appropriate status flags. The logic_flags() function (shown in Listing 3) is one such
subroutine that handles the updating of the status register. Often times, this is the last step in the
execution of an instruction. Once this is complete, main() will repeat the Fetch/Decode/Execute
process.

Page 5 of 69 Sweet16 CISC Processor Casey T. Morrison

/*
 logic_flags() is used to set the logical flags
*/
void logic_flags()
{
// zero flag: z
 if(temp == 0) {flags.z = 1;} else {flags.z = 0;}

// sign flag: n
 if((temp & SIGN_MASK) == 0) {flags.s = 0;} else {flags.s = 1;}

 printf("\n Logic Flags: c=%01X, v=%01X, s=%01X, z=%01X\n", flags.c, flags.v, flags.s,
flags.z);
}

Listing 3: Logic Flags method

As new instructions were being implemented in the simulator, they were individually tested with
an assembly program. For example, the “Store with Indexed Addressing” command (STAX) was
implemented as follows in the Sweet16 simulator.

 case STAX: // Indexed with Offset address mode
 index_w_offset();
 mem[(unsigned)df.d.data] = (reg[(int)ir.instr.r1] >> 8);
 mem[(unsigned)df.d.data + 1] = reg[(int)ir.instr.r1];
 printf(" Storing $%04X at memory location $%04X\n",reg[(int)ir.instr.r1],
 (unsigned)df.d.data);
 break;

Listing 4: Store with Indexed Addressing instruction

This instruction required the use of an Indexed Addressing subroutine, index_w_offset(). Shown
in Listing 5, this subroutine uses an offset stored in r2 as well as a base address located in the
second instruction word to address the data used in the calculation.

/*
 Indexed w/offset address mode function
*/
void index_w_offset()
{
 df.db.upper_byte = mem[*pc]; incPC;
 df.db.lower_byte = mem[*pc]; incPC;
 printf(" Base Address: %02X%02X\n", df.db.upper_byte, df.db.lower_byte);
 printf(" Offset: %04X\n", reg[(int)ir.instr.r2]);
 df.d.data = df.d.data + reg[(int)ir.instr.r2];
 temp2 = (mem[df.d.data] << 8) | mem[df.d.data + 1];
 printf(" Target Address: $%04X\n", df.d.data);
 printf(" Data at &%04X: $%04X\n", df.d.data, temp2);
}

Listing 5: Indexed with offset address mode handler

To test this particular instruction, an assembly language program was written (see Listing 6 on
the next page). This program loads registers R0 with data and R1 with an offset of eight, and
then it calls the STAX instruction. The result is that 0x0002 is stored at address DATA + 8 (see
Appendix D, Simulation 1 for the results of the simulation).

Page 6 of 69 Sweet16 CISC Processor Casey T. Morrison

* STAX_test.ASM
* By Casey T. Morrison
* Purpose: To test the STAX instruction

 NOLIST
 INCLUDE "sweet16.mac"
 LIST

 ORG $0000

 LDI R0,$0002
 LDI R1,$0008
 STAX R0,R1,DATA
 GFO

DATA: dc.w $1111
 dc.w $2222
 dc.w $3333
 dc.w $4444
 dc.w $5555 * Data + 8

 END

Listing 6: Test program for STAX method

Testing procedures such as this one were employed for each instruction that was added to the
simulator. This ensured that the simulator worked properly throughout the design process.

System Design and Validation

The system on which this lab focuses consists of three main parts or stages (see Figure 2 below).

Figure 21: Sweet16 simulator system design

The first stage begins with the creation of an assembly language program using the instruction
set of the Sweet16 microprocessor. Designing this program is a crucial part of the entire process.
An example of such an assembly language program is mulrom.asm shown on the next page (it
may also be found in Appendix C, Program 1). This program utilizes the instructions available
on the Sweet16 in order to accomplish unsigned 16x16 multiplication.

1 “Assemblers and Related Tools,” Dr. Michel A. Lynch,
http://www.hcs.ufl.edu/~radlinsk/eel4713/mod/resource/view.php?id=10

Page 7 of 69 Sweet16 CISC Processor Casey T. Morrison

Assembly language programs, like mulrom.asm, are then assembled using the A68K assembler
which was adapted from the Motorola UPASM assembler. This second stage of the process
requires the use of the sweet16.mac file in order to interpret the instruction mnemonics. In this
file, several macros were defined to initialize memory based on the instructions contained in the
.asm source file. The assembler also takes advantage of the different address modes built-in to
the Sweet16 by using subroutines to make the code more reusable and functional.

* MULROM.ASM - Program that calls and tests a 16 bit MULTIPLY subroutine
* Orged in ROM ($0000)
* Subroutine UMUL - unsigned 16 X 16 multiplication
* * Multiplier is in R1, multiplicand is in R0 on entry
* * Product (32 bits) is returned with most significant half in R0
* and least significant half in R1.
* Other registers used: R2 contains Multiplicand during the operation
* : R3 contains the shift count
* Author: Dr M Lynch, EEL 4713, 1/7/2003
* Used by: Casey Morrison, EEL 4713, 1/15/04

 NOLIST
 INCLUDE "sweet16.mac"
 LIST

STACK EQU $100
COUNT EQU 16
 ORG $0000

* Initialize Stack Pointer
 LDI R2,STACK
 LDSPR R2
* Test program to multiply two numbers in R0 and R1
 LDI R0,$FFFF
 LDI R1,$FFFF
 CALL UMUL
 GFO

* Multiplication subroutine
UMUL:
 LDR R2,R0 *Place multiplicand in R2 for duration of UMUL
 LDI R0,0 *Clear upper half of product area
 LDI R3,COUNT *Place shift count in R3
 CLRC *Clear carry flag
UMUL1:
 RORC R0,1 *Rotate Product MSW right with LS bit into carry
 RORC R1,1 *Rotate Multiplier right with LS bit into carry
 BCC UMUL2 *Don't add Multiplicand if bit of multiplier is zero
 ADDR R0,R2 *Add multiplicand to MSW of Product - note carry out
UMUL2:
 LSUBI R3,1 *Subtract one from shift count - note carry is not generated
 BPL UMUL1 *Go until shift count is equal zero
 RET

 END

Listing 7: Mulrom.asm program

Once the program is assembled, it is loaded into the test system in the form of a source (.s) file.
The third stage, or Target System as it is referred to in Figure 2, consists of the Sweet16
simulator mentioned earlier. This program takes .s files as input and produces text representing
the response of the Sweet16 microprocessor to that input.

For example, the test program mulrom.asm behaves in accordance with the flowchart in Figure 3
when run on the modified simulator. It uses a series of rotates, sums, and loops in order to
accomplish the multiplication of two 16-bit numbers. The simulator produces a text file when
running mulrom.s (see Appendix D, Simulation 2 for the simulation results). As is noted in
Appendix D, the simulation of mulrom.s resulted in the correct product value being stored in R0
and R1.

Page 8 of 69 Sweet16 CISC Processor Casey T. Morrison

Tem p < = M u lt i p l ic an d

P ro d u ct (h ig h) < = 0 x 0 0 0 0

Rotate Product MSW right with LS
bit into carry

Rotate Multiplier right with LS bit
into carry

Add multiplicand (Temp)
to MSW of Product

Decrement Shift_Count

Shift_Count <= 16

Bit shifted out
of multiplier

was a 1?

Shift_Count = 0?

Y

N

End

Start

YN

Figure 3: Flowchart for mulrom.asm

This assembly program was simplified with the creation of a UMUL macro that performed the
16x16 unsigned multiplication (see Listing 8 below or Appendix C, Program 2 for the code). The
macro basically inserts portions of the original code in place of the macro calls. With this macro
definition, assembly programs may make use of unsigned multiplication simply by calling
UMUL. Like mulrom.asm, this assembly program was simulated and shown to work (see
Appendix D, Simulation 3 for the simulation results).

Page 9 of 69 Sweet16 CISC Processor Casey T. Morrison

* MULROM_MACRO.ASM - Program that calls and tests a 16 bit MULTIPLY subroutine
* Orged in ROM ($0000)
* Subroutine UMUL - unsigned 16 X 16 multiplication
* * Multiplier is in R1, multiplicand is in R0 on entry
* * Product (32 bits) is returned with most significant half in R0
* and least significant half in R1.
* Other registers used: R2 contains Multiplicand during the operation
* : R3 contains the shift count
* Author: Dr M Lynch, EEL 4713, 1/7/2003
* Edited by: Casey Morrison, EEL4713, 1/15/04

 NOLIST
 INCLUDE "sweet16.mac"
 LIST

STACK EQU $100
 ORG $0000

* Initialize Stack Pointer
 LDI R2,STACK
 LDSPR R2

* MACRO DEFINITION **
UMUL macro \1,\2

* Test program to multiply two numbers in R0 and R1
 LDI R0,\1
 LDI R1,\2

* Multiplication subroutine
 LDR R2,R0 *Place multiplicand in R2 for duration of UMUL
 LDI R0,0 *Clear upper half of product area
 LDI R3,16 *Place shift count in R3
 CLRC *Clear carry flag
UMUL1:
 RORC R0,1 *Rotate Product MSW right with LS bit into carry
 RORC R1,1 *Rotate Multiplier right with LS bit into carry
 BCC UMUL2 *Don't add Multiplicand if bit of multiplier is zero
 ADDR R0,R2 *Add multiplicand to MSW of Product - note carry out
UMUL2:
 LSUBI R3,1 *Subtract one from shift count - note carry is not generated
 BPL UMUL1 *Go until shift count is equal zero
 endm

* UTILIZATION OF MACRO
 UMUL $11,$42
 GFO

Listing 8: Mulrom equivalent macro

The simulator was modified at length to include all the subroutines necessary to implement all of
the instructions (see Appendix A, Program 1 for the complete C code). This simulator proved to
execute the source files as desired.

Conclusion

A. Summary

In this lab a system was designed to replicate the behavior of the Sweet16 microprocessor.
Assembly language programs were assembled using a modified assembler that utilized macros to
encode each instruction mnemonic into an instruction word(s). The resulting sequence of
instruction words was virtually “loaded” into a memory (an array structure in C). The Sweet16
simulator, sw16sim.c, then initiated the Fetch/Decode/Execute process to complete the desired
program. This simulator was designed with functional units that enabled several instructions to

Page 10 of 69 Sweet16 CISC Processor Casey T. Morrison

be implemented with minimal code. Whenever possible, subroutines were created to simplify the
implementation of each individual instruction. In the end, a complete simulator was created that
very nearly replicated the internal processes of the Sweet16 microprocessor.

B. Questions

1. On a listing segment of the file sw16sim.c, identify the important features specified in the

Instruction Fetch/Decode/Execute Flowchart.

The following portion of sw16sim.c demonstrates the important features of the
Fetch/Decode/Execute cycle of this simulator.

for (i=0; i<MAXREPS; i++) /* run the main simulation loop MAXREPS times */
 {
 printf("Instruction Cycle Number: %d\n",i);
 printf("\n PC = %04X: ",*pc);

 ir.db.upper_byte = mem[*pc]; incPC;
 ir.db.lower_byte = mem[*pc]; incPC;
 printf("upper_byte: %02X, lower_byte: %02X,",ir.db.upper_byte,
 ir.db.lower_byte);
 printf(" opcode: %02X, %s, r1: %01X, r2: %01X\n",ir.instr.opcode,
 opmnem[(int)ir.instr.opcode], ir.instr.r1, ir.instr.r2);

 switch((int)ir.instr.opcode){
// 16-bit Integer Data Type - Basic Instruction Set
// Load
 case LDR: // RR address mode
 reg_reg();
 load();
 break;

Listing 9: Fetch/Decode/Execute cycle of the Sweet16 simulator

2. Account for the variation in coding needed to accommodate the “Little-Endian” host as

compared to the version of sw16sim.c, which was prepared for a “Big- Endian” host.

 The adjustments that need to be made in order to accommodate for a Little-Endian host

computer as opposed to a Big-Endian host are associated with the definition of structures. In
the sweet16_le_host.h file the “word” structure is defined to be the combination of a “lower
byte” and an “upper byte.” In sweet16_be_host.h, however, a “word” is the combination of
an “upper byte” and a “lower byte,” in that order. This semantic difference simply accounts
for the Endian-ness of the host machine on which the simulator will run.

3. Where are the values for the symbolic labels used in each case statement initialized? Give

the actual locations of the definition and an example.

The values for the symbolic labels used in each case statement within sw16sim.c are
initialized in the sweet16_le_host.h and sweet16_be_host.h files. For example, the Branch
PC-Relative Instructions are defined as shown in Listing 10 in the aforementioned files.

Fetch instruction and
increment PC

Decode

Obtain operands

Execute instruction

Page 11 of 69 Sweet16 CISC Processor Casey T. Morrison

// Define the Branch PC-Relative Instructions
// EA = PC + Sign_Extended_offset
// Bcc Offset, if f{cc} then EA --> PC + offset
#define B 0x13
#define CALL 0x14
#define JMP 0x15
#define CALLX 0x16
#define JMPX 0x17
#define STA 0x18
#define STAX 0x19
#define LAA 0x1A
#define LAX 0x1B

Listing 10: Symbol definitions

4. Is the statement “incPC” a function? If not, what is it? Where and what is its definition?

What does it accomplish?

The keyword incPC used throughout sw16sim.c is a macro, rather than a function, that is
defined in the sweet16_le_host.h and sweet16_be_host.h files (see Listing 11). This macro
serves to increment the Program Counter (PC) so that it points to the next data byte.

/* C Macros */

#define incPC *pc = (unsigned) WORD_MASK & ((*pc) + 1)
#define incSP *sp = (unsigned) WORD_MASK & ((*sp) + 1)
#define decSP *sp = (unsigned) WORD_MASK & ((*sp) - 1)

Listing 11: Macro definition of incPC, incSP, and decSP

5. Describe how the union of structures was used to give direct addressing to the register bit-

field in an instruction, while the data that was moved was transferred as upper and lower
bytes on the data bus.

The sweet16_le_host.h and sweet16_be_host.h files employ a Union of Structures in order to
be able to access the data retrieved from memory in different ways. The inst_flow and
data_flow Unions allow 16-bit chunks of data to be accessed in 16-, 8- and 4-bit chunks
when appropriate. This is to accommodate for the need to access 16-bit data, 8-bit opcodes,
and 4-bit register fields. By combining same-length, variably-partitioned structures (like the
word, inst_reg, and databus) into one Union, this goal was accomplished.

6. The Branch on Condition and conditional call and return instructions use the function

eval_cc() to determine the success of a condition. What is the numeric value of the symbol
“CC” in that function? What is returned for the “CC” condition if the flag vector was
{1,1,0,1}? What type of number was the programmer using when he interpreted the flags
using the “LT” condition? What is returned for the “LT” condition if the flag vector was
{1,1,0,1}?

The symbol “CC” used in eval_cc() function evaluates to 0x0 as defined in the
sweet16_le_host.h and sweet16_be_host.h files. If the flag vector passed to this function was
{1,1,0,1}, then the return for the “CC” condition would be False or 0. When using the “LT”

Page 12 of 69 Sweet16 CISC Processor Casey T. Morrison

or “less than” condition, the programmer is explicitly dealing with signed numbers. If the
flag vector passed to this function was {1,1,0,1}, then the return for the “LT” condition
would be False or 0.

7. If the number of instructions in the source program for the first and second versions of

mulrom.asm were compared, i.e., UMUL subroutine versus UMUL macro, which has the
most instructions? Use sections of the listing files to support your answer.

The mulrom_macro.asm program has two fewer instructions (15 compared to 17) than the
mulrom.asm program. This is because mulrom.asm includes a “CALL” and a “RET”
instruction that mulrom_macro.asm does not require, for it uses a macro definition instead of
a subroutine call. Listings 7 and 8 show the code for both programs.

8. At this time you have a running “computer” in the form of the program sw16sim.c. Compare

the cost of this solution with that of a “hardware” implementation. What positive
contributions does the “hardware” implementation make?

The sw16sim.c implementation of the Sweet16 microprocessor has its advantages and
disadvantages over the actual hardware implementation. One major advantage is the
flexibility of this software implementation. Instructions may be added, altered, or deleted
with very little time and effort. Altering the hardware implementation would be significantly
more costly because it is not as simple as a software upgrade. In fact, It might even involve
making entirely new Printed Circuit (PC) boards. However, a single hardware
implementation would cost considerably less than the computer required to execute the
sw16sim.c program and the UPASM assembler.

Page 13 of 69 Sweet16 CISC Processor Casey T. Morrison

Lab No. 1
Casey T. Morrison

EEL 4713 Section 2485 (Spring 2004)
Lab Meeting Date and Time: Monday E1-E3

TA: Grzegorz Cieslewski

I have performed this assignment myself. I have performed this work
in accordance with the Lab Rules specifies in 4713 Lab No. 0 and the

University of Florida’s Academic Honesty manual. On my honor, I have
neither given nor received unauthorized aid in doing this assignment.

Page 14 of 69 Sweet16 CISC Processor Casey T. Morrison

Introduction

The purpose of this lab was to build and test a VHDL structural model of a Register Arithmetic-
Logic Unit (RALU). This unit will be used as the heart of the internal architecture of the
Complex Instruction Set Computer (CISC). Furthermore, many of the components of the RALU
will be utilized in the Reduced Instruction Set Computer (RISC).

As opposed to a typical Arithmetic-Logic Unit, the RALU has the added feature of a register
array. This allows the data calculated by the ALU to be stored into one of 20 registers. In
addition, the RALU was specifically designed to be able to implement the Sweet16 Instruction
Set Architecture (ISA). Therefore the RALU has the ability to calculate branch target addresses,
data shifts, arithmetic/logic operations, etc.

The main design platform for the RALU and its internal components was the Altera Max+Plus II
VHDL editor. This allowed each component to be designed individually and then combined into
a VHDL package. This type of compartmentalized design replicated the provided schematic
drawings and simplified the design of the entire system.

Component Design and Validation

The individual components of the RALU were designed separately in VHDL. These components
include multiplexers, registers, shifters, a register array, and an Arithmetic-Logic Unit.

A. 20x16 Register Array

One of the important features of the RALU is that it can store the results of its various
calculations. Data is stored in one of the 16 General-Purpose Registers (GPRs) or in one of the
four additional registers (i.e. the status flag register). This feature is realized in the 20x16
Register Array appropriately named reg_array_20x16.vhd (see Appendix B, Component 1 for
the complete VHDL code for this component).

The main structure of this component is simple. There are three address inputs, one to address
the first “data register,” one to address the second “data register,” and one to address the “write
register.” The two “data registers” supply the ALU with the data it needs to make meaningful
calculations. The “write register” is the location to which the result of the ALU calculation will
be stored. It is worth mentioning, however, that not all instructions require two “data registers,”
and not all ALU calculations are meant to be stored in a “write register.”

Another feature of this unit is its ability to deal with both word-size and byte-size data. The input
WnB stands for “word, not byte” and indicates how the data should be treated—as a 16-bit word
or as an 8-bit byte. Figure 1 on the next page shows the Max+Plus II graphical representation of
reg_array_20x16.vhd.

Page 15 of 69 Sweet16 CISC Processor Casey T. Morrison

Figure 1: Register Array

B. 16-Bit Arithmetic-Logic Unit (ALU)

Arguably the most important part of the RALU is the Arithmetic-Logic Unit (ALU). This
component performs all of the arithmetic and logical calculations that are necessary for
executing the Sweet16 instructions. In addition to calculating various operations, this unit also
generates the carry and overflow flags for the RALU (see Appendix B, Component 2 for the
complete VHDL code for this component). The functions that this ALU performs are varied and
diverse. Figure 2 lists the functions which were implemented in the ALU_16a.vhd.

Function Select
(FSel)

Iterate
(i1)

Iterate
(i0) Function

0 X X Add inputs A and B with Carry In; F = A plus B plus Cin
1 X X Add input B to Carry In; F = B plus Cin
2 X X Subtract input B from A with Borrow; F = A plus (not B) plus Cin
3 X X Subtract input A from B with Borrow; F = (not A) plus B plus Cin
4 X X F = A and B
5 X X F = A or B
6 X X F = A xor B
7 X X F = not A
8 X X F = A minus 1 plus Cin (F = A plus 0xFFFF plus Cin)
9 X X F = B minus 1 plus Cin (F = B plus 0xFFFF plus Cin)
A 0 X unsigned multiply iterate, F = B
A 1 X unsigned multiply iterate, F = A plus B
B 0 X signed multiply iterate, F = B
B 1 X signed multiply iterate, F = A plus B
C 0 X signed multiply terminate, F = B
C 1 X signed multiply terminate, F = B minus A (F=B plus (not A) plus 1)
D X 0 Nonrestoring divide, F = A plus B
D X 1 Nonrestoring divide, F = B minus A (F = (not A) plus B plus 1)
E X X F = 0 for later expansion
F X X F = 0 for later expansion

Figure 2: ALU function map

Page 16 of 69 Sweet16 CISC Processor Casey T. Morrison

As is shown in Figure 2, this component was left open for expansion. If, along the process of
designing a CISC or RISC architecture, we discover that additional types of computations are
necessary, then they may be added into this design relatively easily. The Max+Plus II graphical
representation of this unit is shown below in Figure 3.

Figure 3: Sweet16 ALU

As shown in Figure 3, this component requires two 16-bit inputs—the inputs on which it
performs calculations. The resulting 16-bit output is some combination of the two 16-bit inputs
and the 4-bit function select (along with a few other input signals).

C. Shifters

To handle the shift and rotate instructions (and eventually the multiply and divide instructions as
well), shifting units were added to the output of the ALU. These components were designed in
VHDL, and their Max+Plus II graphical representation are shown below in Figure 4 (see
Appendix B, Components 3 and 4 for the VHDL code for the ALU_shifter_16 and the
Ext_shifter_16, respectively).

Figure 4: Two Sweet16 shifters

It is worthwhile to note that these units are responsible for generating the sign and zero flags.
Since each of these flags can be altered as a result of a shift/rotate, and since every output of the
ALU must pass through the shifters (even if no shifting is taking place), it is advantageous to
have the shifter units generate these flags rather than the ALU.

Page 17 of 69 Sweet16 CISC Processor Casey T. Morrison

D. Multiplexers

Various multiplexers (otherwise known as selectors) were utilized in designing the RALU. The
main difference between these multiplexers is the size of their inputs/outputs and the number of
inputs they have. Figure 5 below shows the Max+Plus II graphical representation of the
multiplexers used in the RALU implementation.

Figure 5: RALU multiplexers

The VHDL code for the MUX2_8, MUX2_16, and MUX4_16 components can be found in
Appendix B (Components 5, 6, and 7, respectively).

System Design and Validation

The functional units discussed in the previous section were combined into one VHDL design to
form the RALU_16 (see Appendix F, Specification Sheet 1 for a description of this component).
The components of the RALU_16 were assembled and interconnected according to the schematic
drawing in Figure 6 on the next page.

It is clear, from Figure 6, that the inputs to this system are numerous. The majority of the inputs
are control signals that come from the Sweet16 controller—a unit that will be constructed in a
later lab. The outputs of the system include the flags and the output data, among other signals.
See Appendix B, Component 8 for the VHDL code for the RALU_16.

Page 18 of 69 Sweet16 CISC Processor Casey T. Morrison

U1

U3

D0

D0

D1

D1

Sel

Sel

Z

Z

A_ADDR B_ADDR

C_ADDR

WE

WnB

uC

uZ

uS

C

V

Z

S

flag[B_ADDR]

Ci

Vi

Zi

Si

FSOi

SR_WR

DA_OUT DB_OUT

U2

REG_ARRAY_19x16

D2 D3

FMUX_SEL

D_OUT[15..0]

FSO

QBUS[15..0]

ALU_SHFTR_BUS[15..0]

QSO

Q_SHFTR_BUS[15..0]

Q_SHFT_SEL

D_OUT
Q_SHIFTER

S0

SSEL
SID1D0

QSI

16

16

FMUX
U8

0

1

ALU_SHIFTER
S0 D_OUT

SSEL

SIS_IN
U5 F_SHFT_SEL

FSIF_OUT[15..0]

FOUT

Cout

OVR

SIGN

ZERO

WnB

FSEL[3..0]

CIN

I

COUT

OVR

SIGN

ZERO

WnB

FSEL

CIN

I

A B

ALU_16
U4

RSEL[1..0]

D_IN[15..0]
0x000 & A_ADDR[3..0]
Sign_Extended A_ADDR[3..0]

SSEL

ALU_SHFTR_BUS[15..0]

QBUS[15..0]

B_ADDR[4..0]

C_ADDR[4..0]

WE

WnB

uC

uZ

uS

C

V

Z

S

flag[B_ADDR]

DB_OUT[15..0]

A_ADDR[4..0]

Cout

OVR

SIGN

ZERO

FSO

SR_WR[2..0]

RMUX_OUT[15..0]

DA_OUT[15..0]

SBUS[15..0]

U6

U7
Q_REGISTER

Figure 6: RALU schematic

Page 19 of 69 Sweet16 CISC Processor Casey T. Morrison

One of the most important features of the RALU_16 is the ALU input selector mux (component
U3 in Figure 6). This multiplexer allows branch target addresses to be computed. It also allows
immediate data (both short and long) to be used in calculations. Finally, it can also select register
data to be used in calculations. This expands the versatility of the ALU and of the RALU_16.

Once assembled in VHDL, this design was functionally compiled and simulated to verify the
accuracy of its design. All of the ALU_16s functions were tested along with the shifting/rotating
capabilities of the RALU_16. Of particular interest was the response of the flag outputs to various
arithmetic/logical operations. Upon close examination of the simulation results (see Appendix E,
Waveform Simulation 1), it was determined that the RALU_16 behaved as designed.

Conclusion

A. Summary

The system designed in this lab is the computational heart of the Sweet16 microprocessor. All
arithmetic and logical calculations embedded within the Sweet16 ISA are performed by this unit.
Its design lends itself to the complex instruction set around which the Sweet16 was developed.
Combining a register array with an Arithmetic-Logic Unit (ALU) enables the RALU_16 to fulfill
the data manipulation requirements of the ISA which it implements.

Designing this system in discrete functional units instead of a single, comprehensive unit allowed
for a more versatile and understandable system. Furthermore, this system may be altered in order
to add/remove functionality where necessary.

B. Questions

1. Argue from the architecture presented in Fig. 1 that the following operation can be

performed in a single clock cycle:

Reg_Array[R5] = (Reg_Array[R5] plus Reg_Array[R1] plus Cin) / 2 (Instruction 1)

Notice the divide by 2. You should suggest connections that will help preserve the sign of
a 2’s complement number for the division. Also suggest which component(s) do what,
along with the values needed for any “select” lines. The above operation should be tried
using unsigned numbers by preparing and running a sequence of test vectors described in
a waveform file. Do it. You will need to “load” R5 and R1 from the D_IN port before
you do the actual test.

Page 20 of 69 Sweet16 CISC Processor Casey T. Morrison

This operation can be accomplished in one clock cycle with the following control signals:

Signal Binary
Value Explanation

WnB 1 Treat data as a 16-bit word, not an 8-bit byte
A_ADDR[4..0] 0 0101 Read data from register five
B_ADDR[4..0] 0 0001 Read data from register one
C_ADDR[4..0] 0 0101 Write result to register five
RSEL[1..0] 11 Select register data for ALU input A
FSEL[3..0] 0000 Perform: F = A + B + Cin
F_SHFT_SEL[1..0] 010 Shift the sum right in order to divide by two
FSI F_OUT[15] Preserve the sign of the number when dividing (shift right)
SSEL 0 Select the data from the shift bus to be written to the register array
WE 1 Allow data to be written to the register addressed by C_ADDR

Figure 7: Control signals required to accomplish Instruction 1.

This operation was simulated using the control signals in Figure 7. The results of the
simulation, shown in Figure 8 below, prove that this operation can be performed in one clock
cycle.

Figure 8: Simulation of Instruction 1

2. So, now you’ve got a good part of a microprocessor in your hands. What’s its clock

speed? If you don’t know, what sort of information would you need to determine the
clock speed? Propose a test to determine the clock speed at which your microprocessor
should run.

($1234 + $5678)/2 = $3456

Page 21 of 69 Sweet16 CISC Processor Casey T. Morrison

 In order to determine the clock speed for this microprocessor, a timing analysis must be
performed. The clock speed must not be faster than the slowest delay through the RALU
(likely the slowest component of the microprocessor). To conduct this analysis, the RALU_16
component must be compiled using the Timing SNF Extractor so as to account for internal
propagation delays. When compiling this way, the compiler will include the propagation
delays inherent in a specific target device of your choosing. Once compiled, a Timing
Analysis can be performed that will list the worst-case delay through each path on the circuit.
The clock period must be greater than the longest delay. Thus the clock frequency must be
the inverse of the longest time delay through the circuit. This will prevent the possibility of
data being clocked at a rate faster than the time it takes for the data to stabilize.

Page 22 of 69 Sweet16 CISC Processor Casey T. Morrison

Lab No. 3
Casey T. Morrison

EEL 4713 Section 2485 (Spring 2004)
Lab Meeting Date and Time: Monday E1-E3

TA: Grzegorz Cieslewski

I have performed this assignment myself. I have performed this work
in accordance with the Lab Rules specifies in 4713 Lab No. 0 and the

University of Florida’s Academic Honesty manual. On my honor, I have
neither given nor received unauthorized aid in doing this assignment.

Page 23 of 69 Sweet16 CISC Processor Casey T. Morrison

Introduction

The purpose of this lab was to design and assemble the complete Sweet16 Central Processing
Unit (CPU). This CISC architecture was built in VHDL in three distinct portions, the internal
architecture, the Sweet16 controller, and the auxiliary components. The internal architecture
contains the RALU_16 designed in an earlier lab together with some “glue logic” that enables the
interface with the controller. The Sweet16 controller consists of the upcont_56
Microprogrammed Controller constructed earlier along with an Instruction Register and a
MapROM. Finally, the auxiliary components comprises are comprised of the I/O interface buffer
as well as the Memory Address Register (MAR).

These three components combined form a fully functioning CPU. Once this is complete, the only
modifications that need to be made are concerning the microprogram that resides in the
Microprogram Memory. Once the proper microprogram is installed, one that fully describes and
implements the Sweet16 instruction set, the final addition will be an external architecture that
contains memory and I/O ports.

Component Design and Validation

As mentioned in the introduction, the Sweet16 CPU consists of the internal architecture, the
Sweet16 controller, and the auxiliary components. Each of these components was assembled
using Max+Plus II’s Graphic Editor.

A. Internal Architecture

The Sweet16 internal architecture consists of the 16-bit Register Arithmetic-Logic Unit
(RALU_16) designed in Lab 1 (see Appendix F, Specification Sheet 1 for a description of this
component). To properly interface this unit with the 42 control signals generated by the Sweet16
controller, some “glue logic” was added to the perimeter. The internal architecture was designed
based on the schematic drawing shown in Figure 1 (see Appendix F, Specification Sheet 3 for a
description of this component).

The most interesting feature of the internal architecture is the register selection scheme. It is
important to notice that the destination register is the same as the first source register. This
corresponds with the convention that only two registers are specified in any given instruction.
These two registers are the source registers, one of which also serves as the destination register.
By virtue of multiplexers U2 and U3, the source and destination registers may be determined by
the register fields of the instruction or by the Sweet16 controller itself. In addition, this feature
makes accommodations for 32-bit operations by isolating the least significant bit (LSB) of the
register address from the other bits. This will allow the controller to toggle the LSB in order to
perform computation on 32-bit numbers stored in two adjacent registers.

Page 24 of 69 Sweet16 CISC Processor Casey T. Morrison

Figure 12: Internal Architecture

The internal architecture design also makes it possible to select the carry input to the RALU_16.
This is useful for incrementing register values, for passing register contents to the data bus, for
subtraction, and for various other arithmetic processes. The shifting scheme also employs the use
of multiplexers. This is to allow for various operations including rotation, multiplication,
division, and of course shifting.

The schematic drawing in Figure 1 was implemented in Max+Plus II’s Graphic Editor. The
resulting Graphic Design File, sw16intarch.gdf, is shown in Figures 2a and 2b on the next two
pages.

2 http://www.hcs.ufl.edu/~radlinsk/eel4713

0

0

Page 25 of 69 Sweet16 CISC Processor Casey T. Morrison

Figure 2a: Graphic design of the Internal Architecture

Page 26 of 69 Sweet16 CISC Processor Casey T. Morrison

Figure 2b: Graphic design of the Internal Architecture

Once functionally compiled, this design was simulated for appropriate test vectors to verify the
accuracy of its design. See Appendix E, Waveform Simulation 5 for the complete and annotated
results of this simulation. Upon close examination of the simulation results, it was determined
that this component performed as desired.

B. Sweet16 Controller

The Sweet16 controller consists of the upcont designed in Lab 2, the Microprogram Memory, the
Pipeline Register, the MapROM, and the Instruction Register (IR). These components were
combined according to the schematic drawing in Figure 3 on the next page (see Appendix F,
Specification Sheet 4 for a description of the Sweet16 controller). The main component in this
controller is the upcont unit (see Appendix F, Specification Sheet 2 for a complete description of
this component). This unit controls the sequence of microinstructions to be executed throughout
the Sweet16 CPU. It does so my determining the appropriate address sequence for the
Microprogram Memory, which in turn generates the control signals for the Sweet16 CPU.

Page 27 of 69 Sweet16 CISC Processor Casey T. Morrison

Figure 33: Sweet16 controller

The IR contains the opcode and operands for the current Sweet16 instruction. This information is
utilized by the MapROM to determine the starting address for each sequence of
microinstructions. The upcont is then in charge of “stepping through” that sequence of
microinstructions in the proper order so as to execute the intended Sweet16 instruction. An ir_ld
signal was added to the upcont unit to control when the IR would load a new instruction from the
data bus. This signal was issued every time a sequence of microprograms neared completion.
Thus, a new Sweet16 instruction was loaded into the IR after the previous instruction was fully
executed.

3 http://www.hcs.ufl.edu/~radlinsk/eel4713

Page 28 of 69 Sweet16 CISC Processor Casey T. Morrison

The schematic drawing in Figure 3 was implemented in Max+Plus II’s Graphic Editor. The
resulting Graphic Design File, sw16cont.gdf, is shown in Figures 4a and 4b below.

Figure 4a: Graphic design of the Sweet16 controller

Figure 4b: Graphic design of the Sweet16 controller

Page 29 of 69 Sweet16 CISC Processor Casey T. Morrison

Once functionally compiled, this design was simulated for appropriate test vectors to verify the
accuracy of its design. See Appendix E, Waveform Simulation 6 for the complete and annotated
results of this simulation. Upon close examination of the simulation results, it was determined
that this component performed as desired.

C. Auxiliary components

The auxiliary components of the Sweet16 CPU consist of an Input/Output buffer and a Memory
Address Register (MAR). The former allows the external data bus to be bidirectional, while
avoiding unwanted data collisions at the same time. This buffer is controlled by the controller
and facilitates the flow of data in and out of the Sweet16 CPU.

The MAR is a register that stores a pointer to main memory. The address in the MAR can point
to either an instruction or data. The contents of the memory location pointed to by the MAR
would be transmitted to the Sweet16 CPU via the aforementioned bidirectional data bus.

Ideally other devices would interface with the I/O buffer such as an input or output port. Such
additions may, however, come with the cost of added control signals.

The auxiliary components were implemented in Max+Plus II’s Graphic Editor. Figure 5 below
shows the graphical representation of this design.

Figure 5: Graphical design of auxiliary components

Page 30 of 69 Sweet16 CISC Processor Casey T. Morrison

System Design and Validation

The individual components of the Sweet16 CPU were combined into one graphical design.
Figure 6 shows the resulting design in Max+Plus II’s Graphic Design editor (see Appendix F,
Specification Sheet 5 for a complete description of this design).

Figure 6: Sweet16 CPU

A. System Test

The operation of this system was tested with a rudimentary microprogram called usw16.asm (see
Appendix C, Program 6 for the abbreviated assembly code). This assembly program acts as the
microprogram memory initialization file. It provides an uncompleted set of subroutines that are
used to execute Sweet16 instructions. The usw16.asm file was assembled with UPASM and
converted into a memory initialization file (.mif) with the s2mif56 tool. The resulting usw16.mif
file was loaded into the Microprogram Memory.

In addition to initializing the Microprogram Memory, the MapROM also needed to be initialized.
The maprom.mif file that was provided was used to initialize the MapROM. This file allows the
MapROM to interpret the opcode of the current Sweet16 instruction and direct the controller to
the appropriate location in the Microprogram Memory.

Page 31 of 69 Sweet16 CISC Processor Casey T. Morrison

Using the mcsw16 tool provided for this lab, the usw16.s file was converted into a human-
readable form. A portion of the resulting conversion is shown in Listing 1 below.

 F Q
 _ _ D
 s s F b
 B A P B P h F h Q m _
 r m l m l f s f s u d M R W
 u C _ u _ u _ C t i t i S x v a d r
 I C A x r x r S R D F n _ _ _ _ r _ r r _ _
 n s d s e s e s W s s s s s s s s _ s _ _ s s
 s e d e g e g e W n e e e e e e e e w e e l t t
 t l r l a l b l e B l l l l l l l l r l n d r r

State Address +-+-+--+-+--+-+--+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
000 000 |1|0|00|0|11|0|11|0|1|1|3|0|6|0|0|0|0|0|0|0|0|0|0|0|
001 001 |8|0|02|0|11|0|11|0|1|1|3|0|1|1|0|0|0|0|0|0|0|1|0|0|
002 002 |9|0|02|0|00|0|00|0|0|1|3|0|8|0|0|0|0|0|0|0|0|0|1|0|
003 003 |F|0|00|0|11|0|11|0|1|1|3|0|1|1|0|0|0|0|0|0|0|0|1|0|
004 004 |1|0|00|0|11|0|11|0|1|1|3|0|1|1|0|0|0|0|0|0|0|1|0|0|
005 005 |1|0|00|0|11|0|11|0|1|1|3|0|1|1|0|0|0|0|0|0|0|0|1|0|
006 006 |6|0|00|0|00|0|00|0|0|1|3|0|8|0|0|0|0|0|0|0|0|0|1|0|
007 007 |1|0|00|0|00|0|00|0|0|1|3|0|8|0|0|0|0|0|0|0|0|0|0|0|
008 008 |1|0|00|0|00|0|00|0|0|1|3|0|8|0|0|0|0|0|0|0|0|0|0|0|
009 009 |1|0|00|0|00|0|00|0|0|1|3|0|8|0|0|0|0|0|0|0|0|0|0|0|
00A 00A |1|0|00|0|00|0|00|0|0|1|3|0|8|0|0|0|0|0|0|0|0|0|0|0|
00B 00B |1|0|00|0|00|0|00|0|0|1|3|0|8|0|0|0|0|0|0|0|0|0|0|0|
00C 00C |6|0|00|0|00|0|00|0|0|1|3|0|8|0|0|0|0|0|0|0|0|0|1|0|
020 020 |2|0|01|0|00|0|00|0|0|1|3|0|8|0|0|0|0|0|0|0|0|0|0|0|
021 021 |2|0|01|0|00|0|00|0|0|1|3|0|8|0|0|0|0|0|0|0|0|0|0|0|
022 022 |2|0|01|0|00|0|00|0|0|1|3|0|8|0|0|0|0|0|0|0|0|0|0|0|
023 023 |2|0|01|0|00|0|00|0|0|1|3|0|8|0|0|0|0|0|0|0|0|0|0|0|
024 024 |2|0|01|0|00|0|00|0|0|1|3|0|8|0|0|0|0|0|0|0|0|0|0|0|
025 025 |2|0|01|0|00|0|00|0|0|1|3|0|8|0|0|0|0|0|0|0|0|0|0|0|
026 026 |1|0|00|0|00|0|00|0|0|1|3|0|8|0|0|0|0|0|0|0|0|0|0|0|
027 027 |1|0|00|0|00|0|00|0|0|1|3|0|8|0|0|0|0|0|0|0|0|0|0|0|
028 028 |1|0|00|0|00|0|00|0|0|1|3|0|8|0|0|0|0|0|0|0|0|0|0|0|
029 029 |2|0|01|0|00|0|00|0|0|1|3|0|8|0|0|0|0|0|0|0|0|0|0|0|
02A 02A |1|0|00|0|00|0|00|0|0|1|3|0|8|0|0|0|0|0|0|0|0|0|0|0|
02B 02B |1|0|00|0|00|0|00|0|0|1|3|0|8|0|0|0|0|0|0|0|0|0|0|0|
02C 02C |1|0|00|0|00|0|00|0|0|1|3|0|8|0|0|0|0|0|0|0|0|0|0|0|
02D 02D |2|0|01|0|00|0|00|0|0|1|3|0|8|0|0|0|0|0|0|0|0|0|0|0|
02E 02E |1|0|00|0|00|0|00|0|0|1|3|0|8|0|0|0|0|0|0|0|0|0|0|0|
02F 02F |1|0|00|0|00|0|00|0|0|1|3|0|8|0|0|0|0|0|0|0|0|0|0|0|
030 030 |2|0|01|0|00|0|00|0|0|1|3|0|8|0|0|0|0|0|0|0|0|0|0|0|
031 031 |1|0|00|0|00|0|00|0|0|1|3|0|8|0|0|0|0|0|0|0|0|0|0|0|
032 032 |1|0|00|0|00|0|00|0|0|1|3|0|8|0|0|0|0|0|0|0|0|0|0|0|
033 033 |2|0|01|0|00|0|00|0|0|1|3|0|8|0|0|0|0|0|0|0|0|0|0|0|
034 034 |1|0|00|0|00|0|00|0|0|1|3|0|8|0|0|0|0|0|0|0|0|0|0|0|
035 035 |1|0|00|0|00|0|00|0|0|1|3|0|8|0|0|0|0|0|0|0|0|0|0|0|
036 036 |2|0|01|0|00|0|00|0|0|1|3|0|8|0|0|0|0|0|0|0|0|0|0|0|
037 037 |1|0|00|0|00|0|00|0|0|1|3|0|8|0|0|0|0|0|0|0|0|0|0|0|
038 038 |1|0|00|0|00|0|00|0|0|1|3|0|8|0|0|0|0|0|0|0|0|0|0|0|
039 039 |2|0|01|0|00|0|00|0|0|1|3|0|8|0|0|0|0|0|0|0|0|0|0|0|
03A 03A |1|0|00|0|00|0|00|0|0|1|3|0|8|0|0|0|0|0|0|0|0|0|0|0|
03B 03B |1|0|00|0|00|0|00|0|0|1|3|0|8|0|0|0|0|0|0|0|0|0|0|0|
03C 03C |2|0|01|0|00|0|00|0|0|1|3|0|8|0|0|0|0|0|0|0|0|0|0|0|
03D 03D |1|0|00|0|00|0|00|0|0|1|3|0|8|0|0|0|0|0|0|0|0|0|0|0|
03E 03E |1|0|00|0|00|0|00|0|0|1|3|0|8|0|0|0|0|0|0|0|0|0|0|0|
03F 03F |2|0|01|0|00|0|00|0|0|1|3|0|8|0|0|0|0|0|0|0|0|0|0|0|
040 040 |1|0|00|0|00|0|00|0|0|1|3|0|8|0|0|0|0|0|0|0|0|0|0|0|

Listing 1: usw16.mc file output

Page 32 of 69 Sweet16 CISC Processor Casey T. Morrison

The control signals in Listing 1 make up the 42-bit wide command bus. The structure of this bus
is shown in Figure 7 below.

41 40 39 35 34 33 32 28 27 26 25 24 23 22 21 18 17 16

AMUXSEL PL_REGA BMUXSEL PL_REGB SSEL WE WnB RSEL DSEL FSEL CNSEL

15 14 13 12 11 10 9 8 7 5

F_SHFT_SEL FSI_SEL Q_SHFT_SEL QSI_SEL SR_WR

4 3 2 1 0

FMUXSEL DB_DVR_EN MAR_LD RD_STR WR_STR

Figure 7: Command bus structure

With the two memory devices initialized with the appropriate Memory Initialization Files, the
complete system was tested in a Waveform Simulation. The operation of the Sweet16 CPU was
monitored for the input of a specific instruction: LDR R3, R4. This arbitrary instruction allowed
the resulting command signals to be verified for correctness. The result of this simulation is
shown in Appendix E, Waveform Simulation 7. It clearly depicts the instruction fetch sequence
implemented in the Microprogram Memory. Many steps are involved in this process. The
contents of the Program Counter must be placed in the MAR. During the subsequent clock
cycles, the contents of memory as indexed by the MAR are placed on the data bus. During this
waiting period, the program counter is twice incremented to point to the next instruction- or data-
word. Once the memory releases its data, the Instruction register is loaded with the current
instruction, and instruction execution follows. This process was demonstrated in the waveform
simulation of sw16cpu.gdf.

Conclusion

A. Summary

The system designed in this lab represents the complete Sweet16 CPU. It combined the internal
architecture, controller, and auxiliary components to form a fully functioning microprocessor.
The only modifications that need to be made are concerning the Microprogram Memory. Once a
more complete Memory Initialization File is developed, this design will be able to execute the
entire Sweet16 instruction set.

Further additions to this design will include an external architecture. This will include main
memory wherein a program may be loaded for the Sweet16 to execute. In addition to a main
memory, it may be desirable to add an input or output port. All of these devices in the external
architecture will have to be mapped in the 16-bit, 64 kiloByte memory space.

Page 33 of 69 Sweet16 CISC Processor Casey T. Morrison

B. Questions

1. In which clock cycles (of the first 6) was the ISP’s PC incremented?

 The Program Counter (PC) was incremented in the second and sixth clock cycles.

2. Why was the ISP’s PC incremented twice? Could we have added two to it in a single

cycle? Be sure to account for extra hardware needed. Did the technique used cost any
time?

 The ISP’s PC was incremented twice because this CPU deals with 16-bit words, whereas

the memory is structured in 8-bit bytes. Thus the PC must increment/decrement in
intervals of two to point to the appropriate word-aligned address.

 It would require additional hardware to increment the PC by two in one clock cycle. For

example, this could be accomplished by expanding the ALU input mux to contain a hard-
coded input of two (or one if the carry-input is going to be used in conjunction). This
could also be accomplished by adding a new register to the register array—one that
contains a hard-coded two. The ladder of the two would cost less in terms additional
hardware.

 The technique currently in place does not cost additional time, for this time is spend

waiting for memory to place its data onto the data bus. Thus the time it takes to increment
the PC is essentially “free time.”

3. What are the units of address in the ISP? Does this change because we have a 16-bit data

bus for Sweet16?

The units of address in the ISP are 16-bit words. Because we have a 16-bit data bus, we
must address 16-bit words in memory.

4. Why were there so many cycles used to access external memory during the instruction
fetch sequence?

The large number of cycles used to access external memory during the instruction fetch
can be attributed to the slow nature of external memory. It takes several cycles for the
memory to place its data onto the bus, so the processor must wait until it is sure the data
is ready to be latched.

5. Describe, with the help of the proper logic diagrams, the path that the ISP’s opcode
follows to become the address of the microinstruction that implements the opcode. Use
the LDR R3,R4 example suggested above.

What is the address of the first microinstruction in the “LDR” execution sequence in the
microprogram? This number can actually be seen in the CPU simulation on the up_addr
bus (one of the test data buses used to observe the CPU).

Page 34 of 69 Sweet16 CISC Processor Casey T. Morrison

Refer to Figure 3 for the Sweet16 controller schematic. The instruction from main
memory is placed onto the data bus, and the opcode portion is received by the MapROM.
The MapROM, in turn, generates a microprogram address corresponding to the
microcode needed to execute the given opcode. The Next Address Logic unit then selects
the MapROM data as the next address for the Microprogram Memory.

For example, if the Sweet16 instruction were LDR R3, R4, then the opcode for this
instruction would be 0x2B. The contents of the MapROM at address 0x2B is 0x6F
(according to maprom.mif). Thus the location of the microcode associated with the LDR
instruction is at Microprogram Memory address 0x6F.

Page 35 of 69 Sweet16 CISC Processor Casey T. Morrison

Lab No. 4
Casey T. Morrison

EEL 4713 Section 2485 (Spring 2004)
Lab Meeting Date and Time: Monday E1-E3

TA: Grzegorz Cieslewski

I have performed this assignment myself. I have performed this work
in accordance with the Lab Rules specifies in 4713 Lab No. 0 and the

University of Florida’s Academic Honesty manual. On my honor, I have
neither given nor received unauthorized aid in doing this assignment.

Page 36 of 69 Sweet16 CISC Processor Casey T. Morrison

Introduction

The purpose of this lab was to design and assemble the Sweet16 External Architecture. This
architecture consists of five components: a 1k x 16 ROM, a 1k x 16 RAM, an input port, an
output port, and a Memory Decoder. The two memory devices are used to store the program and
data for the Sweet16 microprocessor. The two ports allow data to flow in and out of the Sweet16
microprocessor. Finally, the Memory Decoder is a combinatorial logic circuit that generates the
control signals for the memory and I/O devices

One important factor in designing this external architecture was the necessity to prevent data
collisions on shared busses. With the use of strictly monitored control signals as well as tri-state
buffers, unwanted data collisions were prevented. Another interesting aspect of this design is the
accommodations that were made to allow the architecture to incorporate 8-bit operations in the
future.

Component Design and Validation

As mentioned in the introduction, the Sweet16 External Architecture consists of five
components: a 1k x 16 ROM, a 1k x 16 RAM, an input port, an output port, and a Memory
Decoder.

A. 1k x 16 ROM

The Read Only Memory (ROM) utilized in the Sweet16 memory map is 1 kilo-byte large and 16
bits wide. This is accomplished with the use of two 1k x 8 ROMs. As will be discussed later, one
ROM will contain the least-significant 8 bits of data, and the other will contain the most-
significant 8 bits of data (see Appendix F, Specification Sheet 6 for a description of rom_1kx8).

The 1k x 8 ROM component was designed graphically in Max+Plus II (see Figure 1 below). The
memory component was chosen from the mega_lpm library.

Figure 1: 1k x 8 ROM

Page 37 of 69 Sweet16 CISC Processor Casey T. Morrison

This component was compiled and simulated for the test program mulrom.asm. The results of the
simulation, shown below in Figure 2, illustrate the fact that each ROM will contribute one byte
to the overall data word. This simulation is for the ROM_High, and thus it contains the most
significant byte for each data word in mulrom.asm.

Figure 2: ROM simulation

Listing 1 below verifies the contents of this ROM. It represents the most significant byte for each
data word in mulrom.asm (see Appendix C, Program 1 for the code for mulrom.asm).

% Output produced from S-record by s2mif0 %
% This file should be used with the ROM selected %
% by an even address, i.e., on upper half of databus. %
Depth = 1024;
Width = 8;
Address_radix = hex;
Data_radix = hex;
% Program RAM Data %
Content
 Begin
0000 : 3B;
0001 : 01;
0002 : 00;
0003 : 3B;
0004 : DE;
0005 : 3B;
0006 : BE;
0007 : 14;
0008 : 00;
0009 : FF;
000A : 2B;
000B : 3B;
000C : 00;
000D : 3B;
000E : 00;
000F : 05;
0010 : 0D;
0011 : 0D;
0012 : 13;
0013 : 00;
0014 : 21;
0015 : 36;
0016 : 00;
0017 : 13;
0018 : FF;
0019 : 06;
[001A..03FF] : 00;
End;

Listing 1: ROM contents

When ROM is disabled, output is high impedance

Page 38 of 69 Sweet16 CISC Processor Casey T. Morrison

B. 1k x 16 RAM

The Random Access Memory (RAM) utilized in the Sweet16 memory map is 1 kilo-byte large
and 16 bits wide. This is accomplished with the use of two 1k x 8 RAMs. As will be discussed
later, one RAM will contain the least-significant 8 bits of data, and the other will contain the
most-significant 8 bits of data (see Appendix F, Specification Sheet 7 for a description of
ram_1kx8).

The 1k x 8 RAM component was designed graphically in Max+Plus II (see Figure 3 below). The
memory component was chosen from the mega_lpm library.

Figure 3: 1k x 8 RAM

This component was compiled and simulated for appropriate test vectors. The results of the
simulation, shown below in Figure 4, prove the functionality of this component.

Figure 4: RAM simulation

Page 39 of 69 Sweet16 CISC Processor Casey T. Morrison

C. Input Port

The input port for the Sweet16 microprocessor is simply a 16-bit tri-state buffer. This prevents
unwanted data collisions from occurring. By enabling the input port at specific times, this allows
the data bus to be driven by the input port only when it is desired. The Max+Plus II graphical
representation of this component is shown below in Figure 5.

Figure 5: Input Port

D. Output Port

The output port for the Sweet16 microprocessor consists of a 16-bit register. This allows data to
be latched at specific times and for specific address locations. The Max+Plus II graphical
representation of this component is shown below in Figure 6.

Figure 6: Output Port

E. Memory Decoder

To control the memory and I/O devices, a Memory Decoder was implemented in VHDL. The
memory map on which this decoder was based is shown in Figure 7 on the next page. Each
component in the external architecture is distinctly addressable. The enable signals for each of
these components are partially based on the address that the CPU is writing/reading to/from. The
read and write strobes also play an integral role in decoding the memory and I/O enable signals.
See Appendix F, Specification Sheet 8 for a description of the Memory Decoder.

Page 40 of 69 Sweet16 CISC Processor Casey T. Morrison

Figure 74: Sweet16 memory map

The VHDL for the Memory Decoder is shown in Listing 2 on the next page. Because of the way
the VHDL was written, and because of the design of the memory map, no two components are
ever simultaneously enabled. This ensures that data collisions will not occur and that the data
flow will behave as desired.

4 http://www.hcs.ufl.edu/~radlinsk/eel4713/course/view.php?id=2

Page 41 of 69 Sweet16 CISC Processor Casey T. Morrison

Entity decoder is
Port(
 -- Inputs
 ADDR: in std_logic_vector (15 downto 1);
 ADDR_0: in std_logic;
 RD_STR: in std_logic;
 WR_STR: in std_logic;

 -- Outputs
 ROM_HI_EN: out std_logic;
 ROM_LO_EN: out std_logic;
 RAM_HI_EN: out std_logic;
 RAM_LO_EN: out std_logic;
 RAM_WE: out std_logic;
 RAM_OE: out std_logic;
 OUTPORTEN: out std_logic;
 INPORTEN: out std_logic
);
End decoder;

Architecture Behavior of decoder is
signal rom_en, ram_en: std_logic;
Begin
rom_en <= not ADDR(15) and not ADDR(14) and not ADDR(13) and not ADDR(12) and
 not ADDR(11) and RD_STR and not WR_STR;

ram_en <= not ADDR(15) and not ADDR(14) and not ADDR(13) and not ADDR(12) and
 ADDR(11) and (RD_STR or WR_STR);

RAM_WE <= not ADDR(15) and not ADDR(14) and not ADDR(13) and not ADDR(12) and
 ADDR(11) and WR_STR and not RD_STR;

RAM_OE <= not ADDR(15) and not ADDR(14) and not ADDR(13) and not ADDR(12) and
 ADDR(11) and RD_STR and not WR_STR;

ROM_HI_EN <= rom_en; -- Temporary until 8-bit addressing is implemented
ROM_LO_EN <= rom_en; -- Temporary until 8-bit addressing is implemented

RAM_HI_EN <= ram_en; -- Temporary until 8-bit addressing is implemented
RAM_LO_EN <= ram_en; -- Temporary until 8-bit addressing is implemented

OUTPORTEN <= ADDR(15) and ADDR(14) and ADDR(13) and ADDR(12) and ADDR(11) and
 ADDR(10) and ADDR(9) and ADDR(8) and ADDR(7) and WR_STR and
 not RD_STR;

INPORTEN <= ADDR(15) and ADDR(14) and ADDR(13) and ADDR(12) and ADDR(11) and
 ADDR(10) and ADDR(9) and ADDR(8) and not ADDR(7) and RD_STR and
 not WR_STR;
End Behavior;

Listing 2: Memory Decoder VHDL code

The Max+Plus II graphical representation of this component is shown below in Figure 8.

Figure 8: Memory Map Decoder

Page 42 of 69 Sweet16 CISC Processor Casey T. Morrison

System Design and Validation

The individual components of the Sweet16 External Architecture were combined according to
the schematic shown in Figure 9.

Figure 95: Sweet16 External Architecture

It is obvious that the inputs to this system are the data bus, the inport bus, the address bus, and
the strobe signals. The only output (excluding the bidirectional data bus) is the outport bus.
Figure 10 on the next page shows the Max+Plus II Graphic Design File that was created by
integrating the previously designed components. See Appendix F, Specification Sheet 9 for a
description of the complete External Architecture.

5 http://www.hcs.ufl.edu/~radlinsk/eel4713/course/view.php?id=2

Page 43 of 69 Sweet16 CISC Processor Casey T. Morrison

Figure 10: Graphic design for External Architecture

A. System Test

The operation of this system was tested with a series of input vectors. This test was designed to
verify the proper functioning of the Memory Decoder as well as the I/O and memory
components. Each area of the memory map was appropriately read from or written to so as to
examine the behavior of the external architecture under various circumstances. The verification
performed in lab is shown in Figure 11 on the next page. A more involved simulation, performed
prior to the laboratory demonstration, can be found in Appendix E, Waveform Simulation 8.

With both of these simulations, an exhaustive test was performed on the Sweet16 external
architecture. The system as a whole proved to perform as desired.

Page 44 of 69 Sweet16 CISC Processor Casey T. Morrison

Figure 11: External Architecture simulation

Conclusion

A. Summary

The system designed in this lab represents the Sweet16 External Architecture. This system
interfaces with the previously designed Sweet16 CPU to form a complete microprocessor. It is
the external architecture that allows to the whole system to interface with the outside world. The
ability to read from and write to memory, as well as the capability of transmitting and receiving
data from exterior components, is integral to the overall functionality of a computing system.

The external architecture designed in this lab represents a mere fraction of this system’s
potential. It is entirely possible to expand upon this architecture in terms of serial
communication, VGA interfacing, digital to analog conversion, and much more. The Instruction
Set Architecture of this microprocessor makes it capable of expanding to various applications.

B. Questions

1. Explain why addr[0] was not connected to the ROM and RAM instances.

 The RAM and ROM components are each 8 bits wide; however, the Sweet16 is a 16-bit

processor with a 16-bit data bus. Therefore, with the smallest addressable memory space
being 8 bits (this will be exploited in future labs), the least-significant bit of the address is
neglected so that two bytes (the low and the high) can be read at once and concatenated
to form a 16-bit word.

Data from mulrom.asm
program loaded into ROM

Page 45 of 69 Sweet16 CISC Processor Casey T. Morrison

2. Notice that addr[0] could be used to discriminate between data in the devices on the
“upper-” or “lower-half” of the data bus. Write the RAM chip enable equations if one
wished to enable the RAM on the upper half of the data bus when addr[0] = 0 and the
RAM on the lower half of the data bus when addr[0] = 1. Identify whether this
arrangement is “Big Endian” or “Little Endian” in structure. Explain your reasoning.

RAM_HI_EN <= not ADDR(15) and not ADDR(14) and not ADDR(13) and
 not ADDR(12) and ADDR(11) and not ADDR(0) and
 (RD_STR or WR_STR);

RAM_LO_EN <= not ADDR(15) and not ADDR(14) and not ADDR(13) and
 not ADDR(12) and ADDR(11) and ADDR(0) and
 (RD_STR or WR_STR);

Listing 3: RAM chip enable equations

This arrangement is “Big Endian” because the most-significant byte comes first in
memory (even addresses starting with zero), and the least-significant byte come second in
memory (odd addresses starting with one).

3. Account for the reason, during testing of a bus connected to a port signal characterized
as “bidir” or “inout” that there were two signals presented in the waveform editor’s
diagram, one labeled “in” the other labeled “out”. Why did you have to initialize the
“in” signal to “ZZZZ” during times that the bus was being driven “out”? What
happened if this point was neglected?

The bidirectional port signal has an input and an output because it can be driven either
internally or externally. That is to say that when the bus is being driven by some device in
the system, the input port of the bidirectional bus may not be driven externally. In such
situations, the input for the bus must be forced to high impedance so as not to cause a
data collision. Similarly, when no internal devices are driving the bidirectional bus, the
input for the bus may be driven by the user (or an external device) without fear of a data
collision. If this precaution is ignored, the simulator will produce a “logic contention”
error notifying the user that he/she is attempting to drive the bus from two different
sources.

Page 46 of 69 Sweet16 CISC Processor Casey T. Morrison

Lab No. 5
Casey T. Morrison

EEL 4713 Section 2485 (Spring 2004)
Lab Meeting Date and Time: Monday E1-E3

TA: Grzegorz Cieslewski

I have performed this assignment myself. I have performed this work
in accordance with the Lab Rules specifies in 4713 Lab No. 0 and the

University of Florida’s Academic Honesty manual. On my honor, I have
neither given nor received unauthorized aid in doing this assignment.

Page 47 of 69 Sweet16 CISC Processor Casey T. Morrison

Introduction

The purpose of this lab was to create the microprogram necessary to implement several
instructions in the Sweet16 Instruction Set. Of particular interest were the instructions contained
in the mulrom.asm multiplication subroutine (see Appendix C, Program 1 for the mulrom.asm
code). A genuine understanding of the Sweet16 architecture was necessary in order to compose
the microcode necessary to realize each instruction.

With the Sweet16 microprocessor architecture completely assembled, the final tasks in making
this design a fully-functioning system is to provide it with a set of microinstructions that describe
how to manipulate its individual components in order to accomplish a given task. The resulting
microcode will be the true brains behind this processor. It will be responsible for “tweaking” the
control signals so as to coax the processor into computing meaningful values that the
programmer can make use of.

Component Design and Validation

Up to this point in the design of the Sweet16 microprocessor, we have the Sweet16 CPU
(sw16cpu.gdf) and the Sweet16 External Architecture (sw16extarch.gdf). In this lab, these
components were combined into one architecture (sweet16.gdf). Once this was accomplished, the
microinstructions required to implement several of the Sweet16 instructions were written. Once
all of these components were combined, the Sweet16 could then execute a multiplication
program, mulrom.asm.

A. Sweet16 Microprocessor Architecture

At a very high level, the Sweet16 microprocessor is composed of the Sweet16 CPU (see
Appendix F, Specification Sheet 5 for a description of this component) and the Sweet16 External
Architecture (see Appendix F, Specification Sheet 9 for a description of this component). These
two components were combined into one graphical design according to the schematic drawing in
Figure 1 on the next page.

The complete Sweet16 microprocessor hardware, as viewed from the highest level, is shown in
Figure 2 on the next page. There are three inputs to this processor: the system clock, the reset
signal, and the input port data bus. The only real output is the output port data bus. However,
extra output signals were brought out of the design so that several important internal signals
could be monitored. These signals are labeled “Test Signals” in Figures 1 and 2.

Page 48 of 69 Sweet16 CISC Processor Casey T. Morrison

Figure 16: Sweet16 CPU schematic

Figure 21: Sweet16 CPU schematic

6 http://www.hcs.ufl.edu/~radlinsk/eel4713/course/view.php?id=2

Page 49 of 69 Sweet16 CISC Processor Casey T. Morrison

The two high-level components that make up the Sweet16 were combined in Max+Plus II’s
Graphic Editor. The resulting graphic design file is shown below in Figure 3.

Figure 3: Sweet16 CPU high-level design

Notice that these two components use the address bus, data bus, and the read and write strobes to
communicate between each other. The result of combining these two entities, sweet16.gdf, is
shown below in Figure 4 (see Appendix F, Specification Sheet 10 for a description of the
Sweet16 component).

Figure 4: Sweet16 CPU highest-level design

This design was loaded with the multiplication program mulrom.asm. Despite the fact that a
majority of the microprogram memory was empty, this program was simulated to examine the
internal behavior of the Sweet16. See Appendix E, Waveform Simulation 9 for the results of this
simulation.

Page 50 of 69 Sweet16 CISC Processor Casey T. Morrison

B. Sweet16 Microcode

To complete the Sweet16 microprocessor design, the last step was to compose the microcode that
enables the Sweet16 instructions to be executed. When executing a program, this processor
converts each opcode into an address that points to a certain portion of the microcode wherein
the microinstructions necessary to execute each macroinstruction reside. As mentioned in earlier
labs, this task is accomplished by the MapROM. The Microprogram Memory, to which the
MapROM points, must be written in assembly language and converted into a Memory
Initialization File (MIF). The structure of this assembly language program is organized by
instruction and mapped out by the MapROM. Each Sweet16 instruction will have a sequence of
microinstructions associated with it.

The Microprogram Memory contains several important subroutines as well. For example, every
instruction execution cycle consists of fetch, decode, and execute. Therefore a subroutine was
created to accomplish the fetch portion of the instruction execution cycle. This subroutine
retrieves the data at the memory location pointed to by the Program Counter (PC), increments the
PC twice to point at the next data/instruction word, and directs the microprogram flow towards
the address pointed to by the MapROM (essentially the decode portion of the cycle). The
microcode for the fetch subroutine is shown below in Listing 1.

* Begin Instruction Fetch/Decode Sequence ------------
* IR <= mem[PC]; PC <= PC + 2; - 3 microinstructions, 5 clock cycles
FETCH:
 CNTR_LOAD 2 * Load Loop Counter
 INC_REG PC * Increment the Program Counter
 DB_OUT * Put RALU DB bus on internal databus
 STORE_MAR * Store the PC to MAR via DB
 endsc

FETCH1:
 LOOP_TC FETCH1
 MEM_READ * Assert RD_STR, set databus inbound
 endsc

DECODE:
 JUMP_MAP * Decode OPCODE, MAPROM[OPCODE]
 INC_REG PC * Increment the Program Counter
 MEM_READ * Assert RD_STR, set databus inbound
 endsc

Listing 1: Microcode for Fetch subroutine

In addition to the fetch subroutine, subroutines for different address modes were also created. For
example, the Immediate Address mode defines the word following the instruction word to be the
data associated with the instruction. This subroutine, therefore, retrieves that data and adjusts the
PC accordingly. In general, the goal of the subroutines associated with the various address modes
is to retrieve data. The microcode for the immediate and absolute address modes is shown in
Listing 2 and Listing 3, respectively, on the next page.

Page 51 of 69 Sweet16 CISC Processor Casey T. Morrison

* Immediate Address Mode: Databus <= Mem[PC]; PC <= PC + 2;
* 3 microinstructions, 4 clock cycles
* The execute state must maintain MEM_READ
IMMEDIATE:
 CNTR_LOAD 1 * Load Loop Counter
 INC_REG PC * Increment the PC
 DB_OUT * Put RALU DB bus on internal databus
 STORE_MAR * Store the PC to MAR via DB
 endsc

IMMEDIATE1:
 LOOP_TC IMMEDIATE1 * Wait for 2 cycles
 MEM_READ * Assert RD_STR, set databus inbound
 endsc

 RETURN
 INC_REG PC * Increment the PC
 MEM_READ * Assert RD_STR, set databus inbound
 endsc

Listing 2: Microcode for Immediate Address Mode

* Absolute Address Mode: Databus <= Mem[Mem[PC]]
* 6 microinstructions, 6 clock cycles
* The execute state must maintain MEM_READ
ABSOLUTE:
 INC_REG PC * Increment the PC
 DB_OUT * Put RALU DB bus on internal databus
 STORE_MAR * Store the PC to MAR via DB
 endsc

* Get second word of instruction
 INC_REG PC * Increment the PC
 MEM_READ * Assert RD_STR, set databus inbound
 endsc

 MEM_READ * Assert RD_STR, set databus inbound
 endsc

 STORE_MAR * Load the MAR at the end of the state
 MEM_READ * Assert RD_STR, set databus inbound
 endsc

* Get data pointed at by second word of instruction
 MEM_READ * Assert RD_STR, set databus inbound
 endsc

 RETURN
 MEM_READ * Assert RD_STR, set databus inbound
 endsc

Listing 3: Microcode for Immediate Address Mode

With these tools it was possible to construct the remainder of the Sweet16 instructions in
microcode. The instructions of interest for this lab were those utilized in the mulrom.asm
multiplication program.

Page 52 of 69 Sweet16 CISC Processor Casey T. Morrison

One of the most challenging instructions to implement was the CALL instruction. The flow chart
developed to describe the steps that were necessary to execute this instruction is shown below in
Figure 5.

Figure 5: CALL execution flowchart

From this logic, the microcode shown in Listing 4 was composed in order to implement the
CALL instruction. The code for this instruction, like many others, takes advantage of the
microcontroller’s ability to jump around in the Microprogram Memory. This means that the
microcode for any instruction does not have to be contiguous, but rather it can be segmented at
the programmer’s discretion.

Many of the instructions executed in microcode call upon macros defined in the usw16.mac file.
These macros simplify the task of setting (or clearing) the 42 control signals that allow the
Sweet16 to operate. See Appendix C, Program 10 for the complete usw16.mac file.

SP SP – 2
MAR SP

PC PC + 2
MEM[MAR] PC

PC PC – 2
MAR SP

PC PC – 2
MAR PC

PC MEM[MAR]
JUMP FETCH

PCi + 2

Old top

SPf

Stack

Imm. Data

Next Inst.

PCi

Memory

Call Inst.

PCf

SPi

CALL Flowchart

Page 53 of 69 Sweet16 CISC Processor Casey T. Morrison

 ORGA $51
CALL:
 DEC_REG SP
 endsc

 DEC_REG SP
 D_OUT
 STORE_MAR
 endsc

 INC_REG PC
 CNTR_LOAD 2
 endsc

 INC_REG PC
 D_OUT
 MEM_WRITE
 JUMP FINISH_CALL1
 endsc
 ORGA $E8
 *
 *
 *
FINISH_CALL1:
 LOOP_TC FINISH_CALL1 * Wait for 2 cycles
 REG_TO_BUS PC * Put current PC on data bus
 MEM_WRITE
 endsc

 DEC_REG PC
 endsc

 DEC_REG PC
 D_OUT
 STORE_MAR
 CNTR_LOAD 1
 endsc

FINISH_CALL2:
 LOOP_TC FINISH_CALL2 * Wait for 2 cycles
 MEM_READ * Assert RD_STR, set databus inbound
 endsc

 MEM_READ * Assert RD_STR, set databus inbound
 STORE_PC * Store new PC value
 JUMP FETCH
 endsc

Listing 4: CALL instruction microcode

Page 54 of 69 Sweet16 CISC Processor Casey T. Morrison

System Design and Validation

Once all of the instructions necessary to execute the mulrom.asm program were implemented in
microcode, the microcode program, usw16.asm, was assembled with UPASM and converted into
a Memory Initialization File (MIF). See Appendix C, Program 6 for the complete usw16.asm
file.

A. System Test

The usw16 MIF was loaded into the Sweet16 Microprogram Memory. In addition, mulrom.asm
was compiled and converted into two MIFs, mulrom0.mif and mulrom1.mif. As mentioned in
earlier labs, this technique is employed due to the fact that the Sweet16 has two 1k x 8 ROMs,
one for the most significant 8-bits of the instruction/data word, and one for the least significant
8-bits. These two MIFs were loaded into their respective ROMs. The resulting Max+Plus II
project was compiled and simulated for an appropriate length of time (40 µs).

The mulrom.asm program utilizes a series of shifts and adds in order to compute the product of
two 16-bit numbers. In essence, whenever a one (1) is encountered in the multiplier, the current
value of the product is shifted and added to the multiplicand. This process of shifting and adding
is repeated 16 times so that each bit of the multiplier can be examined.

After 36.7 µs of simulation, the multiplication algorithm had completed its final iteration and had
computed the correct product for $ABBA multiplied by $DABA. The multiplicand and the
multiplier were predetermined by the laboratory instructor, and the results, $92B9 2924, were
confirmed. Figure 6 below shows the portion of the simulation at which point the results of the
multiplication were computed. See Appendix E, Waveform Simulation 10 for the abridged
simulation of mulrom.asm.

Figure 6: Abbreviated simulation of mulrom.asm

$ABBA x &DABA = $92B9 2924

Page 55 of 69 Sweet16 CISC Processor Casey T. Morrison

Conclusion

A. Summary

The Sweet16 microprocessor underwent the final stages of its hardware design in this lab. The
External Architecture was combined with the Sweet16 CPU to form the Sweet16 microprocessor.
While not totally complete, this processor was also given a microprogram that enabled it to
execute a multiplication subroutine. In the coming labs, this microprogram will be expanded
upon to make a more complete Sweet16 microprocessor.

The most interesting aspects of the design involved in this lab are the tools that were used to
create the Sweet16 microprogram. There does not exist a compiler designed specifically for the
Sweet16 microprocessor and its instruction set. Therefore existing tools (i.e. UPASM) were
adapted and harnessed so that they could accommodate the Sweet16. This allowed the
programmer to essentially devise the language in which the microcode was written. By defining
macros and subroutines, the microcode was modularized to a significant degree. This greatly
simplified the process of composing the microcode for the Sweet16 Instruction Set.

Page 56 of 69 Sweet16 CISC Processor Casey T. Morrison

Lab No. 6
Casey T. Morrison

EEL 4713 Section 2485 (Spring 2004)
Lab Meeting Date and Time: Monday E1-E3

TA: Grzegorz Cieslewski

I have performed this assignment myself. I have performed this work
in accordance with the Lab Rules specifies in 4713 Lab No. 0 and the

University of Florida’s Academic Honesty manual. On my honor, I have
neither given nor received unauthorized aid in doing this assignment.

Page 57 of 69 Sweet16 CISC Processor Casey T. Morrison

Introduction

The purpose of this lab was to examine the meaning and essence of the Complex Instruction Set
Computer (CISC). In previous labs, intricate operations such as multiplication were
accomplished by combining several less-intricate instructions, such as shifting and adding.
Although this approach succeeded in computing the desired result, it proved to be an inefficient
method of accomplishing its task in that it consumed more time than was necessary given the
capabilities of the Sweet16 architecture.

This lab harnessed the capabilities of the Sweet16 and showed that complex processes could be
accomplished faster when explicit instructions are devoted to these processes. This fact is based
on the principle that software implementations of complex operations are costly in terms of the
time they spend on fetching multiple instructions from memory. In a CISC architecture such as
the Sweet16, whole instructions may be devoted to complex operations so as to avoid the added
cost of multiple instruction fetches. Of particular interest in this lab are the benefits obtained
from CISC-style implementations of multiplication and division.

Component Design and Validation

At this stage in the design of the Sweet16 microprocessor, the hardware is all but complete, and
many of the Sweet16 instructions have been implemented in microcode. This lab will focus on
expanding the microcode to include the unsigned multiplication, unsigned division, and 32-bit
addition instructions.

A. Unsigned Multiplication

Unsigned binary multiplication may be approached in several ways. Single-cycle 16-bit
multiplication can be accomplished; however such multipliers are very logic-intensive and
therefore costly. Conversely, there are several iterative approaches to 16-bit unsigned binary
multiplication. One impractical approach is to realize what multiplication really is: the repeated
summing of one number with itself. Although this method seams to be ideal for multiplying
small numbers, it becomes grossly impractical when dealing with larger numbers. This leads us
to the more viable of the two iterative methods. Returning to an elementary-style of computing
products, it becomes obvious that the best way to accomplish multiplication is to use a series of
shifts and additions.

According to the multiplication algorithm used in this lab, for each binary “one” that appears in
the multiplier, the multiplicand is added to the current product and then the product is shifted to
account for the bit position of the “one” in the multiplier. This conditional addition is
accomplished with the use of the built-in unsigned multiplication function in the ALU. The
algorithm for 16-bit multiplication is similar to the algorithm for 4-bit multiplication illustrated
in Figure 1 on the next page.

Page 58 of 69 Sweet16 CISC Processor Casey T. Morrison

Figure 17: 4-bit multiplication algorithm

From this method of multiplication, a flowchart was created to assist in developing microcode
for the UMUL instructions. Figure 2 below shows the resulting multiplication flowchart.

Figure 2: Flowchart for multiplication

7 “unsigned_multiplication.pdf” By Michel Lynch, http://www.hcs.ufl.edu/~radlinsk/eel4713/course/view.php?id=2

Q_REG Multiplier

Product MSW 0x0000

Conditional Add and
Shift

Count = 16?

N

Store 32-bit result

Y

Page 59 of 69 Sweet16 CISC Processor Casey T. Morrison

When this algorithm was implemented in microcode, the following portion of assembly code was
developed for the UMULR instruction (see Appendix C, Program 6 for the complete usw16.asm
code).

 ORGA $70
UMULR:
 REGMUX ,R1B * select multiplier to pass through ALU
 ALU ,PASS_BC,C_ONE * pass R1B through ALU
 Q_SHIFT ,LOAD_D0 * load Q_REG with R1B
 JUMP FINISH_UMUL_R
 endsc
 ORGA $F0
FINISH_UMUL_R:
* Zero out MSW of product
 REGMUX ,R1B * Write to R1
 ALU ,F_ZERO,C_ZERO * Zero out R1
 ALU_SHIFT ,PASS * pass zero through alu_shifter
 SMUX ALU_SHFT_BUS * select alu_shift_bus as input to RA
 WRITE_REG_ARR TRUE * write result back using B_ADDR
 CNTR_LOAD 15 * prepare to loop 16 times
 endsc

* Multiplication loop
FINISH_UMUL_R2:
 LOOP_TC FINISH_UMUL_R2 * repeat multiplication iteration
 REGMUX R2A,R1B * select Multiplicand (R2) and Product MSW (R1)

 ALU REG_ARR,UMULIT,C_ZERO * conditionally add multiplicand (R2) and
 * Product MSW (R1)

 Q_SHIFT FSO,SHFT_RIGHT * shift Q_REG right (shift out Product LSb)
 ALU_SHIFT ALU_COUT,SHFT_RIGHT
 SMUX ALU_SHFT_BUS * select alu_shift_bus as input to RA
 WRITE_REG_ARR TRUE * write result back using B_ADDR
 FLAGS ARITH
 endsc

* Store results
 REGMUX ,TOGGLE_B * Write Product LSW to IR.R1 + 1
 PL_REG ,ONE
 SMUX QBUS * write R2 with contents of Q_REG
 WRITE_REG_ARR TRUE * write result back using B_ADDR
 JUMP FETCH
 endsc

Listing 1: UMULR implementation in microcode

The result of a 16-bit multiplication is a 32-bit number. Therefore the product of the two register
contents (for UMULR) will be stored in the concatenation of those two registers, provided that
the registers are an “even-odd” pair (at a word-aligned boundary). This is accomplished by
exploiting the B_ADDR(0) bit that can be controlled by the controller. The least-significant word
of the product is stored in the register [IR.R0 + 1] by toggling the B_ADDR(0) bit.

B. Unsigned Non-Restoring Division

The algorithm for unsigned non-restoring division is similar to that for unsigned multiplication.
Instead of right shifts and addition, the algorithm for division essentially consists of subtractions
and left shifts. Like in multiplication, the ALU designed for the Sweet16 has a built-in function
for non-restoring division. This function accomplishes the conditional subtraction that is
necessary for division. The algorithm used to accomplish unsigned non-restoring division is
illustrated in Figure 3 on the next page.

Page 60 of 69 Sweet16 CISC Processor Casey T. Morrison

Figure 3: Unsigned non-restoring division algorithm

From this method of division, a flowchart was created to assist in developing microcode for the
UDIVR instruction. Figure 4 below shows the resulting division flowchart.

Figure 4: Flowchart for division

Remainder
(0x0000 at beginning)

Quotient
(Dividend at beginning)

Cond.
Add/Sub

Divisor

0 Add
1 Sub

carry

Q_REG Dividend

Remainder 0x0000

Remainder Dividend
MSb

Count = 15?

N

Y

Remainder Dividend MSb
Conditionally Add/Sub Divisor

Remainder Dividend MSb
Conditionally Add/Sub Divisor

Neg.

Remainder?
Y Fix Remainder:

Remainder Divisor + Remainder

Store results
N

Page 61 of 69 Sweet16 CISC Processor Casey T. Morrison

When this algorithm was implemented in microcode, the following portion of assembly code was
developed for the UDIVR instruction.

 ORGA $72
UDIVR: REGMUX ,R1B * select multiplier to pass through ALU
 ALU ,PASS_BC,C_ONE * pass R1B through ALU
 Q_SHIFT ,LOAD_D0 * load Q_REG with R1B
 JUMP FINISH_UDIV_R
 endsc

 ORGA $F7
FINISH_UDIV_R:
 REGMUX ,R1B * Write to R1 (remainder)
 ALU ,F_ZERO,C_ZERO * Zero out R1 (remainder)
 ALU_SHIFT ,PASS * pass zero through alu_shifter
 SMUX ALU_SHFT_BUS * select alu_shift_bus as input to RA
 WRITE_REG_ARR TRUE * write result back using B_ADDR
 FLAGS uFlags * clear uSR_C, uSR_S
 endsc

 Q_SHIFT ZERO,SHFT_LEFT * shift Q_REG left (shift out Dividend MSb)
 ALU_SHIFT QSO,SHFT_LEFT * shift remainder left
 REGMUX ,R1B
 ALU ,PASS_BC,C_ONE
 SMUX ALU_SHFT_BUS * select alu_shift_bus as input to RA
 WRITE_REG_ARR TRUE
 CNTR_LOAD 14 * prepare to loop 15 times
 endsc

 REGMUX TMP,R1B
 ALU REG_ARR,SB_BAC,C_ONE
 WRITE_REG_ARR FALSE
 FLAGS uFlags
 endsc

FINISH_UDIV_R2:
 LOOP_TC FINISH_UDIV_R2 * repeat division iteration
 REGMUX R2A,R1B * select Divisor (R2) and Remainder (R1)
 ALU REG_ARR,NDIVT, * conditionally add/subtract
 Q_SHIFT uSR_C,SHFT_LEFT * shift Q_REG left (shift out dividend LSb)
 ALU_SHIFT QSO,SHFT_LEFT
 SMUX ALU_SHFT_BUS * select alu_shift_bus as input to RA
 WRITE_REG_ARR TRUE * write result back using B_ADDR
 FLAGS uFlags
 endsc

 REGMUX R2A,R1B * select Divisor (R2) and Remainder (R1)
 ALU REG_ARR,NDIVT, * conditionally add/subtract
 Q_SHIFT uSR_C,SHFT_LEFT * shift Q_REG left (shift out dividend LSb)
 ALU_SHIFT ,PASS
 SMUX ALU_SHFT_BUS * select alu_shift_bus as input to RA
 WRITE_REG_ARR TRUE * write result back using B_ADDR
 FLAGS uFlags
 COND_JUMP FLAGS_uSR_S,FIX_REMAINDER
 endsc

 REGMUX ,TOGGLE_B * write Quotient to IR.R1 + 1
 PL_REG ,ONE
 SMUX QBUS * write R2 with contents of Q_REG
 WRITE_REG_ARR TRUE * write result back using B_ADDR
 JUMP FETCH
 endsc

FIX_REMAINDER:
 REGMUX R2A,R1B
 ALU REG_ARR,ABC,C_ZERO
 ALU_SHIFT ,PASS
 SMUX ALU_SHFT_BUS
 WRITE_REG_ARR TRUE
 endsc

 REGMUX ,TOGGLE_B * write Quotient to IR.R1 + 1
 PL_REG ,ONE
 SMUX QBUS * write R2 with contents of Q_REG
 WRITE_REG_ARR TRUE * write result back using B_ADDR
 JUMP FETCH
 endsc

Listing 2: UDIVR implementation in microcode

Page 62 of 69 Sweet16 CISC Processor Casey T. Morrison

The result of a 16-bit division is a 16-bit quotient and a 16-bit remainder. Therefore the results of
a UDIVR instruction will be stored in the concatenation of the two registers that contained the
operands, provided that the registers are an “even-odd” pair (at a word-aligned boundary). This is
accomplished by exploiting the B_ADDR(0) bit that can be controlled by the controller. The
remainder is stored in register [IR.R0], and the quotient is stored in register [IR.R0 + 1] by
toggling the B_ADDR(0) bit.

C. 32-Bit Long Addition

The final complex instruction implemented in this lab was 32-bit long addition, or “Add with
Carry Long.” This instruction adds two numbers that are each 32-bits long and are located in the
General Purpose Registers. Each 32-bit number requires two registers to hold its most- and least-
significant parts. “Even-odd” register pairs are used to house each number in the register array.
For example, if you execute the instruction ADCLR R0,R2, then the fist 32-bit long word is
stored in registers 0 and 1, and the second 32-bit long word is stored in registers 2 and 3. By
convention, the 32-bit result is stored in the concatenation of register [IR.R1] and [IR.R1 + 1].

The flowchart in Figure 5 below illustrates the algorithm used to accomplish 32-bit long
addition.

Figure 5: 32-bit long addition algorithm

From this algorithm, the microcode for the ADCLR instruction was developed. Listing 3 on the
next page shows the resulting microcode.

Sum LSW Operand 1 LSW +
 Operand 2 LSW
Update µCarry flag

Sum MSW Operand 1 LSW +
 Operand 2 LSW +
 µCarry
Update Arithmetic flags

Page 63 of 69 Sweet16 CISC Processor Casey T. Morrison

 ORGA $E2
ADCLR:
 REGMUX TOGGLE_A,TOGGLE_B
 PL_REG ONE,ONE
 ALU REG_ARR,ABC,C_MACRO
 FLAGS uFlags
 ALU_SHIFT ,PASS * pass through alu_shifter
 SMUX ALU_SHFT_BUS * select alu_shift_bus as input to Reg_Arr
 WRITE_REG_ARR TRUE * write result back using B_ADDR
 endsc

 REGMUX TOGGLE_A,TOGGLE_B
 PL_REG ZERO,ZERO
 ALU REG_ARR,ABC,C_MICRO
 FLAGS ARITH
 ALU_SHIFT ,PASS * pass zero through alu_shifter
 SMUX ALU_SHFT_BUS * select alu_shift_bus as input to RegArr
 WRITE_REG_ARR TRUE * write result back using B_ADDR
 JUMP FETCH
 endsc

Listing 3: ADCLR implementation in microcode

System Design and Validation

Once the new, complex instructions were implemented in microcode, test programs were
developed for each instruction and simulations were performed to evaluate the performance of
these operations.

A. Unsigned Multiplication Verification

A special test program was written to isolate and test the 16-bit unsigned multiplication
instructions UMULR and UMULI. These instructions both perform unsigned multiplication,
except one utilizes the Register-Register address mode while the other utilizes the Immediate
address mode. The test program developed to verify the correctness of these instructions,
umul_test.asm, is shown in Listing 4 on the next page.

The updated usw16 Memory Initialization File (MIF) was loaded into the Sweet16 Microprogram
Memory (see Appendix C, Program 6 for the entire usw16.asm code). In addition, the test
program was compiled and loaded into the Sweet16 ROM (see Appendix C, Programs 12, 13,
and 14 for the umul_test.s, umul_test0.mif, and umul_test1.mif files, respectively). A simulation
was performed to examine the Sweet16’s behavior during the execution of the multiplication
instructions. Figure 6 on the next page shows a portion of the simulation results (see Appendix E,
Waveform Simulation 11 for the complete simulation results).

Page 64 of 69 Sweet16 CISC Processor Casey T. Morrison

* UMUL_TEST.ASM - Program that tests the operation of the UMULR and UMULI functions
* Orged in ROM ($0000)
* Author: Casey T. Morrison, EEL 4713, 2/28/2004

 NOLIST
 INCLUDE "sweet16.mac"
 LIST

 ORG $0000

* Multiply using UMULR
 LDI R0,$F00D
 LDI R1,$BEEF

 UMULR R0,R1

* Save results in R2 ans R3
 LDR R2,R0
 LDR R3,R1

* Multiply using UMULI
 LDI R0,$DEAD

 UMULI R0,$BEA7

* Save results in R4 ans R5
 LDR R4,R0
 LDR R5,R1

* Infinite loop
* Display results of first multiplication
* R2: $B309
* R3: $C223
* R4: $A5D5
* R5: $A8DB
LOOP: LDR R2,R2
 LDR R3,R3
 LDR R4,R4
 LDR R5,R5
 CLRC
 BCC LOOP

 END

Listing 4: UMUL_Test.asm code

Figure 6: Abbreviated simulation of UMUL_Test.asm

$F00D x $BEEF = $B309 C223

Page 65 of 69 Sweet16 CISC Processor Casey T. Morrison

Upon analyzing the results of this simulation, it was determined that the multiplication
instructions performed as desired.

B. Non-Restoring Division Verification

A test program was written to isolate and test the 16-bit non-restoring division instruction
UDIVR. This test program, udiv_test.asm, was developed to verify the correctness of the UDIVR
instruction and is shown in Listing 5 below. After being compiled and loaded into the Sweet16
ROM, a simulation was performed to examine the Sweet16’s behavior during the execution of
the division instruction (see Appendix C, Programs 16, 17, and 18 for the udiv_test.s,
udiv_test0.mif, and udiv_test1.mif files, respectively). Figure 7 on the next page shows a portion
of the simulation results (see Appendix E, Waveform Simulation 12 for the complete simulation
results).

* UDIV_TEST.ASM - Program that tests the operation of the UDIV function
* Orged in ROM ($0000)
* Author: Casey T. Morrison, EEL 4713, 2/28/2004

 NOLIST
 INCLUDE "sweet16.mac"
 LIST

 ORG $0000

* Divide using UDIV (R0/R1)
 LDI R0,$F00D
 LDI R1,$000F

 UDIVR R0,R1

* Infinite loop
* Display results of division
* R2: $000D Remainder
* R3: $1000 Quotient
LOOP: LDR R2,R0
 LDR R3,R1
 CLRC
 BCC LOOP

 END

Listing 5: UDIV_Test.asm code

Page 66 of 69 Sweet16 CISC Processor Casey T. Morrison

Figure 7: Abbreviated simulation of UDIV_Test.asm

Upon analyzing the results of this simulation, it was determined that the division instruction
performed as desired.

C. 32-Bit Long Addition Verification

A test program was written to isolate and test the 32-bit long addition instruction ADCLR. This
test program, adclr_test.asm, was developed to verify the correctness of the ADCLR instruction
and is shown in Listing 6 on the next page. After being compiled and loaded into the Sweet16
ROM, a simulation was performed to examine the Sweet16’s behavior during the execution of
the long addition instruction (see Appendix C, Programs 20, 21, and 22 for the adclr_test.s,
adclr_test0.mif, and adclr_test1.mif files, respectively). Figure 8 on the next page shows a
portion of the simulation results (see Appendix E, Waveform Simulation 13 for the complete
simulation results).

Upon analyzing the results of this simulation, it was determined that the 32-bit long addition
instruction performed as desired.

$F00D / $000F = $1000 remainder $000D

Page 67 of 69 Sweet16 CISC Processor Casey T. Morrison

* ADCLR_TEST.ASM – Program that tests the operation of the ADCLR function
* Orged in ROM ($0000)
* Author: Casey T. Morrison, EEL 4713, 2/28/2004

 NOLIST
 INCLUDE “sweet16.mac”
 LIST

 ORG $0000

 LDI R0,$F00D
 LDI R1,$F00D
 LDI R2,$BEEF
 LDI R3,$000F

 ADCLR R0,R2

* Infinite loop
* Display results of addition
* R2: $AEFC
* R3: $F01C
* Carry: 1
LOOP: LDR R2,R0
 LDR R3,R1
 CLRC
 BCC LOOP

 END

Listing 6: ADCLR_Test.asm code

Figure 8 Abbreviated simulation of ADCLR_Test.asm

MSW of sum LSW of sum

Page 68 of 69 Sweet16 CISC Processor Casey T. Morrison

Conclusion

A. Summary

The Complex Instruction Set nature of the Sweet16 microprocessor was exploited in this lab to
implement three complex instructions. Although these instructions could have been
accomplished in software, the benefits of devoting explicit opcodes to these operations were
obvious. Instead of fetching several instructions from memory in an iterative fashion, only one
instruction was fetched from memory and the computational power of the Sweet16 was utilized
to obtain the results in a fraction of the time. This is the essence of Complex Instruction Set
Computing.

The advantages inherent in this method of computing can be extended to other instructions. For
example, signed multiplication and division (instead of unsigned) can be accomplished with the
existing hardware. It is this computational power that makes the Sweet16 a very versatile and
robust machine.

B. Questions

1. How many clock cycles are needed for each algorithm? Does this number depend on the

values of the data?

 The unsigned multiplication instructions take 19 clock cycles once the data has been

retrieved. The division instruction takes 21 or 22 cycles depending on whether the remainder
must be adjusted at the end. The long addition instruction takes two clock cycles. The
number of clock cycles for the multiplication and long addition instructions does not depend
on the data. The number of clock cycles for the division instruction, however, does depend
on the data; for some divisions require the remainder to be adjusted at the end.

2. Which control paths for each algorithm do not pass through the microprogrammed

controller in the multiplication and division instructions? Identify the flip-flop that each
control path begins on, ends on. At which point does the control path become a data
combination path?

The “iterate” control path does not go through the microprogrammed controller in the
multiplication and division instructions. This control signal is generated by either the output
of the Q-Shifter or the micro carry flag. The “iterate” control path determined the operation
performed by the ALU during the multiplication and division iterations.

For the multiplication algorithm, the control path begins at the Q-Shifter, where the least-
significant bit of the multiplier determined whether or not to sum the multiplicand and the
product. This control path ends at the register array, where the results of the sum are stored.

For the division algorithm, the control path begins at the register array with the micro carry
flag that determines whether or not the ALU adds or subtracts the remainder and divisor.

Page 69 of 69 Sweet16 CISC Processor Casey T. Morrison

This path ends at the register array as well where the results of the addition or subtraction are
stored.

Both of these control paths become data combination paths once they reach the ALU, where
additions and/or subtractions are performed based on the “iterate” control signal.

3. Compare the number of clock cycles needed to perform the original mulrom.asm program,
i.e., using a UMUL subroutine, with the number required by the UMULR instruction. Discuss
how the CISC concept resulted in a faster machine. Hint: How many clock cycles were used
fetching instructions?

The UMUL subroutine in the mulrom.asm program took 893 clock cycles to execute
completely. This is more than 37 times greater than the 24 clock cycles that it took to execute
the UMULR instruction. Much of this difference is attributed to the repeated instructions
fetches (at five clock cycles a piece) that the UMUL subroutine relies upon. This illustrates
the advantage of the CISC architecture—the concept that complex instructions can avoid
costly memory fetches and accomplish operations faster than their software equivalent.

4. Discuss the difference in the execution time of a program using the address mode
examined in procedure 6 with one not using it.

The use of memory-indirect address modes incurs additional execution time attributed to the
added memory fetch(es) that is/are necessary. While zero additional memory fetches are
requires for Register-Register address mode instructions, and one additional memory fetch is
required for Immediate address mode instructions, two additional memory fetches are
required for the memory-indirect address mode instructions. The first additional fetch is to
retrieve the pointer, and the second additional fetch is to retrieve the data pointed to by the
pointer. Thus instructions employing this address mode will incur the additional execution
time associated with the additional memory fetches.

