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Introduction 
 
The goal of this lab was to implement the Sweet16 Instruction Set Architecture (ISA) in the C 
programming language. In doing so, the Fetch/Decode/Execute process that is at the heart of the 
Instruction Set Processor will be examined in depth. By programming the Sweet16 ISA in C, a 
simulator can be made that replicates the behavior of the Sweet16 microprocessor with specific 
input. This simulator will become an “executable problem statement” which represents that an 
understanding has been reached regarding the problem specification. 
 
The program that was designed to accomplish the given task is sw16sim.c. This program will 
take source files (.s) compiled by an adapted assembly language compiler (UPASM) and produce 
print statements which indicate the inner workings of the simulated processor. The program tries 
to replicate the internal processes of the Sweet16 as closely as possible so as to more accurately 
predict the outcome of the assembly language programs that will be run on the Sweet16. In the 
end, the simulator will serve as a platform on which we may analyze the details of the 
implementation of this processor. 
 
 
 
Component Design and Validation 
 
In designing a simulator for the Sweet16 microprocessor it was imperative that the program 
reproduce the internal architecture as closely as possible. The program sw16sim.c, designed in 
large part by Dr. Michel A. Lynch, deals in structures and objects that mirror the components of 
the Sweet16 microprocessor. 
 
The basic implementation of every instruction in the Sweet16 ISA involves three steps: Fetch, 
Decode, and Execute. The Fetch portion of this cycle is the same for each instruction. In essence, 
the first, and possibly only, instruction word is “fetched” by retrieving the data at the memory 
location pointed to by the Program Counter (PC). This is accomplished in the simulator by 
addressing an array of bytes (the memory) with the PC. The instruction word is loaded into a 
temporary register one byte at a time (something unlike the actual implementation of Sweet16). 
 
In the decode portion of the code, the upper byte of the instruction is compared against the 
opcodes in the instruction set. When a match is found, the execution path of the program is 
redirected to the portion of code that handles that particular instruction. Once this is done, the 
operands are fetched in preparation for the execution phase. Based on the type of address mode 
that the particular instruction employs, a subroutine is called to retrieve the operands and store 
them into temporary registers. For example, the ADDI instruction makes use of the Immediate 
address mode, and thus the ADDI program segment calls the Immediate() subroutine to fetch the 
two words that are to be added.  
 
Finally, with the operands waiting in temporary registers, subroutines may be called to handle 
the execution of the instruction. Examples of this include subroutines to add, subtract, bitwise 
and, bitwise or, etc. Included in the execution phase is the setting/clearing of the status flags. 
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Subroutines were created to handle the two flag update requirements. Once the execution is 
complete, the program repeats the process, grabbing a new instruction from memory. 
The flowchart of the main routine in the Sweet16 simulator is shown below in Figure 1. It 
illustrates the Fetch/Decode/Execute nature of main(). 
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Figure 1: Flowchart for main method 
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All instructions that have the same address mode obtain their operands in the same manner. 
Using this principle, the main() subroutine was greatly simplified with the use of subroutines that 
retrieved operands based on the address mode. For example, the subroutine for the absolute 
address mode (shown below in Listing 1) uses the data in the second word of the instruction to 
point to the data that is to be used as one of the operands. 
 

/* 
 Absolute address mode function - Big Endian 
*/ 
void absolute() 
{ 
 df.db.upper_byte = mem[*pc]; incPC; 
 df.db.lower_byte = mem[*pc]; incPC; 
 printf("   ABSOLUTE Data Address: %04X,", (unsigned)df.d.data); 
 temp = df.d.data; 
 df.db.upper_byte = mem[(unsigned)temp]; 
 df.db.lower_byte = mem[(unsigned)temp + 1]; 
 temp1 = reg[(int)ir.instr.r1]; 
 temp2 = df.d.data; 
 printf(" Data: %04X\n", (unsigned)df.d.data); 
} 
 

Listing 1: Absolute address mode handler 
 
Any instruction that employs the absolute address mode will perform some data manipulation on 
the contents of r1 and the data pointed to by the second word of the instruction. After calling this 
subroutine, those data will be stored in the first and second temporary registers, respectively. 
 
With a standard location for operands, like temporary registers one and two, operations can then 
be performed on this data in a generalized manner. For example, the add() subroutine (shown 
below in Listing 2) is employed by all instructions that add without carry. 
 
/* 
 add() is  used to complete addition operations with no carry input 
*/ 
void add() 
{ 
 temp = temp1 + temp2; //data is stored in temp1 and temp2 
 reg[(int)ir.instr.r1] = temp & WORD_MASK; /* write-back the result into the reg array 
*/ 
 printf("  ADD: reg[%d] = %04X + %04X = %04X\n",(int)ir.instr.r1, temp1, temp2, 
reg[(int)ir.instr.r1] ); 
} 
 

Listing 2: Addition method 
 
This subroutine assumes that the data is already stored in the temporary registers. Once a 
procedure like this is called and executed, it is often necessary to call a special subroutine to set 
(or clear) the appropriate status flags. The logic_flags() function (shown in Listing 3) is one such 
subroutine that handles the updating of the status register. Often times, this is the last step in the 
execution of an instruction. Once this is complete, main() will repeat the Fetch/Decode/Execute 
process. 
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/* 
 logic_flags() is used to set the logical flags 
*/ 
void logic_flags() 
{ 
// zero flag: z 
 if( temp == 0) {flags.z = 1;} else {flags.z = 0;} 
 
// sign flag: n 
 if((temp & SIGN_MASK) == 0) {flags.s = 0;} else {flags.s = 1;} 
 
 printf("\n  Logic Flags: c=%01X, v=%01X, s=%01X, z=%01X\n", flags.c, flags.v, flags.s, 
flags.z); 
} 
 

Listing 3: Logic Flags method 
 
As new instructions were being implemented in the simulator, they were individually tested with 
an assembly program. For example, the “Store with Indexed Addressing” command (STAX) was 
implemented as follows in the Sweet16 simulator. 
 
 case STAX:     // Indexed with Offset address mode 
  index_w_offset(); 
  mem[(unsigned)df.d.data] = (reg[(int)ir.instr.r1] >> 8); 
  mem[(unsigned)df.d.data + 1] = reg[(int)ir.instr.r1]; 
  printf("   Storing $%04X at memory location $%04X\n",reg[(int)ir.instr.r1],  
                      (unsigned)df.d.data); 
  break; 
 

Listing 4: Store with Indexed Addressing instruction 
 
This instruction required the use of an Indexed Addressing subroutine, index_w_offset(). Shown 
in Listing 5, this subroutine uses an offset stored in r2 as well as a base address located in the 
second instruction word to address the data used in the calculation. 
 

/* 
 Indexed w/offset address mode function 
*/ 
void index_w_offset() 
{ 
 df.db.upper_byte = mem[*pc]; incPC; 
 df.db.lower_byte = mem[*pc]; incPC; 
 printf("   Base Address: %02X%02X\n", df.db.upper_byte, df.db.lower_byte); 
 printf("   Offset: %04X\n", reg[(int)ir.instr.r2]); 
 df.d.data = df.d.data + reg[(int)ir.instr.r2]; 
 temp2 = (mem[df.d.data] << 8) | mem[df.d.data + 1]; 
 printf("   Target Address: $%04X\n", df.d.data); 
 printf("   Data at &%04X: $%04X\n", df.d.data, temp2); 
} 
 

Listing 5: Indexed with offset address mode handler 
 
To test this particular instruction, an assembly language program was written (see Listing 6 on 
the next page). This program loads registers R0 with data and R1 with an offset of eight, and 
then it calls the STAX instruction. The result is that 0x0002 is stored at address DATA + 8 (see 
Appendix D, Simulation 1 for the results of the simulation). 
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* STAX_test.ASM 
* By Casey T. Morrison 
* Purpose: To test the STAX instruction 
 
    NOLIST 
    INCLUDE "sweet16.mac" 
    LIST 
 
    ORG     $0000 
 
    LDI    R0,$0002 
 LDI    R1,$0008 
 STAX   R0,R1,DATA 
 GFO 
 
DATA: dc.w $1111 
 dc.w $2222 
 dc.w $3333 
 dc.w $4444 
 dc.w $5555 * Data + 8 
 
 END 

 

Listing 6: Test program for STAX method 
 
Testing procedures such as this one were employed for each instruction that was added to the 
simulator. This ensured that the simulator worked properly throughout the design process. 
 
 
 
System Design and Validation 
 
The system on which this lab focuses consists of three main parts or stages (see Figure 2 below).  
 

 
Figure 21: Sweet16 simulator system design 

 
The first stage begins with the creation of an assembly language program using the instruction 
set of the Sweet16 microprocessor. Designing this program is a crucial part of the entire process. 
An example of such an assembly language program is mulrom.asm shown on the next page (it 
may also be found in Appendix C, Program 1). This program utilizes the instructions available 
on the Sweet16 in order to accomplish unsigned 16x16 multiplication. 
 
                                                 
1 “Assemblers and Related Tools,” Dr. Michel A. Lynch, 
http://www.hcs.ufl.edu/~radlinsk/eel4713/mod/resource/view.php?id=10 
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Assembly language programs, like mulrom.asm, are then assembled using the A68K assembler 
which was adapted from the Motorola UPASM assembler. This second stage of the process 
requires the use of the sweet16.mac file in order to interpret the instruction mnemonics. In this 
file, several macros were defined to initialize memory based on the instructions contained in the 
.asm source file. The assembler also takes advantage of the different address modes built-in to 
the Sweet16 by using subroutines to make the code more reusable and functional. 
 

* MULROM.ASM - Program that calls and tests a 16 bit MULTIPLY subroutine 
*        Orged in ROM ($0000) 
* Subroutine UMUL - unsigned 16 X 16 multiplication 
*     * Multiplier is in R1, multiplicand is in R0 on entry 
*     * Product (32 bits) is returned with most significant half in R0 
*       and least significant half in R1. 
* Other registers used: R2 contains Multiplicand during the operation 
*                     : R3 contains the shift count 
* Author: Dr M Lynch, EEL 4713, 1/7/2003 
* Used by: Casey Morrison, EEL 4713, 1/15/04 
 
        NOLIST 
        INCLUDE "sweet16.mac" 
        LIST 
 
STACK   EQU     $100 
COUNT   EQU     16 
        ORG     $0000 
 
* Initialize Stack Pointer 
 LDI R2,STACK 
 LDSPR R2 
*       Test program to multiply two numbers in R0 and R1 
        LDI    R0,$FFFF 
        LDI    R1,$FFFF 
        CALL   UMUL 
        GFO 
 
*        Multiplication subroutine 
UMUL: 
        LDR    R2,R0    *Place multiplicand in R2 for duration of UMUL 
        LDI    R0,0     *Clear upper half of product area 
        LDI    R3,COUNT *Place shift count in R3 
        CLRC  *Clear carry flag 
UMUL1: 
        RORC    R0,1    *Rotate Product MSW right with LS bit into carry 
        RORC    R1,1    *Rotate Multiplier right with LS bit into carry 
        BCC     UMUL2   *Don't add Multiplicand if bit of multiplier is zero 
        ADDR    R0,R2   *Add multiplicand to MSW of Product - note carry out 
UMUL2: 
        LSUBI   R3,1    *Subtract one from shift count - note carry is not generated 
        BPL     UMUL1   *Go until shift count is equal zero 
        RET 
 
        END 
 

Listing 7: Mulrom.asm program 
 
Once the program is assembled, it is loaded into the test system in the form of a source (.s) file. 
The third stage, or Target System as it is referred to in Figure 2, consists of the Sweet16 
simulator mentioned earlier. This program takes .s files as input and produces text representing 
the response of the Sweet16 microprocessor to that input. 
 
For example, the test program mulrom.asm behaves in accordance with the flowchart in Figure 3 
when run on the modified simulator. It uses a series of rotates, sums, and loops in order to 
accomplish the multiplication of two 16-bit numbers. The simulator produces a text file when 
running mulrom.s (see Appendix D, Simulation 2 for the simulation results). As is noted in 
Appendix D, the simulation of mulrom.s resulted in the correct product value being stored in R0 
and R1. 
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Figure 3: Flowchart for mulrom.asm 

 
This assembly program was simplified with the creation of a UMUL macro that performed the 
16x16 unsigned multiplication (see Listing 8 below or Appendix C, Program 2 for the code). The 
macro basically inserts portions of the original code in place of the macro calls. With this macro 
definition, assembly programs may make use of unsigned multiplication simply by calling 
UMUL. Like mulrom.asm, this assembly program was simulated and shown to work (see 
Appendix D, Simulation 3 for the simulation results). 
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* MULROM_MACRO.ASM - Program that calls and tests a 16 bit MULTIPLY subroutine 
*              Orged in ROM ($0000) 
* Subroutine UMUL - unsigned 16 X 16 multiplication 
*     * Multiplier is in R1, multiplicand is in R0 on entry 
*     * Product (32 bits) is returned with most significant half in R0 
*       and least significant half in R1. 
* Other registers used: R2 contains Multiplicand during the operation 
*                     : R3 contains the shift count 
* Author: Dr M Lynch, EEL 4713, 1/7/2003 
* Edited by: Casey Morrison, EEL4713, 1/15/04 
 
 
        NOLIST 
        INCLUDE "sweet16.mac" 
        LIST 
 
STACK   EQU  $100 
        ORG  $0000 
 
* Initialize Stack Pointer 
 LDI R2,STACK 
 LDSPR R2 
 
* MACRO DEFINITION ****************************************************************** 
UMUL    macro \1,\2 
 
*       Test program to multiply two numbers in R0 and R1 
        LDI     R0,\1 
        LDI     R1,\2 
 
*        Multiplication subroutine 
        LDR     R2,R0   *Place multiplicand in R2 for duration of UMUL 
        LDI     R0,0    *Clear upper half of product area 
        LDI     R3,16   *Place shift count in R3 
        CLRC  *Clear carry flag 
UMUL1: 
        RORC    R0,1    *Rotate Product MSW right with LS bit into carry 
        RORC    R1,1    *Rotate Multiplier right with LS bit into carry 
        BCC     UMUL2   *Don't add Multiplicand if bit of multiplier is zero 
        ADDR    R0,R2   *Add multiplicand to MSW of Product - note carry out 
UMUL2: 
        LSUBI   R3,1    *Subtract one from shift count - note carry is not generated 
        BPL     UMUL1   *Go until shift count is equal zero 
     endm 
************************************************************************************* 
 
* UTILIZATION OF MACRO 
 UMUL $11,$42 
 GFO 
 

Listing 8: Mulrom equivalent macro 
 
The simulator was modified at length to include all the subroutines necessary to implement all of 
the instructions (see Appendix A, Program 1 for the complete C code). This simulator proved to 
execute the source files as desired. 
 
 
 
Conclusion 
 
A. Summary 
 
In this lab a system was designed to replicate the behavior of the Sweet16 microprocessor. 
Assembly language programs were assembled using a modified assembler that utilized macros to 
encode each instruction mnemonic into an instruction word(s). The resulting sequence of 
instruction words was virtually “loaded” into a memory (an array structure in C). The Sweet16 
simulator, sw16sim.c, then initiated the Fetch/Decode/Execute process to complete the desired 
program. This simulator was designed with functional units that enabled several instructions to 
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be implemented with minimal code. Whenever possible, subroutines were created to simplify the 
implementation of each individual instruction. In the end, a complete simulator was created that 
very nearly replicated the internal processes of the Sweet16 microprocessor. 
 
 
B. Questions 
 
1. On a listing segment of the file sw16sim.c, identify the important features specified in the 

Instruction Fetch/Decode/Execute Flowchart. 
 
The following portion of sw16sim.c demonstrates the important features of the 
Fetch/Decode/Execute cycle of this simulator. 

 
for (i=0; i<MAXREPS; i++) /* run the main simulation loop MAXREPS times */ 
   { 
      printf("Instruction Cycle Number: %d\n",i); 
      printf("\n PC = %04X: ",*pc); 
 
      ir.db.upper_byte = mem[*pc]; incPC; 
      ir.db.lower_byte = mem[*pc]; incPC; 
      printf("upper_byte: %02X, lower_byte: %02X,",ir.db.upper_byte,   
             ir.db.lower_byte); 
      printf("  opcode: %02X, %s, r1: %01X, r2: %01X\n",ir.instr.opcode,   
             opmnem[(int)ir.instr.opcode], ir.instr.r1, ir.instr.r2);  
 
      switch((int)ir.instr.opcode){ 
// 16-bit Integer Data Type - Basic Instruction Set 
// Load  
 case LDR:     // RR address mode 
    reg_reg(); 
    load(); 
 break; 
 

Listing 9: Fetch/Decode/Execute cycle of the Sweet16 simulator 
 
2. Account for the variation in coding needed to accommodate the “Little-Endian” host as 

compared to the version of sw16sim.c, which was prepared for a “Big- Endian” host. 
 
 The adjustments that need to be made in order to accommodate for a Little-Endian host 

computer as opposed to a Big-Endian host are associated with the definition of structures. In 
the sweet16_le_host.h file the “word” structure is defined to be the combination of a “lower 
byte” and an “upper byte.” In sweet16_be_host.h, however, a “word” is the combination of 
an “upper byte” and a “lower byte,” in that order. This semantic difference simply accounts 
for the Endian-ness of the host machine on which the simulator will run. 

 
3. Where are the values for the symbolic labels used in each case statement initialized? Give 

the actual locations of the definition and an example. 
 

The values for the symbolic labels used in each case statement within sw16sim.c are 
initialized in the sweet16_le_host.h and sweet16_be_host.h files. For example, the Branch 
PC-Relative Instructions are defined as shown in Listing 10 in the aforementioned files. 
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Decode 

Obtain operands 

Execute instruction 
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//   Define the Branch PC-Relative Instructions 
//    EA = PC + Sign_Extended_offset 
//    Bcc Offset, if f{cc} then EA --> PC + offset 
#define B       0x13 
#define CALL    0x14 
#define JMP     0x15 
#define CALLX   0x16 
#define JMPX    0x17 
#define STA     0x18 
#define STAX    0x19 
#define LAA     0x1A 
#define LAX     0x1B 
 

Listing 10: Symbol definitions 
 
4. Is the statement “incPC” a function? If not, what is it? Where and what is its definition? 

What does it accomplish? 
 

The keyword incPC used throughout sw16sim.c is a macro, rather than a function, that is 
defined in the sweet16_le_host.h and sweet16_be_host.h files (see Listing 11). This macro 
serves to increment the Program Counter (PC) so that it points to the next data byte. 

 
/* C Macros              */ 
  
#define incPC *pc = (unsigned) WORD_MASK & ((*pc) + 1) 
#define incSP *sp = (unsigned) WORD_MASK & ((*sp) + 1) 
#define decSP *sp = (unsigned) WORD_MASK & ((*sp) - 1) 
 

Listing 11: Macro definition of incPC, incSP, and decSP 
 
5. Describe how the union of structures was used to give direct addressing to the register bit-

field in an instruction, while the data that was moved was transferred as upper and lower 
bytes on the data bus. 

 
The sweet16_le_host.h and sweet16_be_host.h files employ a Union of Structures in order to 
be able to access the data retrieved from memory in different ways. The inst_flow and 
data_flow Unions allow 16-bit chunks of data to be accessed in 16-, 8- and 4-bit chunks 
when appropriate. This is to accommodate for the need to access 16-bit data, 8-bit opcodes, 
and 4-bit register fields. By combining same-length, variably-partitioned structures (like the 
word, inst_reg, and databus) into one Union, this goal was accomplished. 

 
 
 
 
6. The Branch on Condition and conditional call and return instructions use the function 

eval_cc() to determine the success of a condition. What is the numeric value of the symbol 
“CC” in that function? What is returned for the “CC” condition if the flag vector was 
{1,1,0,1}? What type of number was the programmer using when he interpreted the flags 
using the “LT” condition? What is returned for the “LT” condition if the flag vector was 
{1,1,0,1}? 

 
The symbol “CC” used in eval_cc() function evaluates to 0x0 as defined in the 
sweet16_le_host.h and sweet16_be_host.h files. If the flag vector passed to this function was 
{1,1,0,1}, then the return for the “CC” condition would be False or 0. When using the “LT” 
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or “less than” condition, the programmer is explicitly dealing with signed numbers. If the 
flag vector passed to this function was {1,1,0,1}, then the return for the “LT” condition 
would be False or 0. 

 
7. If the number of instructions in the source program for the first and second versions of 

mulrom.asm were compared, i.e., UMUL subroutine versus UMUL macro, which has the 
most instructions? Use sections of the listing files to support your answer. 

 
The mulrom_macro.asm program has two fewer instructions (15 compared to 17) than the 
mulrom.asm program. This is because mulrom.asm includes a “CALL” and a “RET” 
instruction that mulrom_macro.asm does not require, for it uses a macro definition instead of 
a subroutine call. Listings 7 and 8 show the code for both programs. 

 
8. At this time you have a running “computer” in the form of the program sw16sim.c. Compare 

the cost of this solution with that of a “hardware” implementation. What positive 
contributions does the “hardware” implementation make? 

 
The sw16sim.c implementation of the Sweet16 microprocessor has its advantages and 
disadvantages over the actual hardware implementation. One major advantage is the 
flexibility of this software implementation. Instructions may be added, altered, or deleted 
with very little time and effort. Altering the hardware implementation would be significantly 
more costly because it is not as simple as a software upgrade. In fact, It might even involve 
making entirely new Printed Circuit (PC) boards. However, a single hardware 
implementation would cost considerably less than the computer required to execute the 
sw16sim.c program and the UPASM assembler. 
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Introduction 
 
The purpose of this lab was to build and test a VHDL structural model of a Register Arithmetic-
Logic Unit (RALU). This unit will be used as the heart of the internal architecture of the 
Complex Instruction Set Computer (CISC). Furthermore, many of the components of the RALU 
will be utilized in the Reduced Instruction Set Computer (RISC). 
 
As opposed to a typical Arithmetic-Logic Unit, the RALU has the added feature of a register 
array. This allows the data calculated by the ALU to be stored into one of 20 registers. In 
addition, the RALU was specifically designed to be able to implement the Sweet16 Instruction 
Set Architecture (ISA). Therefore the RALU has the ability to calculate branch target addresses, 
data shifts, arithmetic/logic operations, etc. 
 
The main design platform for the RALU and its internal components was the Altera Max+Plus II 
VHDL editor. This allowed each component to be designed individually and then combined into 
a VHDL package. This type of compartmentalized design replicated the provided schematic 
drawings and simplified the design of the entire system. 
 
 
 
Component Design and Validation 
 
The individual components of the RALU were designed separately in VHDL. These components 
include multiplexers, registers, shifters, a register array, and an Arithmetic-Logic Unit. 
 
 
A. 20x16 Register Array 
 
One of the important features of the RALU is that it can store the results of its various 
calculations. Data is stored in one of the 16 General-Purpose Registers (GPRs) or in one of the 
four additional registers (i.e. the status flag register). This feature is realized in the 20x16 
Register Array appropriately named reg_array_20x16.vhd (see Appendix B, Component 1 for 
the complete VHDL code for this component). 
 
The main structure of this component is simple. There are three address inputs, one to address 
the first “data register,” one to address the second “data register,” and one to address the “write 
register.” The two “data registers” supply the ALU with the data it needs to make meaningful 
calculations. The “write register” is the location to which the result of the ALU calculation will 
be stored. It is worth mentioning, however, that not all instructions require two “data registers,” 
and not all ALU calculations are meant to be stored in a “write register.” 
 
Another feature of this unit is its ability to deal with both word-size and byte-size data. The input 
WnB stands for “word, not byte” and indicates how the data should be treated—as a 16-bit word 
or as an 8-bit byte. Figure 1 on the next page shows the Max+Plus II graphical representation of 
reg_array_20x16.vhd. 
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Figure 1: Register Array 

 
 
B. 16-Bit Arithmetic-Logic Unit (ALU) 
 
Arguably the most important part of the RALU is the Arithmetic-Logic Unit (ALU). This 
component performs all of the arithmetic and logical calculations that are necessary for 
executing the Sweet16 instructions. In addition to calculating various operations, this unit also 
generates the carry and overflow flags for the RALU (see Appendix B, Component 2 for the 
complete VHDL code for this component). The functions that this ALU performs are varied and 
diverse. Figure 2 lists the functions which were implemented in the ALU_16a.vhd. 
 

Function Select 
(FSel) 

Iterate 
(i1) 

Iterate 
(i0) Function 

0 X X Add inputs A and B with Carry In; F = A plus B plus Cin 
1 X X Add input B to Carry In; F = B plus Cin 
2 X X Subtract input B from A with Borrow; F = A plus (not B) plus Cin 
3 X X Subtract input A from B with Borrow; F = (not A) plus B plus Cin 
4 X X F = A and B 
5 X X F = A or B 
6 X X F = A xor B 
7 X X F = not A 
8 X X F = A minus 1 plus Cin (F = A plus 0xFFFF plus Cin) 
9 X X F = B minus 1 plus Cin (F = B plus 0xFFFF plus Cin) 
A 0 X unsigned multiply iterate, F = B 
A 1 X unsigned multiply iterate, F = A plus B 
B 0 X signed multiply iterate, F = B 
B 1 X signed multiply iterate, F = A plus B 
C 0 X signed multiply terminate, F = B 
C 1 X signed multiply terminate, F = B minus A (F=B plus (not A) plus 1) 
D X 0 Nonrestoring divide, F = A plus B 
D X 1 Nonrestoring divide, F = B minus A (F = (not A) plus B plus 1) 
E X X F = 0 for later expansion 
F X X F = 0 for later expansion 

Figure 2: ALU function map 
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As is shown in Figure 2, this component was left open for expansion. If, along the process of 
designing a CISC or RISC architecture, we discover that additional types of computations are 
necessary, then they may be added into this design relatively easily. The Max+Plus II graphical 
representation of this unit is shown below in Figure 3. 
 

 
Figure 3: Sweet16 ALU 

 
As shown in Figure 3, this component requires two 16-bit inputs—the inputs on which it 
performs calculations. The resulting 16-bit output is some combination of the two 16-bit inputs 
and the 4-bit function select (along with a few other input signals). 
 
 
C. Shifters 
 
To handle the shift and rotate instructions (and eventually the multiply and divide instructions as 
well), shifting units were added to the output of the ALU. These components were designed in 
VHDL, and their Max+Plus II graphical representation are shown below in Figure 4 (see 
Appendix B, Components 3 and 4 for the VHDL code for the ALU_shifter_16 and the 
Ext_shifter_16, respectively). 
 

 
Figure 4: Two Sweet16 shifters 

 
It is worthwhile to note that these units are responsible for generating the sign and zero flags. 
Since each of these flags can be altered as a result of a shift/rotate, and since every output of the 
ALU must pass through the shifters (even if no shifting is taking place), it is advantageous to 
have the shifter units generate these flags rather than the ALU. 
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D. Multiplexers 
 
Various multiplexers (otherwise known as selectors) were utilized in designing the RALU. The 
main difference between these multiplexers is the size of their inputs/outputs and the number of 
inputs they have. Figure 5 below shows the Max+Plus II graphical representation of the 
multiplexers used in the RALU implementation. 
 

 
Figure 5: RALU multiplexers 

 
The VHDL code for the MUX2_8, MUX2_16, and MUX4_16 components can be found in 
Appendix B (Components 5, 6, and 7, respectively). 
 
 
 
System Design and Validation 
 
The functional units discussed in the previous section were combined into one VHDL design to 
form the RALU_16 (see Appendix F, Specification Sheet 1 for a description of this component). 
The components of the RALU_16 were assembled and interconnected according to the schematic 
drawing in Figure 6 on the next page. 
 
It is clear, from Figure 6, that the inputs to this system are numerous. The majority of the inputs 
are control signals that come from the Sweet16 controller—a unit that will be constructed in a 
later lab. The outputs of the system include the flags and the output data, among other signals. 
See Appendix B, Component 8 for the VHDL code for the RALU_16. 
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Figure 6: RALU schematic 
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One of the most important features of the RALU_16 is the ALU input selector mux (component 
U3 in Figure 6). This multiplexer allows branch target addresses to be computed. It also allows 
immediate data (both short and long) to be used in calculations. Finally, it can also select register 
data to be used in calculations. This expands the versatility of the ALU and of the RALU_16.  
 
Once assembled in VHDL, this design was functionally compiled and simulated to verify the 
accuracy of its design. All of the ALU_16s functions were tested along with the shifting/rotating 
capabilities of the RALU_16. Of particular interest was the response of the flag outputs to various 
arithmetic/logical operations. Upon close examination of the simulation results (see Appendix E, 
Waveform Simulation 1), it was determined that the RALU_16 behaved as designed. 
 
 
 
Conclusion 
 
A. Summary 
 
The system designed in this lab is the computational heart of the Sweet16 microprocessor. All 
arithmetic and logical calculations embedded within the Sweet16 ISA are performed by this unit. 
Its design lends itself to the complex instruction set around which the Sweet16 was developed. 
Combining a register array with an Arithmetic-Logic Unit (ALU) enables the RALU_16 to fulfill 
the data manipulation requirements of the ISA which it implements. 
 
Designing this system in discrete functional units instead of a single, comprehensive unit allowed 
for a more versatile and understandable system. Furthermore, this system may be altered in order 
to add/remove functionality where necessary. 
 
 
B. Questions 
 
1. Argue from the architecture presented in Fig. 1 that the following operation can be 

performed in a single clock cycle: 
 
Reg_Array[R5] = (Reg_Array[R5] plus Reg_Array[R1] plus Cin) / 2 (Instruction 1) 
 
Notice the divide by 2. You should suggest connections that will help preserve the sign of 
a 2’s complement number for the division. Also suggest which component(s) do what, 
along with the values needed for any “select” lines. The above operation should be tried 
using unsigned numbers by preparing and running a sequence of test vectors described in 
a waveform file. Do it. You will need to “load” R5 and R1 from the D_IN port before 
you do the actual test. 
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This operation can be accomplished in one clock cycle with the following control signals: 
 

Signal Binary 
Value Explanation 

WnB 1 Treat data as a 16-bit word, not an 8-bit byte 
A_ADDR[4..0] 0 0101 Read data from register five 
B_ADDR[4..0] 0 0001 Read data from register one 
C_ADDR[4..0] 0 0101 Write result to register five 
RSEL[1..0] 11 Select register data for ALU input A 
FSEL[3..0] 0000 Perform: F = A + B + Cin 
F_SHFT_SEL[1..0] 010 Shift the sum right in order to divide by two 
FSI F_OUT[15] Preserve the sign of the number when dividing (shift right) 
SSEL 0 Select the data from the shift bus to be written to the register array 
WE 1 Allow data to be written to the register addressed by C_ADDR 

Figure 7: Control signals required to accomplish Instruction 1. 
 

This operation was simulated using the control signals in Figure 7. The results of the 
simulation, shown in Figure 8 below, prove that this operation can be performed in one clock 
cycle. 

 

 
Figure 8: Simulation of Instruction 1 

 
 
2. So, now you’ve got a good part of a microprocessor in your hands. What’s its clock 

speed? If you don’t know, what sort of information would you need to determine the 
clock speed? Propose a test to determine the clock speed at which your microprocessor 
should run. 

 

($1234 + $5678)/2 = $3456
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 In order to determine the clock speed for this microprocessor, a timing analysis must be 
performed. The clock speed must not be faster than the slowest delay through the RALU 
(likely the slowest component of the microprocessor). To conduct this analysis, the RALU_16 
component must be compiled using the Timing SNF Extractor so as to account for internal 
propagation delays. When compiling this way, the compiler will include the propagation 
delays inherent in a specific target device of your choosing. Once compiled, a Timing 
Analysis can be performed that will list the worst-case delay through each path on the circuit. 
The clock period must be greater than the longest delay. Thus the clock frequency must be 
the inverse of the longest time delay through the circuit. This will prevent the possibility of 
data being clocked at a rate faster than the time it takes for the data to stabilize. 
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Introduction 
 
The purpose of this lab was to design and assemble the complete Sweet16 Central Processing 
Unit (CPU). This CISC architecture was built in VHDL in three distinct portions, the internal 
architecture, the Sweet16 controller, and the auxiliary components. The internal architecture 
contains the RALU_16 designed in an earlier lab together with some “glue logic” that enables the 
interface with the controller. The Sweet16 controller consists of the upcont_56 
Microprogrammed Controller constructed earlier along with an Instruction Register and a 
MapROM. Finally, the auxiliary components comprises are comprised of the I/O interface buffer 
as well as the Memory Address Register (MAR). 
 
These three components combined form a fully functioning CPU. Once this is complete, the only 
modifications that need to be made are concerning the microprogram that resides in the 
Microprogram Memory. Once the proper microprogram is installed, one that fully describes and 
implements the Sweet16 instruction set, the final addition will be an external architecture that 
contains memory and I/O ports. 
 
 
 
Component Design and Validation 
 
As mentioned in the introduction, the Sweet16 CPU consists of the internal architecture, the 
Sweet16 controller, and the auxiliary components. Each of these components was assembled 
using Max+Plus II’s Graphic Editor. 
 
 
A. Internal Architecture 
 
The Sweet16 internal architecture consists of the 16-bit Register Arithmetic-Logic Unit 
(RALU_16) designed in Lab 1 (see Appendix F, Specification Sheet 1 for a description of this 
component). To properly interface this unit with the 42 control signals generated by the Sweet16 
controller, some “glue logic” was added to the perimeter. The internal architecture was designed 
based on the schematic drawing shown in Figure 1 (see Appendix F, Specification Sheet 3 for a 
description of this component). 
 
The most interesting feature of the internal architecture is the register selection scheme. It is 
important to notice that the destination register is the same as the first source register. This 
corresponds with the convention that only two registers are specified in any given instruction. 
These two registers are the source registers, one of which also serves as the destination register. 
By virtue of multiplexers U2 and U3, the source and destination registers may be determined by 
the register fields of the instruction or by the Sweet16 controller itself. In addition, this feature 
makes accommodations for 32-bit operations by isolating the least significant bit (LSB) of the 
register address from the other bits. This will allow the controller to toggle the LSB in order to 
perform computation on 32-bit numbers stored in two adjacent registers. 
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Figure 12: Internal Architecture 

 
The internal architecture design also makes it possible to select the carry input to the RALU_16. 
This is useful for incrementing register values, for passing register contents to the data bus, for 
subtraction, and for various other arithmetic processes. The shifting scheme also employs the use 
of multiplexers. This is to allow for various operations including rotation, multiplication, 
division, and of course shifting. 
 
The schematic drawing in Figure 1 was implemented in Max+Plus II’s Graphic Editor. The 
resulting Graphic Design File, sw16intarch.gdf, is shown in Figures 2a and 2b on the next two 
pages. 
 

                                                 
2 http://www.hcs.ufl.edu/~radlinsk/eel4713 

0 

0 
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Figure 2a: Graphic design of the Internal Architecture 
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Figure 2b: Graphic design of the Internal Architecture 

 
Once functionally compiled, this design was simulated for appropriate test vectors to verify the 
accuracy of its design. See Appendix E, Waveform Simulation 5 for the complete and annotated 
results of this simulation. Upon close examination of the simulation results, it was determined 
that this component performed as desired. 
 
 
B. Sweet16 Controller 
 
The Sweet16 controller consists of the upcont designed in Lab 2, the Microprogram Memory, the 
Pipeline Register, the MapROM, and the Instruction Register (IR). These components were 
combined according to the schematic drawing in Figure 3 on the next page (see Appendix F, 
Specification Sheet 4 for a description of the Sweet16 controller). The main component in this 
controller is the upcont unit (see Appendix F, Specification Sheet 2 for a complete description of 
this component). This unit controls the sequence of microinstructions to be executed throughout 
the Sweet16 CPU. It does so my determining the appropriate address sequence for the 
Microprogram Memory, which in turn generates the control signals for the Sweet16 CPU. 
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Figure 33: Sweet16 controller 

 
The IR contains the opcode and operands for the current Sweet16 instruction. This information is 
utilized by the MapROM to determine the starting address for each sequence of 
microinstructions. The upcont is then in charge of “stepping through” that sequence of 
microinstructions in the proper order so as to execute the intended Sweet16 instruction. An ir_ld 
signal was added to the upcont unit to control when the IR would load a new instruction from the 
data bus. This signal was issued every time a sequence of microprograms neared completion. 
Thus, a new Sweet16 instruction was loaded into the IR after the previous instruction was fully 
executed. 
 

                                                 
3 http://www.hcs.ufl.edu/~radlinsk/eel4713 
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The schematic drawing in Figure 3 was implemented in Max+Plus II’s Graphic Editor. The 
resulting Graphic Design File, sw16cont.gdf, is shown in Figures 4a and 4b below. 
 

 
Figure 4a: Graphic design of the Sweet16 controller 

 

 
Figure 4b: Graphic design of the Sweet16 controller 
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Once functionally compiled, this design was simulated for appropriate test vectors to verify the 
accuracy of its design. See Appendix E, Waveform Simulation 6 for the complete and annotated 
results of this simulation. Upon close examination of the simulation results, it was determined 
that this component performed as desired. 
 
 
C. Auxiliary components 
 
The auxiliary components of the Sweet16 CPU consist of an Input/Output buffer and a Memory 
Address Register (MAR). The former allows the external data bus to be bidirectional, while 
avoiding unwanted data collisions at the same time. This buffer is controlled by the controller 
and facilitates the flow of data in and out of the Sweet16 CPU. 
 
The MAR is a register that stores a pointer to main memory. The address in the MAR can point 
to either an instruction or data. The contents of the memory location pointed to by the MAR 
would be transmitted to the Sweet16 CPU via the aforementioned bidirectional data bus. 
 
Ideally other devices would interface with the I/O buffer such as an input or output port. Such 
additions may, however, come with the cost of added control signals. 
 
The auxiliary components were implemented in Max+Plus II’s Graphic Editor. Figure 5 below 
shows the graphical representation of this design. 
 

 
Figure 5: Graphical design of auxiliary components 
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System Design and Validation 
 
The individual components of the Sweet16 CPU were combined into one graphical design. 
Figure 6 shows the resulting design in Max+Plus II’s Graphic Design editor (see Appendix F, 
Specification Sheet 5 for a complete description of this design). 
 

 
Figure 6: Sweet16 CPU 

 
 
A. System Test 
 
The operation of this system was tested with a rudimentary microprogram called usw16.asm (see 
Appendix C, Program 6 for the abbreviated assembly code). This assembly program acts as the 
microprogram memory initialization file. It provides an uncompleted set of subroutines that are 
used to execute Sweet16 instructions. The usw16.asm file was assembled with UPASM and 
converted into a memory initialization file (.mif) with the s2mif56 tool. The resulting usw16.mif 
file was loaded into the Microprogram Memory. 
 
In addition to initializing the Microprogram Memory, the MapROM also needed to be initialized. 
The maprom.mif file that was provided was used to initialize the MapROM. This file allows the 
MapROM to interpret the opcode of the current Sweet16 instruction and direct the controller to 
the appropriate location in the Microprogram Memory. 
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Using the mcsw16 tool provided for this lab, the usw16.s file was converted into a human-
readable form. A portion of the resulting conversion is shown in Listing 1 below. 
 
 

                                              F   Q               
                                              _   _       D       
                                              s   s     F b       
                    B A  P B  P               h F h Q   m _       
                    r m  l m  l               f s f s   u d M R W 
               u C  _ u  _ u  _             C t i t i S x v a d r 
               I C  A x  r x  r S     R D F n _ _ _ _ r _ r r _ _ 
               n s  d s  e s  e s   W s s s s s s s s _ s _ _ s s 
               s e  d e  g e  g e W n e e e e e e e e w e e l t t 
               t l  r l  a l  b l e B l l l l l l l l r l n d r r 
                                                                 
State Address +-+-+--+-+--+-+--+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
000    000    |1|0|00|0|11|0|11|0|1|1|3|0|6|0|0|0|0|0|0|0|0|0|0|0| 
001    001    |8|0|02|0|11|0|11|0|1|1|3|0|1|1|0|0|0|0|0|0|0|1|0|0| 
002    002    |9|0|02|0|00|0|00|0|0|1|3|0|8|0|0|0|0|0|0|0|0|0|1|0| 
003    003    |F|0|00|0|11|0|11|0|1|1|3|0|1|1|0|0|0|0|0|0|0|0|1|0| 
004    004    |1|0|00|0|11|0|11|0|1|1|3|0|1|1|0|0|0|0|0|0|0|1|0|0| 
005    005    |1|0|00|0|11|0|11|0|1|1|3|0|1|1|0|0|0|0|0|0|0|0|1|0| 
006    006    |6|0|00|0|00|0|00|0|0|1|3|0|8|0|0|0|0|0|0|0|0|0|1|0| 
007    007    |1|0|00|0|00|0|00|0|0|1|3|0|8|0|0|0|0|0|0|0|0|0|0|0| 
008    008    |1|0|00|0|00|0|00|0|0|1|3|0|8|0|0|0|0|0|0|0|0|0|0|0| 
009    009    |1|0|00|0|00|0|00|0|0|1|3|0|8|0|0|0|0|0|0|0|0|0|0|0| 
00A    00A    |1|0|00|0|00|0|00|0|0|1|3|0|8|0|0|0|0|0|0|0|0|0|0|0| 
00B    00B    |1|0|00|0|00|0|00|0|0|1|3|0|8|0|0|0|0|0|0|0|0|0|0|0| 
00C    00C    |6|0|00|0|00|0|00|0|0|1|3|0|8|0|0|0|0|0|0|0|0|0|1|0| 
020    020    |2|0|01|0|00|0|00|0|0|1|3|0|8|0|0|0|0|0|0|0|0|0|0|0| 
021    021    |2|0|01|0|00|0|00|0|0|1|3|0|8|0|0|0|0|0|0|0|0|0|0|0| 
022    022    |2|0|01|0|00|0|00|0|0|1|3|0|8|0|0|0|0|0|0|0|0|0|0|0| 
023    023    |2|0|01|0|00|0|00|0|0|1|3|0|8|0|0|0|0|0|0|0|0|0|0|0| 
024    024    |2|0|01|0|00|0|00|0|0|1|3|0|8|0|0|0|0|0|0|0|0|0|0|0| 
025    025    |2|0|01|0|00|0|00|0|0|1|3|0|8|0|0|0|0|0|0|0|0|0|0|0| 
026    026    |1|0|00|0|00|0|00|0|0|1|3|0|8|0|0|0|0|0|0|0|0|0|0|0| 
027    027    |1|0|00|0|00|0|00|0|0|1|3|0|8|0|0|0|0|0|0|0|0|0|0|0| 
028    028    |1|0|00|0|00|0|00|0|0|1|3|0|8|0|0|0|0|0|0|0|0|0|0|0| 
029    029    |2|0|01|0|00|0|00|0|0|1|3|0|8|0|0|0|0|0|0|0|0|0|0|0| 
02A    02A    |1|0|00|0|00|0|00|0|0|1|3|0|8|0|0|0|0|0|0|0|0|0|0|0| 
02B    02B    |1|0|00|0|00|0|00|0|0|1|3|0|8|0|0|0|0|0|0|0|0|0|0|0| 
02C    02C    |1|0|00|0|00|0|00|0|0|1|3|0|8|0|0|0|0|0|0|0|0|0|0|0| 
02D    02D    |2|0|01|0|00|0|00|0|0|1|3|0|8|0|0|0|0|0|0|0|0|0|0|0| 
02E    02E    |1|0|00|0|00|0|00|0|0|1|3|0|8|0|0|0|0|0|0|0|0|0|0|0| 
02F    02F    |1|0|00|0|00|0|00|0|0|1|3|0|8|0|0|0|0|0|0|0|0|0|0|0| 
030    030    |2|0|01|0|00|0|00|0|0|1|3|0|8|0|0|0|0|0|0|0|0|0|0|0| 
031    031    |1|0|00|0|00|0|00|0|0|1|3|0|8|0|0|0|0|0|0|0|0|0|0|0| 
032    032    |1|0|00|0|00|0|00|0|0|1|3|0|8|0|0|0|0|0|0|0|0|0|0|0| 
033    033    |2|0|01|0|00|0|00|0|0|1|3|0|8|0|0|0|0|0|0|0|0|0|0|0| 
034    034    |1|0|00|0|00|0|00|0|0|1|3|0|8|0|0|0|0|0|0|0|0|0|0|0| 
035    035    |1|0|00|0|00|0|00|0|0|1|3|0|8|0|0|0|0|0|0|0|0|0|0|0| 
036    036    |2|0|01|0|00|0|00|0|0|1|3|0|8|0|0|0|0|0|0|0|0|0|0|0| 
037    037    |1|0|00|0|00|0|00|0|0|1|3|0|8|0|0|0|0|0|0|0|0|0|0|0| 
038    038    |1|0|00|0|00|0|00|0|0|1|3|0|8|0|0|0|0|0|0|0|0|0|0|0| 
039    039    |2|0|01|0|00|0|00|0|0|1|3|0|8|0|0|0|0|0|0|0|0|0|0|0| 
03A    03A    |1|0|00|0|00|0|00|0|0|1|3|0|8|0|0|0|0|0|0|0|0|0|0|0| 
03B    03B    |1|0|00|0|00|0|00|0|0|1|3|0|8|0|0|0|0|0|0|0|0|0|0|0| 
03C    03C    |2|0|01|0|00|0|00|0|0|1|3|0|8|0|0|0|0|0|0|0|0|0|0|0| 
03D    03D    |1|0|00|0|00|0|00|0|0|1|3|0|8|0|0|0|0|0|0|0|0|0|0|0| 
03E    03E    |1|0|00|0|00|0|00|0|0|1|3|0|8|0|0|0|0|0|0|0|0|0|0|0| 
03F    03F    |2|0|01|0|00|0|00|0|0|1|3|0|8|0|0|0|0|0|0|0|0|0|0|0| 
040    040    |1|0|00|0|00|0|00|0|0|1|3|0|8|0|0|0|0|0|0|0|0|0|0|0| 
 

Listing 1: usw16.mc file output 
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The control signals in Listing 1 make up the 42-bit wide command bus. The structure of this bus 
is shown in Figure 7 below. 
 
41 40 39 35 34 33 32 28 27 26 25 24 23 22 21 18 17 16 

AMUXSEL PL_REGA BMUXSEL PL_REGB SSEL WE WnB RSEL DSEL FSEL CNSEL 

           
15 14 13 12 11 10 9 8 7 5  

F_SHFT_SEL FSI_SEL Q_SHFT_SEL QSI_SEL SR_WR 
      

           
4 3 2 1 0       

FMUXSEL DB_DVR_EN MAR_LD RD_STR WR_STR 
      

Figure 7: Command bus structure 
 
With the two memory devices initialized with the appropriate Memory Initialization Files, the 
complete system was tested in a Waveform Simulation. The operation of the Sweet16 CPU was 
monitored for the input of a specific instruction: LDR R3, R4. This arbitrary instruction allowed 
the resulting command signals to be verified for correctness. The result of this simulation is 
shown in Appendix E, Waveform Simulation 7. It clearly depicts the instruction fetch sequence 
implemented in the Microprogram Memory. Many steps are involved in this process. The 
contents of the Program Counter must be placed in the MAR. During the subsequent clock 
cycles, the contents of memory as indexed by the MAR are placed on the data bus. During this 
waiting period, the program counter is twice incremented to point to the next instruction- or data-
word. Once the memory releases its data, the Instruction register is loaded with the current 
instruction, and instruction execution follows. This process was demonstrated in the waveform 
simulation of sw16cpu.gdf. 
 
 
 
Conclusion 
 
A. Summary 
 
The system designed in this lab represents the complete Sweet16 CPU. It combined the internal 
architecture, controller, and auxiliary components to form a fully functioning microprocessor. 
The only modifications that need to be made are concerning the Microprogram Memory. Once a 
more complete Memory Initialization File is developed, this design will be able to execute the 
entire Sweet16 instruction set. 
 
Further additions to this design will include an external architecture. This will include main 
memory wherein a program may be loaded for the Sweet16 to execute. In addition to a main 
memory, it may be desirable to add an input or output port. All of these devices in the external 
architecture will have to be mapped in the 16-bit, 64 kiloByte memory space. 
 
 
 
 



Page 33 of 69 Sweet16 CISC Processor Casey T. Morrison 

B. Questions 
 

1. In which clock cycles (of the first 6) was the ISP’s PC incremented? 
  
 The Program Counter (PC) was incremented in the second and sixth clock cycles. 
 
2. Why was the ISP’s PC incremented twice? Could we have added two to it in a single 

cycle? Be sure to account for extra hardware needed. Did the technique used cost any 
time? 

  
 The ISP’s PC was incremented twice because this CPU deals with 16-bit words, whereas 

the memory is structured in 8-bit bytes. Thus the PC must increment/decrement in 
intervals of two to point to the appropriate word-aligned address. 

 
 It would require additional hardware to increment the PC by two in one clock cycle. For 

example, this could be accomplished by expanding the ALU input mux to contain a hard-
coded input of two (or one if the carry-input is going to be used in conjunction). This 
could also be accomplished by adding a new register to the register array—one that 
contains a hard-coded two. The ladder of the two would cost less in terms additional 
hardware. 

 
 The technique currently in place does not cost additional time, for this time is spend 

waiting for memory to place its data onto the data bus. Thus the time it takes to increment 
the PC is essentially “free time.” 

 
3. What are the units of address in the ISP? Does this change because we have a 16-bit data 

bus for Sweet16? 
 

The units of address in the ISP are 16-bit words. Because we have a 16-bit data bus, we 
must address 16-bit words in memory. 
 

4. Why were there so many cycles used to access external memory during the instruction 
fetch sequence? 

 
The large number of cycles used to access external memory during the instruction fetch 
can be attributed to the slow nature of external memory. It takes several cycles for the 
memory to place its data onto the bus, so the processor must wait until it is sure the data 
is ready to be latched. 
 

5. Describe, with the help of the proper logic diagrams, the path that the ISP’s opcode 
follows to become the address of the microinstruction that implements the opcode. Use 
the LDR R3,R4 example suggested above. 

 
What is the address of the first microinstruction in the “LDR” execution sequence in the 
microprogram? This number can actually be seen in the CPU simulation on the up_addr 
bus (one of the test data buses used to observe the CPU). 
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Refer to Figure 3 for the Sweet16 controller schematic. The instruction from main 
memory is placed onto the data bus, and the opcode portion is received by the MapROM. 
The MapROM, in turn, generates a microprogram address corresponding to the 
microcode needed to execute the given opcode. The Next Address Logic unit then selects 
the MapROM data as the next address for the Microprogram Memory. 
 
For example, if the Sweet16 instruction were LDR R3, R4, then the opcode for this 
instruction would be 0x2B. The contents of the MapROM at address 0x2B is 0x6F 
(according to maprom.mif). Thus the location of the microcode associated with the LDR 
instruction is at Microprogram Memory address 0x6F. 
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Introduction 
 
The purpose of this lab was to design and assemble the Sweet16 External Architecture. This 
architecture consists of five components: a 1k x 16 ROM, a 1k x 16 RAM, an input port, an 
output port, and a Memory Decoder. The two memory devices are used to store the program and 
data for the Sweet16 microprocessor. The two ports allow data to flow in and out of the Sweet16 
microprocessor. Finally, the Memory Decoder is a combinatorial logic circuit that generates the 
control signals for the memory and I/O devices 
 
One important factor in designing this external architecture was the necessity to prevent data 
collisions on shared busses. With the use of strictly monitored control signals as well as tri-state 
buffers, unwanted data collisions were prevented. Another interesting aspect of this design is the 
accommodations that were made to allow the architecture to incorporate 8-bit operations in the 
future. 
 
 
 
Component Design and Validation 
 
As mentioned in the introduction, the Sweet16 External Architecture consists of five 
components: a 1k x 16 ROM, a 1k x 16 RAM, an input port, an output port, and a Memory 
Decoder. 
 
 
A. 1k x 16 ROM 
 
The Read Only Memory (ROM) utilized in the Sweet16 memory map is 1 kilo-byte large and 16 
bits wide. This is accomplished with the use of two 1k x 8 ROMs. As will be discussed later, one 
ROM will contain the least-significant 8 bits of data, and the other will contain the most-
significant 8 bits of data (see Appendix F, Specification Sheet 6 for a description of rom_1kx8). 
 
The 1k x 8 ROM component was designed graphically in Max+Plus II (see Figure 1 below). The 
memory component was chosen from the mega_lpm library. 
 

 
Figure 1: 1k x 8 ROM 
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This component was compiled and simulated for the test program mulrom.asm. The results of the 
simulation, shown below in Figure 2, illustrate the fact that each ROM will contribute one byte 
to the overall data word. This simulation is for the ROM_High, and thus it contains the most 
significant byte for each data word in mulrom.asm. 
 

 
Figure 2: ROM simulation 

 
Listing 1 below verifies the contents of this ROM. It represents the most significant byte for each 
data word in mulrom.asm (see Appendix C, Program 1 for the code for mulrom.asm). 
 

% Output produced from S-record by s2mif0 % 
% This file should be used with the ROM selected % 
%  by an even address, i.e., on upper half of databus. % 
Depth = 1024; 
Width = 8; 
Address_radix = hex; 
Data_radix = hex; 
% Program RAM Data % 
Content 
  Begin 
0000 : 3B; 
0001 : 01; 
0002 : 00; 
0003 : 3B; 
0004 : DE; 
0005 : 3B; 
0006 : BE; 
0007 : 14; 
0008 : 00; 
0009 : FF; 
000A : 2B; 
000B : 3B; 
000C : 00; 
000D : 3B; 
000E : 00; 
000F : 05; 
0010 : 0D; 
0011 : 0D; 
0012 : 13; 
0013 : 00; 
0014 : 21; 
0015 : 36; 
0016 : 00; 
0017 : 13; 
0018 : FF; 
0019 : 06; 
[001A..03FF] : 00; 
End; 
 

Listing 1: ROM contents 
 
 
 
 

When ROM is disabled, output is high impedance 
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B. 1k x 16 RAM 
 
The Random Access Memory (RAM) utilized in the Sweet16 memory map is 1 kilo-byte large 
and 16 bits wide. This is accomplished with the use of two 1k x 8 RAMs. As will be discussed 
later, one RAM will contain the least-significant 8 bits of data, and the other will contain the 
most-significant 8 bits of data (see Appendix F, Specification Sheet 7 for a description of 
ram_1kx8). 
 
The 1k x 8 RAM component was designed graphically in Max+Plus II (see Figure 3 below). The 
memory component was chosen from the mega_lpm library. 
 

 
Figure 3: 1k x 8 RAM 

 
This component was compiled and simulated for appropriate test vectors. The results of the 
simulation, shown below in Figure 4, prove the functionality of this component. 
 

 
Figure 4: RAM simulation 
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C. Input Port 
 
The input port for the Sweet16 microprocessor is simply a 16-bit tri-state buffer. This prevents 
unwanted data collisions from occurring. By enabling the input port at specific times, this allows 
the data bus to be driven by the input port only when it is desired. The Max+Plus II graphical 
representation of this component is shown below in Figure 5. 
 

 
Figure 5: Input Port 

 
 
D. Output Port 
 
The output port for the Sweet16 microprocessor consists of a 16-bit register. This allows data to 
be latched at specific times and for specific address locations. The Max+Plus II graphical 
representation of this component is shown below in Figure 6. 
 

 
Figure 6: Output Port 

 
 
E. Memory Decoder 
 
To control the memory and I/O devices, a Memory Decoder was implemented in VHDL. The 
memory map on which this decoder was based is shown in Figure 7 on the next page. Each 
component in the external architecture is distinctly addressable. The enable signals for each of 
these components are partially based on the address that the CPU is writing/reading to/from. The 
read and write strobes also play an integral role in decoding the memory and I/O enable signals. 
See Appendix F, Specification Sheet 8 for a description of the Memory Decoder. 
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Figure 74: Sweet16 memory map 

 
The VHDL for the Memory Decoder is shown in Listing 2 on the next page. Because of the way 
the VHDL was written, and because of the design of the memory map, no two components are 
ever simultaneously enabled. This ensures that data collisions will not occur and that the data 
flow will behave as desired. 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                                 
4 http://www.hcs.ufl.edu/~radlinsk/eel4713/course/view.php?id=2 
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Entity decoder is 
Port( 
 -- Inputs 
 ADDR:   in std_logic_vector (15 downto 1); 
 ADDR_0: in std_logic; 
 RD_STR: in std_logic; 
 WR_STR: in std_logic; 
 
 -- Outputs 
 ROM_HI_EN: out std_logic; 
 ROM_LO_EN: out std_logic; 
 RAM_HI_EN: out std_logic; 
 RAM_LO_EN: out std_logic; 
 RAM_WE:    out std_logic; 
 RAM_OE:    out std_logic; 
 OUTPORTEN: out std_logic; 
 INPORTEN:  out std_logic 
); 
End decoder; 
 
Architecture Behavior of decoder is 
signal rom_en, ram_en: std_logic; 
Begin 
rom_en <= not ADDR(15) and not ADDR(14) and not ADDR(13) and not ADDR(12) and 
          not ADDR(11) and RD_STR       and not WR_STR; 
 
ram_en <= not ADDR(15) and not ADDR(14) and not ADDR(13) and not ADDR(12) and 
              ADDR(11) and (RD_STR or WR_STR); 
 
RAM_WE <= not ADDR(15) and not ADDR(14) and not ADDR(13) and not ADDR(12) and 
              ADDR(11) and WR_STR       and not RD_STR; 
 
RAM_OE <= not ADDR(15) and not ADDR(14) and not ADDR(13) and not ADDR(12) and 
              ADDR(11) and RD_STR       and not WR_STR; 
 
ROM_HI_EN <= rom_en; -- Temporary until 8-bit addressing is implemented 
ROM_LO_EN <= rom_en; -- Temporary until 8-bit addressing is implemented 
 
RAM_HI_EN <= ram_en; -- Temporary until 8-bit addressing is implemented  
RAM_LO_EN <= ram_en; -- Temporary until 8-bit addressing is implemented 
 
OUTPORTEN <= ADDR(15) and ADDR(14) and ADDR(13) and ADDR(12) and ADDR(11) and 
             ADDR(10) and ADDR(9)  and ADDR(8)  and ADDR(7)  and WR_STR   and 
             not RD_STR; 
 
INPORTEN  <= ADDR(15) and ADDR(14) and ADDR(13) and ADDR(12) and ADDR(11) and 
             ADDR(10) and ADDR(9)  and ADDR(8)  and not ADDR(7)  and RD_STR and 
             not WR_STR; 
End Behavior; 
 

Listing 2: Memory Decoder VHDL code 
 
The Max+Plus II graphical representation of this component is shown below in Figure 8. 
 

 
Figure 8: Memory Map Decoder 
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System Design and Validation 
 
The individual components of the Sweet16 External Architecture were combined according to 
the schematic shown in Figure 9. 
 

 
Figure 95: Sweet16 External Architecture 

 
It is obvious that the inputs to this system are the data bus, the inport bus, the address bus, and 
the strobe signals. The only output (excluding the bidirectional data bus) is the outport bus. 
Figure 10 on the next page shows the Max+Plus II Graphic Design File that was created by 
integrating the previously designed components. See Appendix F, Specification Sheet 9 for a 
description of the complete External Architecture. 
                                                 
5 http://www.hcs.ufl.edu/~radlinsk/eel4713/course/view.php?id=2 
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Figure 10: Graphic design for External Architecture 

 
 
A. System Test 
 
The operation of this system was tested with a series of input vectors. This test was designed to 
verify the proper functioning of the Memory Decoder as well as the I/O and memory 
components. Each area of the memory map was appropriately read from or written to so as to 
examine the behavior of the external architecture under various circumstances. The verification 
performed in lab is shown in Figure 11 on the next page. A more involved simulation, performed 
prior to the laboratory demonstration, can be found in Appendix E, Waveform Simulation 8. 
 
With both of these simulations, an exhaustive test was performed on the Sweet16 external 
architecture. The system as a whole proved to perform as desired. 
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Figure 11: External Architecture simulation 

 
 
 
Conclusion 
 
A. Summary 
 
The system designed in this lab represents the Sweet16 External Architecture. This system 
interfaces with the previously designed Sweet16 CPU to form a complete microprocessor. It is 
the external architecture that allows to the whole system to interface with the outside world. The 
ability to read from and write to memory, as well as the capability of transmitting and receiving 
data from exterior components, is integral to the overall functionality of a computing system. 
 
The external architecture designed in this lab represents a mere fraction of this system’s 
potential. It is entirely possible to expand upon this architecture in terms of serial 
communication, VGA interfacing, digital to analog conversion, and much more. The Instruction 
Set Architecture of this microprocessor makes it capable of expanding to various applications. 
 
 
B. Questions 
 

1. Explain why addr[0] was not connected to the ROM and RAM instances. 
  
 The RAM and ROM components are each 8 bits wide; however, the Sweet16 is a 16-bit 

processor with a 16-bit data bus. Therefore, with the smallest addressable memory space 
being 8 bits (this will be exploited in future labs), the least-significant bit of the address is 
neglected so that two bytes (the low and the high) can be read at once and concatenated 
to form a 16-bit word. 

 

Data from mulrom.asm 
program loaded into ROM 
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2. Notice that addr[0] could be used to discriminate between data in the devices on the 
“upper-” or “lower-half” of the data bus. Write the RAM chip enable equations if one 
wished to enable the RAM on the upper half of the data bus when addr[0] = 0 and the 
RAM on the lower half of the data bus when addr[0] = 1. Identify whether this 
arrangement is “Big Endian” or “Little Endian” in structure. Explain your reasoning. 
 
RAM_HI_EN <= not ADDR(15) and not ADDR(14) and not ADDR(13) and   
                  not ADDR(12) and     ADDR(11) and not ADDR(0)  and   
                  (RD_STR or WR_STR); 
 
RAM_LO_EN <= not ADDR(15) and not ADDR(14) and not ADDR(13) and   
                  not ADDR(12) and     ADDR(11) and     ADDR(0)  and   
                  (RD_STR or WR_STR); 
 

Listing 3: RAM chip enable equations 
 
This arrangement is “Big Endian” because the most-significant byte comes first in 
memory (even addresses starting with zero), and the least-significant byte come second in 
memory (odd addresses starting with one). 
 

3. Account for the reason, during testing of a bus connected to a port signal characterized 
as “bidir” or “inout” that there were two signals presented in the waveform editor’s 
diagram, one labeled “in” the other labeled “out”. Why did you have to initialize the 
“in” signal to “ZZZZ” during times that the bus was being driven “out”? What 
happened if this point was neglected? 
 
The bidirectional port signal has an input and an output because it can be driven either 
internally or externally. That is to say that when the bus is being driven by some device in 
the system, the input port of the bidirectional bus may not be driven externally. In such 
situations, the input for the bus must be forced to high impedance so as not to cause a 
data collision. Similarly, when no internal devices are driving the bidirectional bus, the 
input for the bus may be driven by the user (or an external device) without fear of a data 
collision. If this precaution is ignored, the simulator will produce a “logic contention” 
error notifying the user that he/she is attempting to drive the bus from two different 
sources. 
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Introduction 
 
The purpose of this lab was to create the microprogram necessary to implement several 
instructions in the Sweet16 Instruction Set. Of particular interest were the instructions contained 
in the mulrom.asm multiplication subroutine (see Appendix C, Program 1 for the mulrom.asm 
code). A genuine understanding of the Sweet16 architecture was necessary in order to compose 
the microcode necessary to realize each instruction. 
 
With the Sweet16 microprocessor architecture completely assembled, the final tasks in making 
this design a fully-functioning system is to provide it with a set of microinstructions that describe 
how to manipulate its individual components in order to accomplish a given task. The resulting 
microcode will be the true brains behind this processor. It will be responsible for “tweaking” the 
control signals so as to coax the processor into computing meaningful values that the 
programmer can make use of. 
 
 
 
Component Design and Validation 
 
Up to this point in the design of the Sweet16 microprocessor, we have the Sweet16 CPU 
(sw16cpu.gdf) and the Sweet16 External Architecture (sw16extarch.gdf). In this lab, these 
components were combined into one architecture (sweet16.gdf). Once this was accomplished, the 
microinstructions required to implement several of the Sweet16 instructions were written. Once 
all of these components were combined, the Sweet16 could then execute a multiplication 
program, mulrom.asm. 
 
 
A. Sweet16 Microprocessor Architecture 
 
At a very high level, the Sweet16 microprocessor is composed of the Sweet16 CPU (see 
Appendix F, Specification Sheet 5 for a description of this component) and the Sweet16 External 
Architecture (see Appendix F, Specification Sheet 9 for a description of this component). These 
two components were combined into one graphical design according to the schematic drawing in 
Figure 1 on the next page. 
 
The complete Sweet16 microprocessor hardware, as viewed from the highest level, is shown in 
Figure 2 on the next page. There are three inputs to this processor: the system clock, the reset 
signal, and the input port data bus. The only real output is the output port data bus. However, 
extra output signals were brought out of the design so that several important internal signals 
could be monitored. These signals are labeled “Test Signals” in Figures 1 and 2. 
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Figure 16: Sweet16 CPU schematic 

 
 

 
Figure 21: Sweet16 CPU schematic 

                                                 
6 http://www.hcs.ufl.edu/~radlinsk/eel4713/course/view.php?id=2 
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The two high-level components that make up the Sweet16 were combined in Max+Plus II’s 
Graphic Editor. The resulting  graphic design file is shown below in Figure 3. 
 

 
Figure 3: Sweet16 CPU high-level design 

 
Notice that these two components use the address bus, data bus, and the read and write strobes to 
communicate between each other. The result of combining these two entities, sweet16.gdf, is 
shown below in Figure 4 (see Appendix F, Specification Sheet 10 for a description of the 
Sweet16 component). 
 

 
Figure 4: Sweet16 CPU highest-level design 

 
This design was loaded with the multiplication program mulrom.asm. Despite the fact that a 
majority of the microprogram memory was empty, this program was simulated to examine the 
internal behavior of the Sweet16. See Appendix E, Waveform Simulation 9 for the results of this 
simulation. 
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B. Sweet16 Microcode 
 
To complete the Sweet16 microprocessor design, the last step was to compose the microcode that 
enables the Sweet16 instructions to be executed. When executing a program, this processor 
converts each opcode into an address that points to a certain portion of the microcode wherein 
the microinstructions necessary to execute each macroinstruction reside. As mentioned in earlier 
labs, this task is accomplished by the MapROM. The Microprogram Memory, to which the 
MapROM points, must be written in assembly language and converted into a Memory 
Initialization File (MIF). The structure of this assembly language program is organized by 
instruction and mapped out by the MapROM. Each Sweet16 instruction will have a sequence of 
microinstructions associated with it. 
 
The Microprogram Memory contains several important subroutines as well. For example, every 
instruction execution cycle consists of fetch, decode, and execute. Therefore a subroutine was 
created to accomplish the fetch portion of the instruction execution cycle. This subroutine 
retrieves the data at the memory location pointed to by the Program Counter (PC), increments the 
PC twice to point at the next data/instruction word, and directs the microprogram flow towards 
the address pointed to by the MapROM (essentially the decode portion of the cycle). The 
microcode for the fetch subroutine is shown below in Listing 1. 
 

* Begin Instruction Fetch/Decode Sequence ------------ 
* IR <= mem[PC]; PC <= PC + 2; - 3 microinstructions, 5 clock cycles 
FETCH: 
 CNTR_LOAD  2 * Load Loop Counter  
 INC_REG    PC  * Increment the Program Counter 
 DB_OUT       * Put RALU DB bus on internal databus 
 STORE_MAR * Store the PC to MAR via DB 
 endsc 
 
FETCH1: 
 LOOP_TC    FETCH1 
 MEM_READ * Assert RD_STR, set databus inbound 
 endsc 
 
DECODE: 
 JUMP_MAP      * Decode OPCODE, MAPROM[OPCODE] 
 INC_REG    PC * Increment the Program Counter 
 MEM_READ * Assert RD_STR, set databus inbound 
 endsc 
 

Listing 1: Microcode for Fetch subroutine 
 
In addition to the fetch subroutine, subroutines for different address modes were also created. For 
example, the Immediate Address mode defines the word following the instruction word to be the 
data associated with the instruction. This subroutine, therefore, retrieves that data and adjusts the 
PC accordingly. In general, the goal of the subroutines associated with the various address modes 
is to retrieve data. The microcode for the immediate and absolute address modes is shown in 
Listing 2 and Listing 3, respectively, on the next page. 
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* Immediate Address Mode: Databus <= Mem[PC]; PC <= PC + 2; 
* 3 microinstructions, 4 clock cycles 
* The execute state must maintain MEM_READ 
IMMEDIATE:  
 CNTR_LOAD  1 * Load Loop Counter  
 INC_REG PC   * Increment the PC 
 DB_OUT       * Put RALU DB bus on internal databus 
 STORE_MAR    * Store the PC to MAR via DB 
 endsc 
 
IMMEDIATE1: 
 LOOP_TC    IMMEDIATE1  * Wait for 2 cycles 
 MEM_READ               * Assert RD_STR, set databus inbound 
 endsc 
 
 RETURN 
 INC_REG PC   * Increment the PC 
 MEM_READ     * Assert RD_STR, set databus inbound 
 endsc 

Listing 2: Microcode for Immediate Address Mode 
 
 

* Absolute Address Mode: Databus <= Mem[Mem[PC]] 
* 6 microinstructions, 6 clock cycles 
* The execute state must maintain MEM_READ 
ABSOLUTE:  
  INC_REG PC * Increment the PC 
  DB_OUT  * Put RALU DB bus on internal databus 
  STORE_MAR * Store the PC to MAR via DB 
  endsc 
 
* Get second word of instruction 
  INC_REG PC * Increment the PC 
  MEM_READ  * Assert RD_STR, set databus inbound 
  endsc 
  
  MEM_READ  * Assert RD_STR, set databus inbound 
  endsc 
 
  STORE_MAR * Load the MAR at the end of the state 
  MEM_READ  * Assert RD_STR, set databus inbound 
  endsc 
 
* Get data pointed at by second word of instruction 
  MEM_READ  * Assert RD_STR, set databus inbound 
  endsc 
 
  RETURN 
  MEM_READ  * Assert RD_STR, set databus inbound 
  endsc 

 

Listing 3: Microcode for Immediate Address Mode 
 
With these tools it was possible to construct the remainder of the Sweet16 instructions in 
microcode. The instructions of interest for this lab were those utilized in the mulrom.asm 
multiplication program. 
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One of the most challenging instructions to implement was the CALL instruction. The flow chart 
developed to describe the steps that were necessary to execute this instruction is shown below in 
Figure 5. 
 
 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 5: CALL execution flowchart 

 
From this logic, the microcode shown in Listing 4 was composed in order to implement the 
CALL instruction. The code for this instruction, like many others, takes advantage of the 
microcontroller’s ability to jump around in the Microprogram Memory. This means that the 
microcode for any instruction does not have to be contiguous, but rather it can be segmented at 
the programmer’s discretion. 
 
Many of the instructions executed in microcode call upon macros defined in the usw16.mac file. 
These macros simplify the task of setting (or clearing) the 42 control signals that allow the 
Sweet16 to operate. See Appendix C, Program 10 for the complete usw16.mac file. 
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 ORGA $51 
CALL:  
 DEC_REG SP 
 endsc 
 
 DEC_REG SP 
 D_OUT 
 STORE_MAR 
 endsc 
 
 INC_REG PC 
 CNTR_LOAD 2 
 endsc 
 
 INC_REG PC 
 D_OUT 
 MEM_WRITE 
 JUMP FINISH_CALL1  
 endsc 
 ORGA $E8 
 * 
 * 
 * 
FINISH_CALL1:  
 LOOP_TC  FINISH_CALL1 * Wait for 2 cycles 
 REG_TO_BUS PC  * Put current PC on data bus 
 MEM_WRITE 
 endsc 
 
 DEC_REG PC 
 endsc 
 
 DEC_REG PC 
 D_OUT 
 STORE_MAR 
 CNTR_LOAD 1 
 endsc 
 
FINISH_CALL2: 
 LOOP_TC     FINISH_CALL2 * Wait for 2 cycles 
 MEM_READ              * Assert RD_STR, set databus inbound 
 endsc 
 
 MEM_READ       * Assert RD_STR, set databus inbound 
 STORE_PC   * Store new PC value 
 JUMP FETCH 
 endsc 
 

Listing 4: CALL instruction microcode 
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System Design and Validation 
 
Once all of the instructions necessary to execute the mulrom.asm program were implemented in 
microcode, the microcode program, usw16.asm, was assembled with UPASM and converted into 
a Memory Initialization File (MIF). See Appendix C, Program 6 for the complete usw16.asm 
file.  
 
 
A. System Test 
 
The usw16 MIF was loaded into the Sweet16 Microprogram Memory. In addition, mulrom.asm 
was compiled and converted into two MIFs, mulrom0.mif and mulrom1.mif. As mentioned in 
earlier labs, this technique is employed due to the fact that the Sweet16 has two 1k x 8 ROMs, 
one for the most significant 8-bits of the instruction/data word, and one for the least significant 
8-bits. These two MIFs were loaded into their respective ROMs. The resulting Max+Plus II 
project was compiled and simulated for an appropriate length of time (40 µs). 
 
The mulrom.asm program utilizes a series of shifts and adds in order to compute the product of 
two 16-bit numbers. In essence, whenever a one (1) is encountered in the multiplier, the current 
value of the product is shifted and added to the multiplicand. This process of shifting and adding 
is repeated 16 times so that each bit of the multiplier can be examined. 
 
After 36.7 µs of simulation, the multiplication algorithm had completed its final iteration and had 
computed the correct product for $ABBA multiplied by $DABA. The multiplicand and the 
multiplier were predetermined by the laboratory instructor, and the results, $92B9 2924, were 
confirmed. Figure 6 below shows the portion of the simulation at which point the results of the 
multiplication were computed. See Appendix E, Waveform Simulation 10 for the abridged 
simulation of mulrom.asm. 
 

 
Figure 6: Abbreviated simulation of mulrom.asm 

 
 

$ABBA x &DABA = $92B9 2924 
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Conclusion 
 
A. Summary 
 
The Sweet16 microprocessor underwent the final stages of its hardware design in this lab. The 
External Architecture was combined with the Sweet16 CPU to form the Sweet16 microprocessor. 
While not totally complete, this processor was also given a microprogram that enabled it to 
execute a multiplication subroutine. In the coming labs, this microprogram will be expanded 
upon to make a more complete Sweet16 microprocessor. 
 
The most interesting aspects of the design involved in this lab are the tools that were used to 
create the Sweet16 microprogram. There does not exist a compiler designed specifically for the 
Sweet16 microprocessor and its instruction set. Therefore existing tools (i.e. UPASM) were 
adapted and harnessed so that they could accommodate the Sweet16. This allowed the 
programmer to essentially devise the language in which the microcode was written. By defining 
macros and subroutines, the microcode was modularized to a significant degree. This greatly 
simplified the process of composing the microcode for the Sweet16 Instruction Set. 
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Introduction 
 
The purpose of this lab was to examine the meaning and essence of the Complex Instruction Set 
Computer (CISC). In previous labs, intricate operations such as multiplication were 
accomplished by combining several less-intricate instructions, such as shifting and adding. 
Although this approach succeeded in computing the desired result, it proved to be an inefficient 
method of accomplishing its task in that it consumed more time than was necessary given the 
capabilities of the Sweet16 architecture. 
 
This lab harnessed the capabilities of the Sweet16 and showed that complex processes could be 
accomplished faster when explicit instructions are devoted to these processes. This fact is based 
on the principle that software implementations of complex operations are costly in terms of the 
time they spend on fetching multiple instructions from memory. In a CISC architecture such as 
the Sweet16, whole instructions may be devoted to complex operations so as to avoid the added 
cost of multiple instruction fetches. Of particular interest in this lab are the benefits obtained 
from CISC-style implementations of multiplication and division. 
 
 
 
Component Design and Validation 
 
At this stage in the design of the Sweet16 microprocessor, the hardware is all but complete, and 
many of the Sweet16 instructions have been implemented in microcode. This lab will focus on 
expanding the microcode to include the unsigned multiplication, unsigned division, and 32-bit 
addition instructions. 
 
 
A. Unsigned Multiplication 
 
Unsigned binary multiplication may be approached in several ways. Single-cycle 16-bit 
multiplication can be accomplished; however such multipliers are very logic-intensive and 
therefore costly. Conversely, there are several iterative approaches to 16-bit unsigned binary 
multiplication. One impractical approach is to realize what multiplication really is: the repeated 
summing of one number with itself. Although this method seams to be ideal for multiplying 
small numbers, it becomes grossly impractical when dealing with larger numbers. This leads us 
to the more viable of the two iterative methods. Returning to an elementary-style of computing 
products, it becomes obvious that the best way to accomplish multiplication is to use a series of 
shifts and additions. 
 
According to the multiplication algorithm used in this lab, for each binary “one” that appears in 
the multiplier, the multiplicand is added to the current product and then the product is shifted to 
account for the bit position of the “one” in the multiplier. This conditional addition is 
accomplished with the use of the built-in unsigned multiplication function in the ALU. The 
algorithm for 16-bit multiplication is similar to the algorithm for 4-bit multiplication illustrated 
in Figure 1 on the next page. 
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Figure 17: 4-bit multiplication algorithm 

 
From this method of multiplication, a flowchart was created to assist in developing microcode 
for the UMUL instructions. Figure 2 below shows the resulting multiplication flowchart. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: Flowchart for multiplication 

                                                 
7 “unsigned_multiplication.pdf” By Michel Lynch, http://www.hcs.ufl.edu/~radlinsk/eel4713/course/view.php?id=2 
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When this algorithm was implemented in microcode, the following portion of assembly code was 
developed for the UMULR instruction (see Appendix C, Program 6 for the complete usw16.asm 
code). 
 
 ORGA $70 
UMULR: 
 REGMUX ,R1B  * select multiplier to pass through ALU 
 ALU ,PASS_BC,C_ONE * pass R1B through ALU 
 Q_SHIFT ,LOAD_D0  * load Q_REG with R1B 
 JUMP FINISH_UMUL_R 
 endsc 
 ORGA $F0 
FINISH_UMUL_R: 
* Zero out MSW of product 
 REGMUX ,R1B  * Write to R1 
 ALU ,F_ZERO,C_ZERO * Zero out R1 
 ALU_SHIFT ,PASS     * pass zero through alu_shifter 
         SMUX ALU_SHFT_BUS  * select alu_shift_bus as input to RA 
         WRITE_REG_ARR TRUE  * write result back using B_ADDR 
 CNTR_LOAD 15  * prepare to loop 16 times 
 endsc 
 
* Multiplication loop 
FINISH_UMUL_R2: 
 LOOP_TC FINISH_UMUL_R2 * repeat multiplication iteration 
 REGMUX R2A,R1B  * select Multiplicand (R2) and Product MSW (R1) 

  ALU REG_ARR,UMULIT,C_ZERO * conditionally add multiplicand (R2) and  
      *    Product MSW (R1) 

 Q_SHIFT FSO,SHFT_RIGHT * shift Q_REG right (shift out Product LSb) 
 ALU_SHIFT ALU_COUT,SHFT_RIGHT 
         SMUX ALU_SHFT_BUS  * select alu_shift_bus as input to RA 
         WRITE_REG_ARR TRUE  * write result back using B_ADDR 
 FLAGS ARITH 
 endsc 
 
* Store results 
 REGMUX ,TOGGLE_B  * Write Product LSW to IR.R1 + 1 
 PL_REG ,ONE   
 SMUX QBUS  * write R2 with contents of Q_REG 
         WRITE_REG_ARR TRUE  * write result back using B_ADDR 
 JUMP FETCH 
 endsc 
 

Listing 1: UMULR implementation in microcode 
 
The result of a 16-bit multiplication is a 32-bit number. Therefore the product of the two register 
contents (for UMULR) will be stored in the concatenation of those two registers, provided that 
the registers are an “even-odd” pair (at a word-aligned boundary). This is accomplished by 
exploiting the B_ADDR(0) bit that can be controlled by the controller. The least-significant word 
of the product is stored in the register [IR.R0 + 1] by toggling the B_ADDR(0) bit. 
 
 
B. Unsigned Non-Restoring Division 
 
The algorithm for unsigned non-restoring division is similar to that for unsigned multiplication. 
Instead of right shifts and addition, the algorithm for division essentially consists of subtractions 
and left shifts. Like in multiplication, the ALU designed for the Sweet16 has a built-in function 
for non-restoring division. This function accomplishes the conditional subtraction that is 
necessary for division. The algorithm used to accomplish unsigned non-restoring division is 
illustrated in Figure 3 on the next page. 
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Figure 3: Unsigned non-restoring division algorithm 
 
From this method of division, a flowchart was created to assist in developing microcode for the 
UDIVR instruction. Figure 4 below shows the resulting division flowchart. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 4: Flowchart for division 
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When this algorithm was implemented in microcode, the following portion of assembly code was 
developed for the UDIVR instruction. 
 

 ORGA $72 
UDIVR: REGMUX ,R1B  * select multiplier to pass through ALU 
 ALU ,PASS_BC,C_ONE  * pass R1B through ALU 
 Q_SHIFT ,LOAD_D0  * load Q_REG with R1B 
 JUMP FINISH_UDIV_R 
 endsc 
 
 ORGA $F7 
FINISH_UDIV_R: 
 REGMUX ,R1B  * Write to R1 (remainder) 
 ALU ,F_ZERO,C_ZERO  * Zero out R1 (remainder) 
 ALU_SHIFT ,PASS     * pass zero through alu_shifter 
         SMUX ALU_SHFT_BUS  * select alu_shift_bus as input to RA 
        WRITE_REG_ARR TRUE   * write result back using B_ADDR 
 FLAGS uFlags  * clear uSR_C, uSR_S 
 endsc 
 
 Q_SHIFT ZERO,SHFT_LEFT * shift Q_REG left (shift out Dividend MSb) 
 ALU_SHIFT QSO,SHFT_LEFT * shift remainder left 
 REGMUX ,R1B 
 ALU ,PASS_BC,C_ONE 
         SMUX ALU_SHFT_BUS  * select alu_shift_bus as input to RA 
 WRITE_REG_ARR TRUE 
 CNTR_LOAD 14  * prepare to loop 15 times  
 endsc 
 
 REGMUX TMP,R1B 
 ALU REG_ARR,SB_BAC,C_ONE 
 WRITE_REG_ARR FALSE 
 FLAGS uFlags 
 endsc 
 
FINISH_UDIV_R2: 
 LOOP_TC FINISH_UDIV_R2 * repeat division iteration 
 REGMUX R2A,R1B  * select Divisor (R2) and Remainder (R1) 
 ALU REG_ARR,NDIVT,  * conditionally add/subtract 
 Q_SHIFT uSR_C,SHFT_LEFT * shift Q_REG left (shift out dividend LSb) 
 ALU_SHIFT QSO,SHFT_LEFT 
         SMUX ALU_SHFT_BUS  * select alu_shift_bus as input to RA 
         WRITE_REG_ARR TRUE   * write result back using B_ADDR 
 FLAGS uFlags 
 endsc 
 
 REGMUX R2A,R1B  * select Divisor (R2) and Remainder (R1) 
 ALU REG_ARR,NDIVT,  * conditionally add/subtract 
 Q_SHIFT uSR_C,SHFT_LEFT * shift Q_REG left (shift out dividend LSb) 
 ALU_SHIFT ,PASS 
        SMUX ALU_SHFT_BUS  * select alu_shift_bus as input to RA 
        WRITE_REG_ARR TRUE   * write result back using B_ADDR 
 FLAGS uFlags 
 COND_JUMP FLAGS_uSR_S,FIX_REMAINDER 
 endsc 
 
 REGMUX ,TOGGLE_B  * write Quotient to IR.R1 + 1 
 PL_REG ,ONE   
 SMUX QBUS  * write R2 with contents of Q_REG 
        WRITE_REG_ARR TRUE   * write result back using B_ADDR 
 JUMP FETCH 
 endsc 
  
FIX_REMAINDER: 
 REGMUX R2A,R1B 
 ALU REG_ARR,ABC,C_ZERO 
 ALU_SHIFT ,PASS 
 SMUX ALU_SHFT_BUS 
 WRITE_REG_ARR TRUE 
 endsc 
  
 REGMUX ,TOGGLE_B  * write Quotient to IR.R1 + 1 
 PL_REG ,ONE   
 SMUX QBUS  * write R2 with contents of Q_REG 
         WRITE_REG_ARR TRUE   * write result back using B_ADDR 
 JUMP FETCH 
 endsc 
 

Listing 2: UDIVR implementation in microcode 
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The result of a 16-bit division is a 16-bit quotient and a 16-bit remainder. Therefore the results of 
a UDIVR  instruction will be stored in the concatenation of the two registers that contained the 
operands, provided that the registers are an “even-odd” pair (at a word-aligned boundary). This is 
accomplished by exploiting the B_ADDR(0) bit that can be controlled by the controller. The 
remainder is stored in register [IR.R0], and the quotient is stored in register [IR.R0 + 1] by 
toggling the B_ADDR(0) bit. 
 
 
C. 32-Bit Long Addition 
 
The final complex instruction implemented in this lab was 32-bit long addition, or “Add with 
Carry Long.” This instruction adds two numbers that are each 32-bits long and are located in the 
General Purpose Registers. Each 32-bit number requires two registers to hold its most- and least-
significant parts. “Even-odd” register pairs are used to house each number in the register array. 
For example, if you execute the instruction ADCLR R0,R2, then the fist 32-bit long word is 
stored in registers 0 and 1, and the second 32-bit long word is stored in registers 2 and 3. By 
convention, the 32-bit result is stored in the concatenation of register [IR.R1] and [IR.R1 + 1]. 
 
The flowchart in Figure 5 below illustrates the algorithm used to accomplish 32-bit long 
addition. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5: 32-bit long addition algorithm 
 
From this algorithm, the microcode for the ADCLR instruction was developed. Listing 3 on the 
next page shows the resulting microcode. 
 
 
 
 
 
 
 
 
 
 

Sum LSW Operand 1 LSW +   
                       Operand 2 LSW 
Update µCarry flag 

Sum MSW Operand 1 LSW +  
                        Operand 2 LSW +
                        µCarry 
Update Arithmetic flags 
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 ORGA $E2 
ADCLR: 
 REGMUX TOGGLE_A,TOGGLE_B 
 PL_REG ONE,ONE 
 ALU REG_ARR,ABC,C_MACRO 
 FLAGS uFlags 
     ALU_SHIFT ,PASS   * pass through alu_shifter 
     SMUX ALU_SHFT_BUS  * select alu_shift_bus as input to Reg_Arr 
     WRITE_REG_ARR TRUE  * write result back using B_ADDR 
 endsc 
 
 REGMUX TOGGLE_A,TOGGLE_B 
 PL_REG ZERO,ZERO 
 ALU REG_ARR,ABC,C_MICRO 
 FLAGS ARITH 
     ALU_SHIFT ,PASS   * pass zero through alu_shifter 
     SMUX ALU_SHFT_BUS  * select alu_shift_bus as input to RegArr 
     WRITE_REG_ARR TRUE  * write result back using B_ADDR 
 JUMP FETCH 
 endsc 

 

Listing 3: ADCLR implementation in microcode 
 
 
 
 
System Design and Validation 
 
Once the new, complex instructions were implemented in microcode, test programs were 
developed for each instruction and simulations were performed to evaluate the performance of 
these operations. 
 
 
A. Unsigned Multiplication Verification 
 
A special test program was written to isolate and test the 16-bit unsigned multiplication 
instructions UMULR and UMULI. These instructions both perform unsigned multiplication, 
except one utilizes the Register-Register address mode while the other utilizes the Immediate 
address mode. The test program developed to verify the correctness of these instructions, 
umul_test.asm, is shown in Listing 4 on the next page. 
 
The updated usw16 Memory Initialization File (MIF) was loaded into the Sweet16 Microprogram 
Memory (see Appendix C, Program 6 for the entire usw16.asm code). In addition, the test 
program was compiled and loaded into the Sweet16 ROM (see Appendix C, Programs 12, 13, 
and 14 for the umul_test.s, umul_test0.mif, and umul_test1.mif files, respectively). A simulation 
was performed to examine the Sweet16’s behavior during the execution of the multiplication 
instructions. Figure 6 on the next page shows a portion of the simulation results (see Appendix E, 
Waveform Simulation 11 for the complete simulation results). 
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* UMUL_TEST.ASM - Program that tests the operation of the UMULR and UMULI functions 
*              Orged in ROM ($0000) 
* Author: Casey T. Morrison, EEL 4713, 2/28/2004 
 
        NOLIST 
        INCLUDE "sweet16.mac" 
        LIST 
 
        ORG     $0000 
 
* Multiply using UMULR 
        LDI     R0,$F00D 
        LDI     R1,$BEEF 
 
 UMULR R0,R1 
 
* Save results in R2 ans R3 
 LDR R2,R0 
 LDR R3,R1 
 
* Multiply using UMULI 
        LDI     R0,$DEAD 
 
 UMULI R0,$BEA7 
 
* Save results in R4 ans R5 
 LDR R4,R0 
 LDR R5,R1 
 
*  Infinite loop 
* Display results of first multiplication 
* R2: $B309 
* R3: $C223 
* R4: $A5D5 
* R5: $A8DB 
LOOP: LDR R2,R2 
 LDR R3,R3 
 LDR R4,R4 
 LDR R5,R5 
 CLRC 
 BCC LOOP 
  
 END 
 

Listing 4: UMUL_Test.asm code 
 

 
Figure 6: Abbreviated simulation of UMUL_Test.asm 

$F00D x $BEEF = $B309 C223 
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Upon analyzing the results of this simulation, it was determined that the multiplication 
instructions performed as desired. 
 
 
B. Non-Restoring Division Verification 
 
A test program was written to isolate and test the 16-bit non-restoring division instruction 
UDIVR. This test program, udiv_test.asm, was developed to verify the correctness of the UDIVR 
instruction and is shown in Listing 5 below. After being compiled and loaded into the Sweet16 
ROM, a simulation was performed to examine the Sweet16’s behavior during the execution of 
the division instruction (see Appendix C, Programs 16, 17, and 18 for the udiv_test.s, 
udiv_test0.mif, and udiv_test1.mif files, respectively). Figure 7 on the next page shows a portion 
of the simulation results (see Appendix E, Waveform Simulation 12 for the complete simulation 
results). 
 

* UDIV_TEST.ASM - Program that tests the operation of the UDIV function 
*              Orged in ROM ($0000) 
* Author: Casey T. Morrison, EEL 4713, 2/28/2004 
 
 
        NOLIST 
        INCLUDE "sweet16.mac" 
        LIST 
 
        ORG     $0000 
 
* Divide using UDIV (R0/R1) 
        LDI    R0,$F00D 
        LDI    R1,$000F 
 
 UDIVR  R0,R1 
 
*  Infinite loop 
* Display results of division 
* R2: $000D Remainder 
* R3: $1000 Quotient 
LOOP: LDR R2,R0 
 LDR R3,R1 
 CLRC 
 BCC LOOP 
 
 END 

 

Listing 5: UDIV_Test.asm code 
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Figure 7: Abbreviated simulation of UDIV_Test.asm 

 
Upon analyzing the results of this simulation, it was determined that the division instruction 
performed as desired. 
 
 
C. 32-Bit Long Addition Verification 
 
A test program was written to isolate and test the 32-bit long addition instruction ADCLR. This 
test program, adclr_test.asm, was developed to verify the correctness of the ADCLR instruction 
and is shown in Listing 6 on the next page. After being compiled and loaded into the Sweet16 
ROM, a simulation was performed to examine the Sweet16’s behavior during the execution of 
the long addition instruction (see Appendix C, Programs 20, 21, and 22 for the adclr_test.s, 
adclr_test0.mif, and adclr_test1.mif files, respectively). Figure 8 on the next page shows a 
portion of the simulation results (see Appendix E, Waveform Simulation 13 for the complete 
simulation results). 
 
Upon analyzing the results of this simulation, it was determined that the 32-bit long addition 
instruction performed as desired. 
 
 
 
 
 
 
 
 
 
 
 
 
 

$F00D / $000F = $1000 remainder $000D 
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* ADCLR_TEST.ASM – Program that tests the operation of the ADCLR function 
*              Orged in ROM ($0000) 
* Author: Casey T. Morrison, EEL 4713, 2/28/2004 
 
        NOLIST 
        INCLUDE “sweet16.mac” 
        LIST 
 
        ORG     $0000 
 
        LDI     R0,$F00D 
        LDI     R1,$F00D 
 LDI R2,$BEEF 
 LDI R3,$000F 
 
 ADCLR R0,R2 
 
*  Infinite loop 
* Display results of addition 
* R2: $AEFC 
* R3: $F01C 
* Carry: 1 
LOOP: LDR R2,R0 
 LDR R3,R1 
 CLRC 
 BCC LOOP 
 
 END 

Listing 6: ADCLR_Test.asm code 
 

 
Figure 8 Abbreviated simulation of ADCLR_Test.asm 

 
 
 
 
 
 
 
 

MSW of sum LSW of sum 



Page 68 of 69 Sweet16 CISC Processor Casey T. Morrison 

Conclusion 
 
A. Summary 
 
The Complex Instruction Set nature of the Sweet16 microprocessor was exploited in this lab to 
implement three complex instructions. Although these instructions could have been 
accomplished in software, the benefits of devoting explicit opcodes to these operations were 
obvious. Instead of fetching several instructions from memory in an iterative fashion, only one 
instruction was fetched from memory and the computational power of the Sweet16 was utilized 
to obtain the results in a fraction of the time. This is the essence of Complex Instruction Set 
Computing. 
 
The advantages inherent in this method of computing can be extended to other instructions. For 
example, signed multiplication and division (instead of unsigned) can be accomplished with the 
existing hardware. It is this computational power that makes the Sweet16 a very versatile and 
robust machine. 
 
 
B. Questions 
 
1. How many clock cycles are needed for each algorithm? Does this number depend on the 

values of the data? 
 
 The unsigned multiplication instructions take 19 clock cycles once the data has been 

retrieved. The division instruction takes 21 or 22 cycles depending on whether the remainder 
must be adjusted at the end. The long addition instruction takes two clock cycles. The 
number of clock cycles for the multiplication and long addition instructions does not depend 
on the data. The number of clock cycles for the division instruction, however, does depend 
on the data; for some divisions require the remainder to be adjusted at the end. 

 
2. Which control paths for each algorithm do not pass through the microprogrammed 

controller in the multiplication and division instructions? Identify the flip-flop that each 
control path begins on, ends on. At which point does the control path become a data 
combination path? 

 
The “iterate” control path does not go through the microprogrammed controller in the 
multiplication and division instructions. This control signal is generated by either the output 
of the Q-Shifter or the micro carry flag. The “iterate” control path determined the operation 
performed by the ALU during the multiplication and division iterations. 
 
For the multiplication algorithm, the control path begins at the Q-Shifter, where the least-
significant bit of the multiplier determined whether or not to sum the multiplicand and the 
product. This control path ends at the register array, where the results of the sum are stored. 
 
For the division algorithm, the control path begins at the register array with the micro carry 
flag that determines whether or not the ALU adds or subtracts the remainder and divisor. 



Page 69 of 69 Sweet16 CISC Processor Casey T. Morrison 

This path ends at the register array as well where the results of the addition or subtraction are 
stored. 
 
Both of these control paths become data combination paths once they reach the ALU, where 
additions and/or subtractions are performed based on the “iterate” control signal. 
 
3. Compare the number of clock cycles needed to perform the original mulrom.asm program, 
i.e., using a UMUL subroutine, with the number required by the UMULR instruction. Discuss 
how the CISC concept resulted in a faster machine. Hint: How many clock cycles were used 
fetching instructions? 
 
The UMUL subroutine in the mulrom.asm program took 893 clock cycles to execute 
completely. This is more than 37 times greater than the 24 clock cycles that it took to execute 
the UMULR instruction. Much of this difference is attributed to the repeated instructions 
fetches (at five clock cycles a piece) that the UMUL subroutine relies upon. This illustrates 
the advantage of the CISC architecture—the concept that complex instructions can avoid 
costly memory fetches and accomplish operations faster than their software equivalent. 
 
4. Discuss the difference in the execution time of a program using the address mode 
examined in procedure 6 with one not using it. 
 
The use of memory-indirect address modes incurs additional execution time attributed to the 
added memory fetch(es) that is/are necessary. While zero additional memory fetches are 
requires for Register-Register address mode instructions, and one additional memory fetch is 
required for Immediate address mode instructions, two additional memory fetches are 
required for the memory-indirect address mode instructions. The first additional fetch is to 
retrieve the pointer, and the second additional fetch is to retrieve the data pointed to by the 
pointer. Thus instructions employing this address mode will incur the additional execution 
time associated with the additional memory fetches. 


