

Final Report

Caleb Markley
apollo (Xylophone-Playing Robot)

EEL5666: IMDL
Instructors: Dr. A. Antonia Arroyo, Dr. Eric M. Schwartz

TAs: Andy Gray, Josh Weaver, Nick Cox

	 2	

Table of Contents
1. Abstract …………………………………….2
2. Executive Summary………………………...2
3. Introduction ………………………………...3
4. Integrated System…………………………..4
5. Platform……………………………….........4
6. Actuation………………………………........5
7. Sensors………………………………...........5
8. Behaviors…………………………………...7
9. Experimental Layout and Results…………..8
10. Conclusion………………………………...8
11. Documentation…………………………….9
12. Appendices………………………………..9

1. Abstract

I have built a xylophone-playing robot that comes up with its own melodies. The
melody uses notes played on the connected MIDI keyboard, the color it senses, and the
proximity of onlookers to change the melody it plays. The system consists of a
xylophone, 12 small solenoids that will be used to play the xylophone, a Sharp IR sensor
to detect the proximity of onlookers, an Arduino Due to drive the solenoids and read the
IR sensor, a laptop with a wired connection to the Arduino, a webcam built in to the
laptop for color detection, and a MIDI keyboard connected to the laptop through USB.
The	 melody	 generation	 algorithm	 uses	 Markov	 chains	 with	 their	 states	 modified	 by	
sensor	 data	 to	 determine	 what	 notes	 will	 be	 played	 and	 for	 how	 long.	
	
2. Executive Summary

	 The goal of my robot is to have an autonomous system for creating and playing
melodies inspired by great songwriters and influenced in real-time by the robot’s
surroundings. To accomplish this I built a system made up of a MIDI keyboard, laptop
with webcam, Arduino Due board, sensors and actuators, and a xylophone. This system is
built on wooden planes that serve as my robot’s platform. My actuators, 5V solenoids
attached to the platform, strike the xylophone keys for 15ms when the action is requested
by software to produce sound. While the majority of the complexity of this system is
software-based, there are a few sensors that are necessary. The sensors used for this robot
are a Sharp long-range IR sensor and a webcam built into my laptop. Each sensor
influences a different aspect of the system. In the primary operation mode, the MIDI
keyboard is used to set the key of and initial tempo of the melody, an IR sensor used to
detect how close spectators are to the robot and change the tempo accordingly, and a
standard iSight webcam built into a mid-2009 MacBook Pro used to find the primary
color in the room the robot is in.

My	 melody	 generation	 algorithm	 uses	 Markov	 chains	 to	 compose	 the	 melodies	
that	 the	 robot	 plays	 in	 the	 primary	 operation	 mode.	 Markov	 chains	 take	 an	 input	
state	 and	 compare	 it	 to	 a	 chain	 that	 gives	 a	 set	 of	 potential	 next	 states	 in	 the	 chain,	
each	 having	 a	 different	 probability	 determined	 by	 a	 learning	 set.	 In the primary mode

	 3	

of operation, the system starts when a user presses a key on the MIDI keyboard 8 times to
set the initial tempo and key. Notes and their durations are then chosen sequentially using
Markov chains constructed from the learning set. The sensors are read between each note
and their data used to influence the note played. The distance read in from the IR sensor
increases or decreases the tempo when an object is closer to the sensor or farther from the
sensor, respectively. The main color detected by the iSight webcam weights the note
duration probabilities according to the detected color. Once the sensor readings have been
dealt with the note is played and the system looks at the node in the Markov chain for the
note played to start the chain process once again.

My initial experiments included testing the IR sensor, solenoids, serial
communications, controlling the Arduino through a C++ program, and color detection.
Once I finished those experiments I wrote the melody generation algorithm and combined
it with the code from the prior experiments to test the whole system. I then incrementally
improved and modified the algorithm. My robot works well and meets the criteria it was
designed for. It is able to compose novel melodies using modified Markov chains that are
demonstrably influenced by the MIDI keyboard, IR distance sensor, and webcam. Limits
for my robot include its melodic expression that is based only on the songs provided in
the Markov chains, only being able to play one note at a time, and having limited user
control over the melody generation. Areas for improvement include improving the
robot’s appearance and having a consistently good sound for each note strike. Potential
future work includes adding a mode where the user can play a song on the MIDI
keyboard that the robot will use with the Markov chains in the melody generation
algorithm, implementing a more complex algorithm that looks at patterns of notes rather
than single notes, and imposing a traditional repeating verse-chorus structure in the
melody composition algorithm.	
	
	
3. Introduction

Great melodies, regardless of the period in which they are written, can stand the test
of time and be meaningful years after their inception. They inspire new arrangements to
fit these classic melodies with current trends. However, enduring melodies are hard to
write. It takes practice, talent, and often influence from other great melody-writers to
produce good melodies. People also peak creatively, gradually ceasing to produce
material that is as inspired as what they once wrote.

Inspiration is a powerful resource in art, including in music. Some great creative
works have been written by building on the work of others. This composition by
inspiration was the motivation for my special system. My robot needed an autonomous
system for creating and playing melodies inspired by great songwriters and influenced in
real-time by the robot’s surroundings. I decided to pursue using a Markov chain with
songs from popular music with great melodies forming the probabilities used by the
model. I also use a MIDI keyboard, and IR distance sensor, and a webcam to allow the
robot to react to its surroundings and alter the model.

The goal of my robot is to have an autonomous system for creating and playing
melodies inspired by great songwriters and influenced in real-time by the robot’s
surroundings. It has a useful function of creating new melodies, has sensors to react to its
environment, has a special sensor to get more information from its environment, and a

	 4	

special algorithm. While researching this work discussed in [1] and [2] were both helpful
in developing the idea for the algorithm. In this paper I will discuss the integrated system,
platform, actuation, sensors, and behaviors of my robot. I will also discuss experimental
layout and results and conclusions I have reached. Source documentation and code are
also included.

4. Integrated System

The system consists of a MIDI keyboard, laptop with webcam, Arduino Due board,
sensors and actuators, and a xylophone. Figure 1 shows an overview of the system. The
keyboard is connected to the laptop via USB and is used to give a starting point for the
melody generation algorithm. This is discussed in greater detail in the Sensors section.
The webcam used for color detection is part of the laptop. The Arduino Due is also
connected to the laptop via USB. The IR sensor and solenoids are connected to the
Arduino and the solenoids play the xylophone.

The software provides the functionality, the IR sensor and webcam observe the
surroundings, and the special algorithm will also be implemented on the laptop.

Figure 1, the system overview of the robot.

5. Platform

The robot platform, as shown in Figure 2, is simply two wood planes above the
xylophone keys with the solenoids and the IR sensor attached. It also has the circuit board
and Arduino mounted onto it. As the robot does not need to be mobile, all connections

	 5	

are physical. The platform was first modeled in SolidWorks and then built using thin
wood in the IMDL lab.

6. Actuation

The actuation in this design is the solenoids striking the xylophone keys. Each of the
12 solenoids is powered with 5V. The Arduino Due runs on 3.3V, but is able to send 5V
out if powered by USB. This 5V output is used with MOSFETs to power the solenoids.
Each solenoid will be positioned to hit one key when powered. When the algorithm
determines that a note should be played the appropriate Arduino IO pin outputs 3.3V
instead of 0V for 15ms and then returns to 0V. This causes the appropriate solenoid to
quickly strike the xylophone key so that the note will ring. Figure 2 shows the circuit
diagram for each solenoid.

Figure 2, the circuit diagram for a solenoid.

7. Sensors

While the majority of the complexity of this system is software-based, there are a few
sensors that are necessary. The sensors used for this robot are a Sharp long-range IR
sensor and a webcam built into my laptop. Each sensor influences a different aspect of
the system. To understand what the sensors are doing one must first understand what the
MIDI keyboard input does.

In the primary operation mode, the MIDI keyboard is used to set the key of the
composition as well as the initial tempo. Simplistically speaking the tempo of a piece of
music is how fast it is and the key determines what notes fit in the piece well. By pressing
a key on the MIDI keyboard 8 times the key is set to note played and the initial tempo is
set to the average time between key presses. The sensors start with this initial framework
and dynamically changes it based on the robot’s environment.

The Sharp IR distance sensor (Part Number GP2Y0A02YK0F, Distance Measuring
Sensor Unit, Measuring distance: 20 to 150 cm, Analog output type) is used to detect
how close spectators are to the robot. The closer spectators get, the “faster” the robot will
play, which is accomplished by increasing or decreasing the tempo. The listed range for

	 6	

the sensor is 20 to 150cm, which is ideal for detecting how close onlookers get to the
robot. Figure 2 shows the IR sensor values for different distances. The initial tempo is
unaltered at the median value recorded by the sensor during testing. When the something
is closer than that distance to the sensor the tempo will increase and when something is
farther away the tempo is decreased. The datasheet for the sensor is given in [3].

Figure 3, a graph of the IR sensor output voltage versus the distance from an object with
a 3V reference as shown in [3].

The webcam is the standard iSight webcam built into a mid-2009 MacBook Pro. This
is used to find the primary color in the room the robot is in. I currently determine if the
primary color is red, blue, green, or white/none. The color of the robot’s environment
weights the probabilities of note durations generated by the Markov chains. While the
details of how Markov chains work will be discussed in the next section, the color
essentially influences if longer notes (like whole notes and half notes) and shorter notes
(like eighth notes and sixteenth notes) will be more or less likely than they normally are
at a relevant point in the Markov chain.

	 7	

8. Behaviors
My	 melody	 generation	 algorithm	 uses	 Markov	 chains	 to	 compose	 the	 melodies	

that	 the	 robot	 plays	 in	 the	 primary	 operation	 mode.	 Markov	 chains	 take	 an	 input	
state	 and	 compare	 it	 to	 a	 chain	 that	 gives	 a	 set	 of	 potential	 next	 states	 in	 the	 chain.	
Each	 potential	 next	 state	 has	 a	 different	 probability	 determined	 by	 a	 learning	 set.	
Figure	 1	 shows	 an	 example	 of	 a	 very	 simple	 Markov	 chain	 from	 [4].	 For	 the	 chain	
given	 in	 Figure	 4,	 given	 state	 A	 the	 probability	 that	 the	 next	 state	 will	 be	 state	 E	 is	
0.4	 while	 the	 probability	 that	 the	 next	 state	 will	 be	 state	 A	 again	 is	 0.6.	 While	 this	 is	 a	
very	 simple	 example,	 one	 can	 see	 how	 this	 kind	 of	 model	 could	 be	 applied	 to	
generate	 probabilities	 for	 which	 notes	 will	 follow	 specific	 notes	 given	 a	 good	 set	 of	
initial	 data.	

	

	
Figure	 4,	 a	 simple	 Markov	 chain	 from	 [4].	

	
In the primary mode of operation, the system starts with pressing a key on the MIDI

keyboard 8 times as previously mentioned. This sets the key and the initial tempo. Using
the learning set as a Markov chain notes are chosen sequentially. The sensors are read
between each note. The distance read in from the IR sensor increases or decreases the
initial tempo when an object is closer to the sensor or farther from the sensor,
respectively. The main color detected by the iSight webcam weights the note duration
probabilities as explained in the previous section. Once the sensor readings have been
dealt with the note is played and the system looks at the node for the note played to start
the chain process once again.	

In	 the	 primary	 mode	 of	 operation	 the	 Markov	 chains	 are	 built	 from	 a	 multiple	
songs.	 This	 creates	 a	 kind	 of	 composite	 basis	 for	 the	 generated	 melody.	 In	 another	
mode	 the	 only	 song	 used	 to	 create	 the	 Markov	 chain	 is	 “Twinkle	 Twinkle	 Little	 Star”.	
This	 mode	 allows	 observers	 to	 see	 how	 the	 algorithm	 works	 in	 that	 one	 can	 tell	 that	
the	 song	 sounds	 similar	 to	 the	 original	 song	 but	 is	 in	 fact	 original.	 The	 final	 mode	 of	
operation	 does	 not	 use	 a	 Markov	 model	 but	 instead	 allows	 a	 user	 to	 use	 the	 MIDI	
keyboard	 to	 play	 the	 xylophone	 directly.	

	 8	

9. Experimental Layout and Results
My initial experiments included testing the IR sensor, solenoids, and serial

communications. For the IR sensor I simply connected it to the Arduino and read the
analog value in. The solenoid was able to operate without generating too much heat and
is able to strike the xylophone with enough force to produce good sound. I was also able
to control the Arduino through a C++ program via serial communication. I tested this by
blinking an LED through the C++ software.

I also ran experiments to get color detection to function. After getting OpenCV, an
image processing software, to work within my program I simply displayed the average
color results for images and observed what values I got for different colors. I used this
data to come up with an algorithm to determine the main color seen by the camera at a
given time.

After my initial experimentation I developed my melody generation algorithm and
tested it by combining the tests I had already run. After it was functioning I simply
iterated on the design and added features while continuously testing.

10. Conclusion

My robot works well and meets the criteria it was designed for. It is able to compose
novel melodies using modified Markov chains that are demonstrably influenced by the
MIDI keyboard, IR distance sensor, and webcam. I was able to build the platform, create
circuits for the solenoids, interface my circuits with the Arduino, attach my boards and
components to the platform, achieve communication between the Arduino and my laptop,
implement a melody generation algorithm, and use the algorithm to play the xylophone.

There are some limits to my project. The robot is limited in its melodic expression by
the songs provided in the Markov chains. Since the focus of the project is on melody
composition the robot only plays one note at a time. Additionally, right now the only way
for a user to influence what the robot plays is by setting the key and tempo using the
keyboard or influencing the readings from the other sensors. The quality of the timing of
the notes played by the robots exceeded my expectations. It is usually very accurate.
Areas for improvement include making the aesthetics of the robot more exciting by
adding things like LEDs for each solenoid, having a consistently good sound for each
note strike, and implementing any of the features discussed in the next paragraph.

The only considerable change I would make if I started the project over would be to
add LEDs for the solenoids when I did my electrical work to make the robot look more
appealing. I would also likely keep my specifications the same. However, there is
certainly room for future work. The primary enhancement I would like to make in regard
to future work is adding a mode where the user can play a song on the MIDI keyboard
that the robot will use with the Markov chains in the melody generation algorithm. It
would also be interesting to implement a more complex algorithm that looks at more than
just one previous note to determine the next note to be played, instead looking at patterns
of notes. It could also be worthwhile to impose a traditional repeating verse-chorus
structure in the melody composition algorithm.

	 9	

11. Documentation

[1] Francois Pachet. “The Continuator: Musical Interaction With Style”, International
Computer music Conference, Gotheborg (Sweden), ICMA, September 2002.
http://ehess.modelisationsavoirs.fr/atiam/biblio/Pachet-ICMC-02f.pdf

[2] F. Pachet, P. Roy, and G. Barbieri. “Finite-Length Markov Processes with
Constraints”, Twenty-Second International Joint Conference on Artificial Intelligence,
2011. http://www.csl.sony.fr/downloads/papers/2011/pachet-11b.pdf

[3] Sharp. Sharp GP2Y0A02YK0F Data Sheet, December 1, 2006. Internet:
https://www.sparkfun.com/datasheets/Sensors/Infrared/gp2y0a02yk_e.pdf

[4] Joxemai4. File Markovkate 01.svg, 26 May 2013. Internet:
http://en.wikipedia.org/wiki/File:Markovkate_01.svg

12. Appendices
A) Code

main.cpp

#include "ofMain.h"
#include "testApp.h"

//==
int main(){

 ofSetupOpenGL(640,480, OF_WINDOW); // <-------- setup the GL
context

 // this kicks off the running of my app
 // can be OF_WINDOW or OF_FULLSCREEN
 // pass in width and height too:
 ofRunApp(new testApp());

}

testApp.h

#pragma once

#include "ofMain.h"
#include "ofEvents.h"
#include <sys/time.h>
#include <random.h>
#include <stdlib.h>

	 10	

#include <time.h>

#include "ofxOpenCv.h"
#include "ofxMidi.h"
#include "ofMath.h"

#define C 0
#define Cs 1
#define D 2
#define Ds 3
#define E 4
#define F 5
#define Fs 6
#define G 7
#define Gs 8
#define A 9
#define As 10
#define B 11
#define REST 12

#define WN 0
#define DH 1
#define HN 2
#define DQ 3
#define QN 4
#define DE 5
#define EN 6
#define DS 7
#define SN 8
#define TS 9

#define HIT 15000

class testApp : public ofBaseApp, public ofxMidiListener
{

public:

 void setup();
 void update();
 void draw();
 void exit();
 void newMidiMessage(ofxMidiMessage& eventArgs);
 void color();
 void tempo();
 void setupMarkov();
 void markov();
 void transpose();
 int findWeight(vector<int> chain, int rnd);
 void weightTempo();

 ofArduino ard; //arduino varaible
 bool bSetupArduino; //flag variable for
setting up arduino once

 ofVideoGrabber vidGrabber; //needed to get camera
image
 ofxCvColorImage colorImg; //used to display camera
image
 int h,w; //height and width of the

	 11	

camera
 int r,g,b,color_count; //used for rgb calculations
 string main_color = "White/None"; //the main color captured
by the camera

 int distance_val = 0; //analog in from IR sensor

 unsigned long last_time = 0; //last saved time
 unsigned long now_time; //current time
 unsigned long note_time; //time to start next note
 float rest; //us between quarter notes
before subtracting HIT time
 int tempo_ind = 0; //index for tempo array
 float tempo_arr [8]; //array used to determine
tempo (rest values stored here)

 int key; //key of composition
(C=0,C#=1,...)

 vector< vector< int > > markov_note; //an array to build a
markov chain; 12 + (none) possible previous notes
 int prev_note = 12; //the previous note
selected
 int curr_note; //the current selected note
 vector< vector< int > > markov_del; //an array to build a
markov chain; 10 + (none) possible previous delays
 int prev_del = 10; //the previous delay
selected
 int curr_del; //the current delay
selected

 int del_lengths[10]; //length of each delay
(whole=0,dotted_half=1,...)
 int w_del_len[10]; //weighted delay lengths
 int past_note_del; //

 int whole,half,quarter; //note delay values
 int eighth,sixteenth,thirtysecond; //note delay values
 int dotted_half,dotted_quarter; //note delay values
 int dotted_eighth,dotted_sixteenth; //note delay values

 bool free_play = false; //in free play mode

 string notes[12] = {"C","C#","D","D#","E","F","F#","G","G#","A","A#","B"};
 string delays[10] = {"WHOLE", "DOT HALF", "HALF", "DOT QUARTER", "QUARTER",
"DOT 8TH", "8TH", "DOT 16TH", "16TH", "32ND"};

 ofxMidiIn midiIn;
 ofxMidiMessage midiMessage;

 int note;

private:

 void setupArduino(const int & version);
 void digitalPinChanged(const int & pinNum);
 void analogPinChanged(const int & pinNum);
 void updateArduino();
};

	 12	

testApp.cpp

#include "testApp.h"

//--
void testApp::setup()
{
 // add testApp as a listener
 midiIn.addListener(this);

 //set up serial communication (port,baud rate)
 ard.connect("/dev/tty.usbmodem411", 57600);

 //set width and height of camera image
 w = 640;
 h = 480;

 //rgb sums of image and number of pixels contributing to that sum
 r = 0;
 g = 0;
 b = 0;
 color_count = 0;

 //set up video grabber for camera
 vidGrabber.setVerbose(true);
 vidGrabber.initGrabber(w,h);

 //allocate for displaying camera image
 colorImg.allocate(w,h);

 midiIn.listPorts();
 midiIn.openPort(0);
 midiIn.ignoreTypes(false, false, false);
 midiIn.setVerbose(true);

 // listen for EInitialized notification. this indicates that
 // the arduino is ready to receive commands and it is safe to
 // call setupArduino()
 ofAddListener(ard.EInitialized, this, &testApp::setupArduino);
 bSetupArduino = false; // flag so we setup arduino when its ready,
you don't need to touch this

 setupMarkov();

 ofSeedRandom();

 while(tempo_ind < 7) { ard.update(); }
}

//--
void testApp::update()
{
 if (tempo_ind < 7)
 {
 ard.update();
 }
 else
 {
 //update Arduino
 updateArduino();

	 13	

 //determine color (main_color updated to "Red", "Green", "Blue", or
"White/None")
 color();

 //display IR reading
 distance_val = ard.getAnalog(0);

 markov();

 weightTempo();

 transpose();

 while(ofGetElapsedTimeMicros() < note_time);

 cout << "Note: " << notes[curr_note] << endl;
 cout << "Length: " << delays[curr_del] << endl;
 cout << "Distance Value = " << distance_val << endl;
 cout << "Main Color = " << main_color << endl;
 cout << endl;

 ard.sendDigital((2 + curr_note),1);
 usleep(HIT);
 ard.sendDigital((2 + curr_note),0);
 note_time = ofGetElapsedTimeMicros() + w_del_len[curr_del];
 }
}

//--
void testApp::setupArduino(const int & version)
{

 // remove listener because we don't need it anymore
 ofRemoveListener(ard.EInitialized, this, &testApp::setupArduino);

 // it is now safe to send commands to the Arduino
 bSetupArduino = true;

 // print firmware name and version to the console
 ofLogNotice() << ard.getFirmwareName();
 ofLogNotice() << "firmata v" << ard.getMajorFirmwareVersion() << "." <<
ard.getMinorFirmwareVersion();

 // set 2-13 for solenoids out
 ard.sendDigitalPinMode(2, ARD_OUTPUT);
 ard.sendDigitalPinMode(3, ARD_OUTPUT);
 ard.sendDigitalPinMode(4, ARD_OUTPUT);
 ard.sendDigitalPinMode(5, ARD_OUTPUT);
 ard.sendDigitalPinMode(6, ARD_OUTPUT);
 ard.sendDigitalPinMode(7, ARD_OUTPUT);
 ard.sendDigitalPinMode(8, ARD_OUTPUT);
 ard.sendDigitalPinMode(9, ARD_OUTPUT);
 ard.sendDigitalPinMode(10, ARD_OUTPUT);
 ard.sendDigitalPinMode(11, ARD_OUTPUT);
 ard.sendDigitalPinMode(12, ARD_OUTPUT);
 ard.sendDigitalPinMode(13, ARD_OUTPUT);

 //set A0 for IR sensor in
 ard.sendAnalogPinReporting(0, ARD_ANALOG);

	 14	

 //initialize all solenoids to 0
 ard.sendDigital((2),0);
 ard.sendDigital((3),0);
 ard.sendDigital((4),0);
 ard.sendDigital((5),0);
 ard.sendDigital((6),0);
 ard.sendDigital((7),0);
 ard.sendDigital((8),0);
 ard.sendDigital((9),0);
 ard.sendDigital((10),0);
 ard.sendDigital((11),0);
 ard.sendDigital((12),0);
 ard.sendDigital((13),0);

 // Listen for changes on the digital and analog pins
 ofAddListener(ard.EDigitalPinChanged, this, &testApp::digitalPinChanged);
 ofAddListener(ard.EAnalogPinChanged, this, &testApp::analogPinChanged);
}

//--
void testApp::updateArduino()
{

 // update the arduino, get any data or messages.
 // the call to ard.update() is required
 ard.update();

 // do not send anything until the arduino has been set up
 if (bSetupArduino)
 {
 //ard.sendDigital(13,1);
 //sleep(1);
 //ard.sendDigital(13,0);
 //sleep(1);
 }

}

// digital pin event handler, called whenever a digital pin value has changed
// note: if an analog pin has been set as a digital pin, it will be handled
// by the digitalPinChanged function rather than the analogPinChanged function.

//--
void testApp::digitalPinChanged(const int & pinNum)
{
 // do something with the digital input. here we're simply going to print
the pin number and
 // value to the screen each time it changes
 //buttonState = "digital pin: " + ofToString(pinNum) + " = " +
ofToString(ard.getDigital(pinNum));
}

// analog pin event handler, called whenever an analog pin value has changed

//--
void testApp::analogPinChanged(const int & pinNum)
{
 // do something with the analog input. here we're simply going to print the
pin number and
 // value to the screen each time it changes

	 15	

 //potValue = "analog pin: " + ofToString(pinNum) + " = " +
ofToString(ard.getAnalog(pinNum));
}

//--
void testApp::draw()
{
 // draw the incoming, the grayscale, the bg and the thresholded difference
 ofSetHexColor(0xffffff);
 colorImg.draw(0,0);

 ofSetColor(0);
 }

//--
void testApp::exit ()
{
 // clean up
 midiIn.closePort();
 midiIn.removeListener(this);
}

//--
void testApp::newMidiMessage(ofxMidiMessage& msg)
{
 midiMessage = msg;
 int true_note = midiMessage.pitch;
 note = true_note % 12;

 if (midiMessage.status == 144)
 {
 if (true_note == 72)
 {
 tempo_ind = 0;
 last_time = 0;
 free_play = !free_play;

 if (free_play) { cout << endl; cout << "Free Play Mode" << endl;
cout << endl;}
 else { cout << endl; cout << "Standard Mode" << endl; cout << endl;
}
 }
 else if (tempo_ind < 7 && !free_play)
 {
 cout << "MIDI Pitch: " << note << endl;
 key = note;

 //calculate time between notes
 if (last_time == 0)
 {
 //last_time = clock();
 last_time = ofGetElapsedTimeMicros();
 }
 else
 {
 now_time = ofGetElapsedTimeMicros();
 rest = now_time - last_time;
 last_time = now_time;
 tempo_arr[tempo_ind] = rest;
 tempo_ind++;

	 16	

 cout << "Rest (ms): " << rest / 1000 << endl;
 }

 if (tempo_ind == 7) { tempo(); }
 }
 else if (!free_play) //reset
 {
 tempo_ind = 0;
 last_time = 0;
 }
 else
 {
 cout << "MIDI Pitch: " << note << endl;
 ard.sendDigital((2 + note),1);
 usleep(HIT);
 ard.sendDigital((2 + note),0);
 }
 }
}

//--
void testApp::color()
{
 //background for displaying frame
 //ofBackground(100,100,100);

 int temp_r, temp_g, temp_b;
 r = 0;
 g = 0;
 b = 0;

 //get frame
 bool bNewFrame = false;
 vidGrabber.update();
 bNewFrame = vidGrabber.isFrameNew();

 if (bNewFrame)
 {

 for (int y=0; y<h; y+=10)
 {
 for (int x=0; x<w; x+=10)
 {

 //get pixel color and add to rgb sums
 color_count++;
 int i = (y*w+x)*3;
 r += vidGrabber.getPixels()[i+0];
 g += vidGrabber.getPixels()[i+1];
 b += vidGrabber.getPixels()[i+2];

 /*if (temp_r > 100 && temp_g < 100) { r++; }
 else if (temp_g > 100 && temp_r < 100) { g++; }
 else if (temp_b > 100 && temp_r < 100) { b++; }*/
 }
 }

 //used to display camera image
 //colorImg.setFromPixels(vidGrabber.getPixels(), w,h);

	 17	

 //get color averages across camera image
 r = r / color_count;
 g = g / color_count;
 b = b / color_count;
 cout << "R = " << r << ", G = " << g << ", B = " << b << endl;

 //determine main color
 if (r > 100 && g < 120) { main_color = "Red"; }
 else if (g > b && r < 120) { main_color = "Green"; }
 else if (b > g && r < 120) { main_color = "Blue"; }
 else { main_color = "White/None"; }

 //reset color variables
 r = 0;
 g = 0;
 b = 0;
 color_count = 0;
 }
}

//--
void testApp::tempo()
{
 //find average rest value for quarter note
 rest = 0;
 for (int i = 0; i < 7; i++) { rest += tempo_arr[i]; }
 rest = rest / 7;

 //set the rest values for each note in us
 whole = (rest * 4) - HIT;
 dotted_half = (rest * 3) - HIT;
 half = (rest * 2) - HIT;
 dotted_quarter = (rest * 1.5) - HIT;
 quarter = rest - HIT;
 dotted_eighth = (rest * 0.75) - HIT;
 eighth = (rest * 0.5) - HIT;
 dotted_sixteenth = (rest * 0.375) - HIT;
 sixteenth = (rest * 0.25) - HIT;
 thirtysecond = (rest * 0.125) - HIT;

 del_lengths[0] = whole;
 del_lengths[1] = dotted_half;
 del_lengths[2] = half;
 del_lengths[3] = dotted_quarter;
 del_lengths[4] = quarter;
 del_lengths[5] = dotted_eighth;
 del_lengths[6] = eighth;
 del_lengths[7] = dotted_sixteenth;
 del_lengths[8] = sixteenth;
 del_lengths[9] = thirtysecond;

 memcpy(w_del_len, del_lengths, sizeof(del_lengths));

 cout << "Rest Avg: " << rest << endl;
 cout << endl;
}

//--
void testApp::setupMarkov()
{
 int i;

	 18	

 //initialize rows for note vector
 for (i = 0; i < 13; i++)
 {
 vector<int> new_row;
 markov_note.push_back(new_row);
 }

 //initialize rows for delay vector
 for (i = 0; i < 11; i++)
 {
 vector<int> new_row;
 markov_del.push_back(new_row);
 }
 // C D E F G A B
 int c_arr[12] = {8,0,1,0,0,0,0,5,0,0,0,0};
 int d_arr[12] = {3,0,2,0,3,0,0,1,0,0,0,0};
 int e_arr[12] = {2,0,6,0,7,2,0,0,0,0,0,0};
 int f_arr[12] = {0,0,0,0,6,4,0,1,0,0,0,0};
 int g_arr[12] = {1,0,0,0,1,5,0,6,0,2,0,0};
 int a_arr[12] = {0,0,0,0,0,0,0,2,0,2,0,0};
 int n_arr[12] = {2,0,0,0,0,0,0,0,0,0,0,0};

 // W H Q E S T
 int dot_half_arr[10] = {0,0,0,0,0,0,1,0,0,0};
 int half_arr[10] = {0,0,0,0,4,0,0,0,0,0};
 int dot_quarter_arr[10] = {0,0,0,1,2,0,0,0,0,0};
 int quarter_arr[10] = {0,0,4,0,30,0,7,0,0,0};
 int eighth_arr[10] = {0,2,1,1,4,0,13,0,0,0};
 int nd_arr[10] = {0,0,0,1,1,0,0,0,0,0};

 markov_note[C].insert(markov_note[C].begin(),c_arr,c_arr+12);
 markov_note[D].insert(markov_note[D].begin(),d_arr,d_arr+12);
 markov_note[E].insert(markov_note[E].begin(),e_arr,e_arr+12);
 markov_note[F].insert(markov_note[F].begin(),f_arr,f_arr+12);
 markov_note[G].insert(markov_note[G].begin(),g_arr,g_arr+12);
 markov_note[A].insert(markov_note[A].begin(),a_arr,a_arr+12);
 markov_note[12].insert(markov_note[12].begin(),n_arr,n_arr+12);

 markov_del[DH].insert(markov_del[DH].begin(),dot_half_arr,dot_half_arr+10);
 markov_del[HN].insert(markov_del[HN].begin(),half_arr,half_arr+10);

markov_del[DQ].insert(markov_del[DQ].begin(),dot_quarter_arr,dot_quarter_arr+10
);
 markov_del[QN].insert(markov_del[QN].begin(),quarter_arr,quarter_arr+10);
 markov_del[EN].insert(markov_del[EN].begin(),eighth_arr,eighth_arr+10);
 markov_del[10].insert(markov_del[10].begin(),nd_arr,nd_arr+10);

}

//--
void testApp::markov()
{
 int total_weight = 0;
 float weight;
 float slow_weight = 1.0;
 float fast_weight = 1.0;
 for(int i = 0; i < markov_note[prev_note].size(); i++) { total_weight +=
markov_note[prev_note][i]; }
 int rand_n = ofRandom(total_weight);
 curr_note = findWeight(markov_note[prev_note], rand_n);

	 19	

 prev_note = curr_note;

 vector<int> temp = markov_del[prev_del];
 if (main_color == "Red") { slow_weight = .25; fast_weight = 4; }
 else if (main_color == "Blue") { slow_weight = 4; fast_weight = 0.25; }
 else if (main_color == "Green") {slow_weight = 0.25; fast_weight = 0.25; }
 //cout << "P Before: {" << temp[0] << "," << temp[1] << "," << temp[2] <<
"," << temp[3] << "," << temp[4] << "," << temp[5] << "," << temp[6] << "," <<
 // temp[7] << "," << temp[8] << "," << temp[9] << "}" << endl;
 for (int i = 0; i < 4; i++)
 {
 weight = temp[i] * slow_weight;
 temp[i] = weight;
 }
 for (int i = 6; i < 10; i++)
 {
 weight = temp[i] * fast_weight;
 temp[i] = weight;
 }
 //cout << "P After: {" << temp[0] << "," << temp[1] << "," << temp[2] <<
"," << temp[3] << "," << temp[4] << "," << temp[5] << "," << temp[6] << "," <<
 // temp[7] << "," << temp[8] << "," << temp[9] << "}" << endl;
 total_weight = 0;
 for(int i = 0; i < temp.size(); i++) { total_weight += temp[i]; }
 int rand_d = ofRandom(total_weight);
 curr_del = findWeight(temp, rand_d);
 prev_del = curr_del;
}

//--
void testApp::transpose()
{
 int temp_note = curr_note + key;

 if (temp_note > 11) { temp_note = temp_note % 12; }

 curr_note = temp_note;
}

//--
int testApp::findWeight(vector<int> chain, int rand)
{
 for(int i=0; i < chain.size(); i++)
 {
 if(rand < chain[i]) { return i; }
 rand -= chain[i];
 }

 assert(!"should never get here");
}

//--
void testApp::weightTempo()
{
 float weight;
 if (distance_val >= 368)
 {
 weight = 368 / (float)distance_val;
 }
 else {weight = (735 - (float)distance_val) / 368;}

	 20	

 memcpy(w_del_len, del_lengths, sizeof(del_lengths));

 for(int i = 0; i < 10; i++)
 {
 w_del_len[i] = w_del_len[i] * weight;
 }
}

