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Abstract—In prior work, the Distributed Gradient Projection
(DGP) algorithm was proposed to allow loads or load aggregators
to provide contingency service to the grid using local frequency
measurements. The DGP algorithm was shown to perform well
in linear simulations. The goal of this work is to evaluate the
performance of the DGP algorithm in more realistic scenarios
and its robustness to issues of practical implementation, such as
time delay, model mismatch, measurement noise, and stochastic
disturbance. Simulation results from the IEEE 39-bus system
indicate that the DGP algorithm performs well in mitigating the
effects of contingencies and that it is robust to issues of practical
implementation.

I. INTRODUCTION

An important class of ancillary services required to maintain
stability of the power grid is contingency services, which refers
to actions taken to correct demand-supply imbalance after a
contingency event such as a generator or transmission line
trip [1]. Typically, generators are tasked with providing this
service. An alternative that has drawn increasing attention is
the use of smart loads as contingency reserves.

One question that arises in the control of smart loads for
providing grid support is how to apportion the control effort
(i.e., change in demand) among various loads in a fair manner.
If the loads are of the same type, consumers’ quality of
service (QoS) can be maintained by ensuring that some signal
that measures QoS stays within predetermined bounds. For
instance, if the loads are air conditioners, then as long as
indoor temperature variation of each unit is within a small
predetermined band, the question of appropriate distribution
of control effort among the loads can be avoided. However,
when loads are heterogenous, such a uniform measure of QoS
may be lacking. In fact, it is envisioned that in the future
grid, aggregators will play the role of a middleman between
the grid operators and consumers [2]–[4]. An aggregator may
have a large number of heterogenous loads within its service
sector, such as multiple commercial-building HVAC systems,
many residential water heaters and pool pumps, etc. Moreover,
the capacity of each aggregator may be not only different,
but itself elastic—with more capacity available at a higher
“cost”—rather than a fixed inflexible capacity that is known
ahead of time. In such a scenario, it is more appropriate to
distribute the effort among the aggregators by minimizing the
total cost involved in executing the control action. Since this
cost may not be strictly monetary but may vary depending on

the type of consumers involved and their perception of service
obtained etc. we refer to this cost as a disutility. The disutility
is assumed to be a function of the demand variation from the
nominal demand.

In our prior work [5], the Distributed Gradient Projection
(DGP) algorithm was proposed to compute control actions for
a group of agents (loads or load aggregators) with flexible
demand by solving an optimization problem: minimize total
disutility among all the agents subject to the constraint that
the total demand-supply imbalance is made 0. The change
in demand to meet the constraint provides the contingency
service, while the minimization is meant to provide an op-
timal distribution of effort among heterogenous agents. The
algorithm is distributed: agents use locally obtained frequency
measurements and inter-agent communication to compute their
control actions. Finally, the algorithm preserves privacy: only
gradient information is sent to other loads—not demand or
disutility. Simulations indicated the algorithm is successful in
mitigating frequency deviations following a contingency, and
it was also proven that the distributed decisions computed
by the algorithm converge to the central optima. Both the
simulation-based evaluations and the theoretical results in [6]
were obtained under a number of simplifying assumptions.

In this paper, (1) we assess the performance of the DGP
algorithm under more realistic situations (than what was done
in [6]), and (2) we examine the robustness of the DGP
algorithm to various uncertainties and errors that are inevitable
when deployed in practice. We do this by testing the algorithm
on the IEEE 39-bus test system under a variety of conditions,
such as effects of measurement noise, communication delay,
and distributed renewable generation. Of particular interest is
the DGP algorithm’s robustness to model mismatch. In the
DGP algorithm, each agent requires a model of the grid to infer
power imbalance, and that model may contain large errors. To
assess the DGP algorithm’s robustness to those errors, loads
are given a linear model of the 39-bus system, and we examine
the DGP algorithm’s performance when a generator is discon-
nected from the system. This generator disconnection renders
the model used by the loads as outdated and inaccurate, and
simulation results indicate the DGP algorithm is robust to such
model mismatch.

In principle, each agent in the DGP algorithm can be a
consumer load. However, in this paper we assume that the



agents are aggregators, which are more suitable for providing
contingency services in deregulated electricity markets since
individual consumers are not well suited to take part in such
markets [7]. Additionally, we assume the aggregators act on
the transmission level directly. The balancing authority has a
model of the transmission grid, which may then be supplied
to the aggregators for use in the DGP algorithm. We do
not consider the problem of computing actions for individual
consumers within the aggregator (given the command to the
aggregator). Methods such as those proposed in [4] can be
used for making such decisions.

A. Literature review

The DGP algorithm was inspired by the work in [8], which
also proposed a distributed algorithm to solve the same opti-
mization problem: minimize total disutility subject to demand-
supply being balanced. The key difference between the DGP
algorithm and that in [8] (which we call the “dual” algorithm
because it solves the dual problem) is that the dual algo-
rithm is only applicable to strictly convex disutility functions,
whereas the DGP algorithm is applicable to convex—but not
necessarily strictly convex—disutility functions, i.e., disutility
functions with affine regions. Not-strictly convex disutility is
a more realistic model of consumers’ disutility in response
to demand variation because there may be no disutility for
some small demand variation around the nominal demand but
a positive disutility for variations higher than a threshold value,
and such a model of consumer disutility is not strictly convex.
For instance, it was shown in [9] that a small variation in fan
power consumption of a commercial HVAC system led to no
perceptible change in indoor climate, but a larger change in
demand (from both the fan and the chiller) led to a 2 deg-F
deviation from the set point. A strictly convex disutility cannot
capture such a phenomenon because every demand variation—
no matter how small—will have a nonzero cost.

A decentralized algorithm for controlling smart loads to pro-
vide contingency reserves was proposed in [10], and no grid
model or communication is required; we call this algorithm the
Optimal Load Control (OLC) algorithm. It was shown in [11]
that the OLC algorithm performs well in the IEEE 39-bus
system for small contingencies. However, the OLC algorithm
also requires disutility functions that are strictly convex with
respect to demand variation. Moreover, the analysis in [10] was
deterministic, and it was shown in [12] that the OLC algorithm
is vulnerable to mean-square instability in the presence of
stochastic disturbance.

A core tenant of the DGP algorithm and those proposed
in [8], [10] is that local frequency measurements provide
global information about the state of the grid. The abil-
ity of loads to use local frequency measurements to infer
global information was observed in [13], and frequency-based
demand-side ancillary service has been a vibrant subject in the
literature [14]–[17]. However, the approaches in these works
only consider loads of the same type (e.g., smart refrigerators)
and are not optimized to minimize disutility for heterogenous
loads.

Another popular mechanism in the literature for loads to
provide demand-side ancillary service is the use of price sig-
nals [18]–[20]. However, because contingencies are unplanned
and must be mitigated in seconds (e.g., a generator trip), price
signals will not be fast enough to provide on-line contingency
service considered in this paper. Additionally, price signals are
in units of price per energy, but change in demand is likely
nonlinear—resulting in different prices for different changes
in demand.

Another possible practice is the use of control signals
distributed to loads by a central balancing authority [4],
[9], [20]–[25]. However, centralized approaches either do not
consider the disutility to consumers, or the central authority
will require all problem data—including sensitive information
such as demand and disutility—violating user privacy.

This paper is organized as follows. In Section II, we
summarize the DGP algorithm. The use and identification of
the grid model are described in Section II-C. In Section III,
results of numerical studies are presented. Finally, Section IV
presents conclusions of this work.

II. SUMMARY OF THE DGP ALGORITHM

A. Problem Formulation

There are n loads (aggregators) in the power grid. Each load
i may change its consumption by

xi ∈ Ωi = [xi, x̄i].

There is a disutility function, fi(xi), associated with load
i’s change in consumption. The generation in the grid is
denoted as g, and the global difference between generation
and consumption is denoted as u = g − 1Tx, where x is
the vector of xi. It is the objective of the loads to change
their consumption from their nominal values to obtain while
minimizing their total collective disutility. Formally, the loads
are to solve the following optimization problem:

min
xi, i=1,...,n

n∑
i=1

fi(xi), s.t.
n∑
i=1

xi = g, xi ∈ Ωi.

Each load i can obtain local noisy frequency measurements,
∆ω̃i. Additionally, there exists a communication network
among the loads, whose graph is denoted G = (V, E), where
the node set, V = {1, 2, . . . , n}, is the set of loads and the edge
set, E ⊆ V × V , denotes the pairs of loads that can exchange
information. The set of loads with whom load i can exchange
information is denoted Ni = {j|(i, j) ∈ E}. This architecture
is illustrated in Fig. 1.

B. The DGP Algorithm

The update law of the DGP algorithm consists of three main
parts: i) a generation-matching step, ii) a gradient-descent step,
and iii) a projection step. For the generation-matching step,
each load uses its local frequency measurements and a model
of the grid to infer and reduce the global power imbalance
(see Section II-C); the power imbalance inferred by load i is
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Fig. 1. Schema of DGP-algorithm architecture.

denoted ûi[k]. The gradient-descent step utilizes load-to-load
communication to equalize the loads’ gradients. Finally, the
projection step limits each load i’s consumption change to its
feasible range, .

The update law of the DGP algorithm for load i at time k
is summarized in the following [5].
DGP Algorithm:

1) Obtain ûi[k] from the measurement ∆ω̃i[k] using a
state estimator, which is described in Section II-C. The
generation-matching step is then γ[k]ûi[k], where γ[k]
is a step size.

2) Compute gradient d
dxi

fi(xi[k]), transmit gradient value
to neighbors, and receive neighbors’ gradient values.
Compute the gradient descent step ∆xi[k] as the ith

entry of ∆x[k], where

∆xk , −L∇f(xk)T ,

where L is the Laplacian matrix of the communication
graph G [26].

3) Compute xi[k + 1] = PΩi

[
xi[k] + cγ[k]∆xi[k] +

γ[k]ûi[k]
]
, where PΩi

[·] denotes the standard projection
operator, γ[k] is a step size, and c is a positive constant.

C. Estimating Global Power Imbalance
Each load uses its local frequency measurements and a

linear, time-invariant (LTI) model of the grid to infer the global

power imbalance using an algorithm proposed in [27], which
estimates an unknown input from output measurements. This
estimation is achieved by effectively “back-solving” the state-
space equations for the input. In this application, the input
to the model is power imbalance, and the output is power
frequency. (For more details on the estimation algorithm, in-
terested readers are referred to [8].) Therefore, each aggregator
requires a discrete-time LTI model of the grid with power
imbalance as the input and frequency deviation as the output.
In practice, the balancing authority has a detailed model of
the transmission grid, from which they can extract simplified
models. These models in turn can be provided to aggregators.

For this work, each load needs a discrete-time LTI model
of the IEEE 39-bus system. We use the least-squares identifi-
cation method [28], in which unknown, discrete-time transfer-
function parameters are estimated using input-output data
from the 39-bus system. A pseudorandom-binary-sequence
disturbance was applied to the 39-bus system, and a second-
order transfer function was identified relating power imbalance
to the mean frequency of the generators. Fig. 2 shows the
step response of the identified model and the 39-bus system.
This implementation of the 39-bus test system had the multi-
band Power System Stabilizer (PSS) activated for system
stabilization as implemented in [29]. It can be seen that the
identified model is highly inaccurate due to the complexity of
the 39-bus system and the simplicity of a second-order linear
model.
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Fig. 2. Step response of identified LTI model and IEEE 39-bus system.

III. RESULTS OF NUMERICAL STUDIES

A. Simulation Setup

The DGP algorithm was tested in the IEEE 39-bus test
system, implemented in SimPowerSystems [29]. This system
has 10 synchronous machines, each one of them with governor
control and PSS. The test system has 19 loads, and each load



can modulate its consumption by ±5%; that is, if the nominal
consumption of load i is xoi , then Ωi = [−0.05xoi , 0.05xoi ].

We test the performance of the DGP algorithm with a
convex (but not strictly convex) function:

fi(xi) =


0, |xi| < ai
1
βi

(xi − ai)2, xi ≥ ai
1
βi

(xi + ai)
2, xi ≤ −ai

(1)

where ai = 0.05x̄i and βi is chosen from a uniform distribu-
tion on [0.1, 0.3] for each i. There is a communication delay
for each load, i.e., each load only has access to past values
of its neighbors’ gradients. For frequency measurements, each
load has access to the speed (frequency) of the closest gen-
erator, and those measurements are corrupted by zero-mean
Gaussian noise with a standard deviation of 0.01% of the
value of synchronous frequency (60 Hz), unless otherwise
noted. The loads use the model identified in Section II-C to
estimate power imbalance using the frequency measurements.
It is considered that the consumption of loads vary over time.
This fluctuation is modeled as Gaussian additive noise in
power consumption of each load with zero-mean and standard
deviation equal to 0.01% of the power of the load (except for
Case study 5). The gains used in the DGP algorithm are c = 5
and γ[k] = 0.06/(19 maxi{βi}) for all k.

We conduct multiple case studies to assess: i) effect of
model mismatch, ii) effect of communication delay, iii) effect
of communication topology, iv) effect of measurement noise,
and v) effect of uncertain, uncontrollable renewables. When
one parameter is varied to study its effect, others are held
constant at their nominal values. The nominal values for
communication delay and measurement-noise standard devi-
ation are 100 ms and 0.01%. The nominal edge set for the
communication graph is E = {(i, j)||i− j| = 1}.

B. Case 1: Model Mismatch and Communication Delay

To evaluate model mismatch, we disconnect generator 5
(508 MW) from the system at 5 seconds; generator 5 accounts
for nearly 10% of the total generation in the system.

For communication delay, we use three different values
for each scenario: no delay, 100 ms, and 1 second of com-
munication latency between adjacent nodes. Fig. 3 shows
the results of generator 5 being disconnected from the grid.
Results for nominal operation (without smart loads) are shown
for comparison. The frequency (speed deviation) shown is the
mean deviation of all 10 generators from 60 Hz. Although the
DGP algorithm only marginally aids in the voltage recovery
at bus 20, the frequency deviation caused by the generator’s
disconnection is halved compared to the scenario without
demand response. The DGP algorithm achieves this while
using the original model identified in Section II-C, which is
no longer accurate due to changes caused by the generator
disconnection. In this case, the performance of the method is
only marginally affected by the time delay in communications.
The loss of a generator creates a much larger frequency
deviation than the load increase in the following case studies.

Therefore, the response of the DGP algorithm is dominated
by the generation-matching term, which is not affected by
communication delay.
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Fig. 3. Effects of model mismatch and communication delay: generator-5
disconnection.

C. Case 2: Load Increase and Communication Delay

Fig. 4 shows the results of a load disturbance applied
to bus 27. Again, results without smart loads are shown
for comparison. The DGP algorithm successfully arrests fre-
quency deviations from the disturbance. In addition, the DGP
algorithm halves the voltage drop at bus 27 caused by the
disturbance compared to the scenario without demand re-
sponse, and the voltage recovers more quickly under the DGP
algorithm than nominal operation. These results are despite
the inaccuracies in the identified model that the loads use to
estimate the disturbance (see Fig. 2). Additionally, we can
notice that a larger time delay in communications tends to
worsen the response time of the DGP algorithm. In particular,
the longer delay results in a longer time for the disutility
to reach steady state. This is because the delay affects the
gradient-descent step in the algorithm, which corresponds to
minimizing disutility.
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Fig. 4. Effect of communication delay: 150-MW load disturbance at bus 27.

D. Case 3: Load Increase and Communication Topology

We have repeated the simulation of case study 2
changing the communication topology. The new edge
set for the communication graph is given by E2 =
{(1, 2), (1, 8), (1, 13), (2, 3), (3, 4), (3, 18), (4, 19), (5, 6),
(6, 7), (7, 9), (7, 10), (7, 12), (7, 15), (11, 12), (13, 14), (14, 15),
(14, 17), (16, 17)}, which is a connected graph that links the
closest loads. Fig. 5 shows that changing the topology has
little effect on the performance of the DGP algorithm.

E. Case 4: Load Increase and Measurement Noise

To evaluate the effect of frequency measurement noise,
we have repeated the setup of case study 2 but fixing the
communication time delay to 100 ms and setting the standard
deviation of the frequency noise measurement to 0.01%, 0.1%
and 1%. The results shown in Fig. 6 demonstrate that a noisy
measurement can harm the performance of the DGP algorithm
in terms of reducing frequency deviation. When compared to
the performance of the system without smart loads, the results
are superior for the cases where the standard deviation of
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Fig. 5. Effects of change in topology and communication delay: 150-MW
load disturbance at bus 27.

noise is 0.01%, 0.1% and similar when it is equal to 1%.
It is important to note that in the case without smart loads the
control systems of the synchronous machines that keep the
system stable do not rely on noisy measurements.
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Fig. 6. Effect of noise in frequency measurement: 150-MW load disturbance
at bus 27.

F. Case 5: Load Increase and Fluctuations from Renewables
The effect of widespread intermittent, uncertain, and un-

controllable renewable energy generation was considered as an
increase in the fluctuation of the consumption from loads. This
was modeled as an increase in the standard deviation of each
load from 0.01% to 0.1% and 1% of the active power of the
load. The same cases were also tested for the system without
smart loads. This case used the same disturbance applied in
case study 2 but with communication latency of 100 ms. The
results depicted in Fig. 7 show that the DGP algorithm can
compensate for the 10-fold increase in the uncertainty of load,
but when the standard deviation of the noise is equal to 1%, the
performance of the method is severely reduced. In comparison
to the case without smart loads, however, there are gains with
reduced speed deviation from the nominal value for all cases.
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IV. CONCLUSION

The DGP algorithm proposed in [5] was designed for loads
to provide contingency service in the power grid. The focus
of this work was to evaluate the performance of the DGP
algorithm in more-realistic scenarios than were considered
in [5]. In the scenarios examined, the DGP algorithm was able
to successfully arrest frequency deviations that result from a
disturbance applied to the grid. The DGP algorithm requires
each load to have a model of the grid, but numerical results
suggest the DGP algorithm performs well even when the loads’
model is inaccurate. It is the subject of future work to analyze
other scenarios (e.g., change in topology of the power grid or
a sensor with faulty measurements).
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