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Abstract

An occupancy-based feedback control algorithm is proposed for variable air vol-

ume HVAC systems that is applicable to the “under-actuated” case in which

multiple rooms share the same HVAC equipment. The proposed algorithm is

scalable to buildings of arbitrary size without increase in complexity. Experi-

mental results in five rooms show 29-80% energy savings potential. Despite the

inability to condition rooms independently due to the shared HVAC equipment,

comfort was found to be well maintained—even when one room was warmer

and another was cooler.

Keywords: energy efficiency, thermal comfort, HVAC, variable air volume,

occupancy-based control

1. Introduction

Buildings consume a significant portion of total energy use, and approx-

imately half of this consumption comes from heating, ventilation, and air-

conditioning (HVAC) systems [1]. A great deal of work has been done on HVAC
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control algorithms to make buildings more energy-efficient [2, 3, 4, 5]. Most5

conventional HVAC control systems do not use real-time measurements of oc-

cupancy. Rather, they maintain indoor climate regardless of whether occupants

are present or not. Some systems use a “nighttime setback” logic in which set

points are relaxed at night when the building is presumed to be unoccupied,

but such time-based strategies can cause discomfort to occupants should they10

be present during the “nighttime” period. In addition, nighttime setback is

unable to take advantage of absence of occupants during daytime. Significant

energy savings—as well as increased comfort and indoor air quality (IAQ)—can

be achieved by incorporating real-time occupancy information into the control

loop [6, 7, 8].15

Most of the works that have used real-time occupancy measurements for

HVAC control, however, are restricted to scenarios where the climate of each

occupied space can be controlled independently, which is often not the case. For

indoor climate control, a building is typically divided into zones. Some of these

zones consist of only a single room—allowing for independent control of room20

climate. We call such zones “fully actuated”. In many systems, however, a zone

is comprised of multiple rooms. We call such zones “under-actuated”. In an

under-actuated zone, each room’s climate cannot be controlled independently

because multiple rooms share one set of HVAC equipment. For instance, if a

variable air volume (VAV) terminal box is used to supply air to two rooms,25

cooling one room will necessarily cool the other. This poses challenges when

climate conditions are different in different rooms within the same zone (e.g.,

one room is hot and one room is cold).

Conventional HVAC systems with under-actuated zones compute control

actions for a zone based on either average values of measurements from the30

rooms or measurements from a single room in the zone. Both of these can

result in poor climate control.

Despite the fact that many HVAC systems contain under-actuated zones,

work on energy-efficient control of under-actuated zones is noticeably lacking

in the literature. While some works have experimentally tested occupancy-35
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based control schemes in under-actuated HVAC zones, such as [9, 10], it is not

clear whether the algorithms provide any guarantee for under-actuated zones

or whether the results indicate that the algorithms are effective for the under-

actuated case. For instance, in [9], it is unclear how the proposed control algo-

rithm deals with under-actuated zones as it is described on the basis of rooms40

rather than zones. Similarly, the controller proposed in [10] “...will turn-off (or

put into stand-by) zones that are currently unoccupied”, but it is not clear how

difference in occupancy between the rooms of an under-actuated zone is han-

dled. Finally, the existing work does not provide analysis of the experimental

results to show how the controllers performed in the under-actuated zones.45

In this work, we propose a feedback control algorithm, MOBSua (Measured

Occupancy-Based Setback for under-actuated zones), for energy-efficient con-

trol of both fully actuated and under-actuated zones. The MOBSua algorithm

is an extension of the MOBS algorithm described in [11]. The MOBS algo-

rithm utilizes real-time occupancy measurements to increase the energy effi-50

ciency of a VAV HVAC system. Significant energy savings were found through

simulation, and these results were verified through experiments in [12]. The

MOBS algorithm was designed, however, for fully actuated zones and cannot

be implemented “as-is” in under-actuated zones. The MOBSua algorithm is

designed to improve both energy efficiency and thermal comfort of occupants55

in under-actuated zones over conventional control logics that do not use occu-

pancy measurements; it also ensures that ventilation constraints mandated by

the American Society of Heating, Refrigerating, and Air-Conditioning Engineers

(ASHRAE) are met in all rooms of a zone even if it is under-actuated. It is

important to note as well that the MOBSua algorithm is scalable to buildings of60

arbitrary size because control decisions are made independently for each zone.

The algorithm was implemented in three zones in a real commercial building

on the University of Florida campus (Pugh Hall) and tested continuously for

a week-long period. A wireless sensor network (WSN) was deployed in the

building to provide real-time measurements of occupant presence, which were65

used for the control, and of CO2, humidity, and temperature. Results of the
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experiment indicate that thermal comfort was maintained well—even in the

worst case scenario when one room is hot and the other is cold. In addition to

improving comfort, the MOBSua algorithm led to significant energy savings over

the baseline controller. The control system achieved the improvement in energy70

use and thermal comfort at low cost since the required measurements for the

control computations were obtained with minimal additions to the building’s

existing infrastructure.

In addition to a novel algorithm and its experimental evaluation, a third

contribution of this paper is a method to identify a “baseline” for comparing the75

performances of distinct controllers. While others have grappled with this issue

and have developed ways to address it, the methods are not clearly described

to be reproducible.

A preliminary version of this work was presented in [13] in which we com-

pared predictive and feedback control algorithms to a common baseline algo-80

rithm via simulation of an under-actuated zone. Because the HVAC actuation

considered in [13], specifically room heating, is different than the one in this

work, the MOBSua algorithm described here is somewhat different from the one

in [13]. The simulations reported in [13] indicated that additional benefits of

the predictive control algorithm may not be enough to justify the increased cost85

of its deployment. This increase in deployment cost is due to the increase in

computational complexity and the difficulty in obtaining occupancy predictions.

Therefore we limit ourselves to feedback control in this paper both in algorithm

development and experimental evaluation.

The rest of the paper is organized as follows. We describe both the base-90

line and MOBSua control algorithms in Section 2. In Section 3, we describe

the evaluation metrics that we use to assess relative performance between the

two control algorithms. The experimental setup is described in Section 4. We

present the results of our experiments in Section 5. Finally, we conclude this

work in Section 6.95
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2. Control Algorithms

The control algorithms described below are for a VAV HVAC system with

terminal reheat. In VAV systems, a central air handling unit (AHU) conditions

mixed air—consisting of a mixture of outside air and recirculated air from the

zones—and then distributes the conditioned air to the zones that it serves; see100

Fig. 1. Each VAV box has an air damper to modulate airflow to the zone and a

heating coil to reheat the air conditioned by the AHU. The actuation commands

are the air flow rate through the VAV box and the reheat valve position; the

latter decides the amount of reheating provided to the air passing through the

box. If the zone is under-actuated, neither the airflow to the rooms nor the105

heating to them can be independently controlled; instead, they are determined

by the relative size of the supply ducts from the VAV box to the rooms.

2.1. Baseline controller

The dual-maximum controller described in [14, chapter 47] is taken as a

baseline controller. Even though single-maximum control [14] is more common110

in existing commercial buildings, dual-maximum is the more efficient of the two.

In a dual-maximum scheme, the controller uses different operation modes when

the room temperature is in different temperature bands; see Fig. 2. When the

temperature is in the cooling band, no reheating is performed, and the flow

rate is varied to return the temperature to the “dead band”. In the dead band,115

no reheating is performed, and flow rate is set to its minimum value. When

the temperature is in the heating band, flow rate is set to its minimum while

heating is varied to return the temperature to the dead band. Finally, in the

reheating band, heating is set to its maximum, and flow rate is varied. The

baseline controller utilizes a nighttime setback in which each set point of the120

four temperature bands is relaxed (increasing the size of the dead band). Addi-

tionally, under-actuated zones are controlled using temperature measurements

from only one room within the zone.
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2.2. MOBSua

Fig. 3 shows a schematic of the MOBSua control algorithm. The “con-125

trol temperature”, Tcontrol, is the room temperature of the “active room”.

The active room is determined by Algorithm 1 from real-time occupancy and

temperature measurements; see Algorithm 1 for the details of the decision

logic. Roughly speaking, the priority in determining the active room is (Occu-

pied,Uncomfortable)> (Unoccupied,Uncomfortable)> (Occupied,Comfortable)130

> (Unoccupied,Comfortable). The control temperature is then used as the zone

temperature in the dual-maximum controller. If the zone happens to consist of

only one room (i.e., it is fully actuated), that room is always the active room.

Occupancy measurements are also used to update the parameters Treheat,

Theat, and Tcool in real time. Simultaneously, occupancy measurements are used135

to calculate the minimum supply airflow for each room according to ASHRAE

Standard 62.1-2010 [15]. The minimum supply airflow for the entire zone is then

computed so that the ventilation constraint for each room is met. To determine

these minimum airflows, various parameters such as ratios of cross-sectional

areas of ducts (duct distribution) to the rooms, outside-airflow ratio, room size,140

and room type are required. These are provided to the controller a priori.

Only presence/absence information about occupants is needed to execute

Algorithm 1 and update the values of the parameters, but the entire MOBSua

algorithm needs measurements of occupancy count (number of people) of each

room to compute minimum air flow rates. In our implementation, the following145

constant parameters for each room are required: (i) design occupancy, (ii) room

size (floorspace), (iii) room type (e.g., office), and (iv) duct distribution (fraction

of total zone air that is supplied to the room). We require the following real-time

measurements for each room in our implementation: (i) occupied/unoccupied

measurement, (ii) temperature, and (iii) outside-airflow ratio.150
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Algorithm 1: Under-Actuation Algorithm. MOBSua logic for deter-

mining active room of a single zone consisting of n rooms.

t ← Current time

Ti(t) ← Room temperature of room i at time t, i=1,2,...,n

Occi(t) ∈ {0, 1} ← Occupancy of room i at time t, i=1,2,...,n

[Theat(t),Tcool(t)] ← Dead-band temperature interval at time t

d(Ti(t), [Theat(t),Tcool(t)]) ← Distance of temperature of room i at time

t from the dead-band temperature interval at time t

Tcontrol(t) ← Temperature used for control at time t

Tset ← Room temperature set point

foreach k minutes do

if {i | Occi(t) = 1, Ti 6∈ [Theat(t),Tcool(t)]} 6= φ then

Tcontrol(t) ,

arg max
{i | Occi(t)=1,Ti(t)6∈[Theat(t),Tcool(t)]}

d(Ti(t), [Theat(t),Tcool(t)])

else if {i | Ti(t) 6∈ [Theat(t),Tcool(t)]} 6= φ then

Tcontrol(t) ,

arg max
{Ti(t) | Ti(t) 6∈[Theat(t),Tcool(t)]}

d(Ti(t), [Theat(t),Tcool(t)])

else if {i | Occi(t) = 1} 6= φ then

Tcontrol(t) , arg max
{Ti(t) | Occi(t)=1}

|Ti(t)− Tset|

else

Tcontrol(t) , argmax
Ti(t)
|Ti(t)− Tset|

end
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3. Evaluation Metrics

3.1. Thermal comfort and IAQ

To examine how well a controller maintains thermal comfort, we define a

daily temperature deviation metric, ∆T, with units of ◦C·minutes for each room

shown by (1).

∆T = 24× 60×

∫ 1

0

d(T(t), [Theat(t),Tcool(t)])dt (1)

In (1), d(x,I) denotes the distance between the number x and the interval I,

T(t) is the room temperature at time t where t is in the unit of days, and

[Theat(t),Tcool(t)] is the dead-band temperature interval at time t. Note that

this interval is a function of time because the size of the interval is increased

during unoccupied times. The multiplication preceding the integral converts

units from ◦C·days to ◦C·minutes. A similar metric is defined for absolute

humidity:

∆W = 24× 60×

∫ 1

0

max{W(t)− 0.012, 0}dt,

which is chosen because [16] recommends that absolute humidity should not

exceed 0.012.

Quantifying IAQ is much more difficult because there is no universally ac-155

cepted metric [17]. In this work, we consider CO2 levels under 1000 ppm as an

indicator of good outside-air ventilation [16] and thus good IAQ of a zone.

3.2. Power consumption estimation

To estimate cooling power consumption for each zone, we perform an air-side

enthalpy balance across the AHU’s cooling coils using the zone-level flow rates:160

Pcool
i (t) = ṁi(t)(h

MA(t)− hADA(t)), (2)

where ṁi(t) is the mass air flow rate being supplied to zone i at time t, hMA(t)

is the specific enthalpy of the unconditioned mixed air before the AHU cooling

coils at time t, and hADA(t) is the specific enthalpy of the AHU discharge air

after the cooling coils at time t; see Fig. 1 for superscript definitions.
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Heating is estimated by a simple air-side enthalpy balance across each VAV165

box’s reheat coil:

Pheat
i (t) = ṁi(t)(h

ADA(t) − hZDA
i (t)), (3)

where hZDA
i (t) is the specific enthalpy of the zone discharge air for zone i (after

the heating coil in the zone’s VAV box) at time t.

For fan power, we simply use the fractional fan power based on flow rates as

shown by (4) where ṁAHU(t) is the total mass flow rate through the AHU at170

time t and Pfan
AHU(t) is the power consumption of the AHU’s supply fan at time

t:

Pfan
i (t) =

ṁi(t)

ṁAHU(t)
Pfan
AHU(t) (4)

For each of the specific enthalpies in (2), (3), and (4), we use the standard

formula, h = 1.006T + W(2501 + 1.86T), provided in [16] where T is the air

temperature in degrees Celsius and W is the humidity ratio of the air.175

3.3. Supply air humidity estimation

The sensor measuring the humidity of the AHU discharge air is not accurate

at high relative humidities. It was found that the humidity sensor was often

reporting higher AHU discharge-air humidity ratio than mixed-air humidity

ratio, which is not possible. This error can cause significant error in air enthalpy

calculation and thus in power consumption calculation. An affine humidity

model was therefore identified for the AHU discharge air:

WADA(t) = WMA(t) − α ·max{TMA(t)− TADA(t), 0}

where the value of the coefficient α is 1.83×10−4, which was obtained performing

a least-squares fit between the predicted power consumption and the actual

power consumption of an entire AHU using a year of historical data. The

model ensures that the AHU discharge-air humidity ratio is equal to the mixed-180

air humidity ratio when the mixed air is colder—i.e., there is no condensation

across the cooling coils when no cooling is delivered.
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3.4. Comparison between controllers tested on distinct days

Comparison between HVAC controllers tested on different days is difficult

because external conditions (e.g., occupancy, weather, etc.) can never be exactly

the same. We define a distance function, do(i, j) between two days i and j that

measures how similar the external conditions were between them:

do(i, j) ,

∫ 1

0

[

|TOA
i (t)− TOA

j (t)|+ |hOA
i (t) − hOA

j (t)|
]

dt; (5)

where TOA
i (t) is the outside-air temperature at time t on day i, and TOA

j (t) is

the outside-air temperature at time t on day j. Similarly, hOA
i (t) and hOA

j (t)185

are the (volume-specific) outside-air enthalpies on days i and j, respectively, at

time t. In (5), do(i, j) defines a metric on the search space.

To ensure occupancy schedules are similar, we only compare the same days

of the week (e.g., only baseline Mondays are compared to the Monday of the

test). Additionally, holidays are not considered. We then perform a search190

through each week of the 2013 and 2014 years.

Given a day i during which the MOBSua controller was active, the day used

for the baseline comparison, j∗(i), is then defined by (6).

j∗(i) := argmin
j

do(i, j) (6)

4. Experimental Setup

Experiments were performed in the University of Florida’s Pugh Hall, which

is a LEED Silver-certified building and has a floor space of 40,000 square feet.

The rooms/days in/during which the test was conducted are called the test195

rooms/days. Pugh Hall is equipped with a VAV HVAC system with 3 AHUs

and 65 VAV boxes, most of which have terminal reheat. Some of Pugh Hall’s

zones are fully actuated, and some are under-actuated. In the experiments, 3

zones consisting of 5 rooms were controlled—1 fully actuated zone and 2 under-

actuated zones. Each under-actuated zone consists of 2 rooms. Three of these200

rooms are located on the second floor, and two of these rooms are on the third

floor in the same wing of the building; see Fig. 4.
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Pugh Hall’s BAS is equipped with a temperature sensor in each zone but not

in each room. Furthermore, humidity and CO2 sensors were not present in the

building’s existing sensor suite. Therefore a WSN was designed and deployed to205

measure these quantities. Each sensor node has a temperature sensor, humidity

sensor, CO2 sensor, and a PIR sensor to determine whether a room is occupied

or not. The PIR sensor acts as a motion detector. If any motion has been

detected in the past five minutes, the room is considered to be occupied for the

next five minutes. A radio transceiver on each sensor node transmits data to a210

base station, which transmits the data to an off-site database via the Internet.

Fig. 5 shows the wireless nodes deployed in Pugh Hall, and Fig. 6 shows an

example of the network structure. For more information regarding the wireless

sensor network, the interested reader is referred to [18, 19].

A PIR sensor can only provide information on presence or absence of occu-215

pants, but the MOBSua needs measurements of occupancy count for a part of

the control computations. Occupancy count of a room was estimated by assum-

ing that if a room is occupied then its occupancy count is equal to its design

occupancy. The design occupancy of a room is the number of people expected

to be present during normal working hours.220

The baseline controller that Pugh Hall’s existing HVAC system uses by de-

fault is similar to a dual-maximum controller, but the specific logic is unknown

due to its proprietary nature. Table 1 shows the set points used in the exper-

iments. For ease of comparison, the set points for the MOBSua controller are

chosen to be the same as those used by the baseline controller.225

5. Results and Discussion

The MOBSua controller was implemented for a full week from 00:00 Tues-

day, February 4, 2014 through 24:00 Monday, February 10, 2014. We refer to

these days as test days, and we refer to the corresponding days found by the

method described in Section 3.4 as baseline days. The evaluation metrics of230

Sections 3.1 and 3.2 are used to compare the control performance of each day.
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5.1. Effect on thermal comfort and IAQ

The MOBSua controller regulated thermal comfort and IAQ well even in

“worst” cases. CO2 levels never exceeded 1000 ppm in any room—indicating

adequate IAQ. Furthermore, relative humidity rarely exceeded 50% and never235

exceeded 60% for any room, and absolute humidity never exceeded 0.012 (i.e.,

∆W≡ 0).

The only thermal comfort constraint violated was temperature, but these

violations were minimal. Fig. 7 shows box plots of the daily ∆T for each room

during the baseline days and during the test days, respectively. Because Pugh240

Hall did not have temperature sensors in every room before the installation of

the WSN, ∆T data are not available for two of the rooms during the baseline

days. The increased performance by the MOBSua controller is obvious. The

larger ∆T of room 3 in Fig. 7(b) was due to actuator saturation. This room was

often too warm, and despite the MOBSua controller’s commands for maximum245

flow rate, the VAV box was not able to effectively cool the room. The large

∆T values in Fig. 7(a), however, were not due to actuator saturation. For each

under-actuated zone under MOBSua control, temperatures in or close to the

dead band were maintained for both rooms—even when one room warmer and

the other was cooler; see Fig. 8, which shows the room temperatures in zone 2250

during the test.

Fig. 8 shows indoor climate measurements of rooms 2 and 3 (composing a

single under-actuated zone) during the test week. As an illustrative example, we

focus on Tuesday (first day of the test). The temperature of room 3 increased

beyond the dead band. As a result, the MOBSua controller considered room 3255

to be the active room and commanded larger airflow to the zone in order to cool

room 3; see Fig. 9. The larger amount of cooling being supplied to the zone by

the increased airflow also drove the temperature of room 2 down. Eventually,

room 2 left its own dead band. At that time, room 3 became unoccupied, and

room 2 was then used as the active room briefly—resulting in the reheating260

valve being opened to return the room to its dead band.
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5.2. Effect on energy consumption

The average daily energy savings for the under-actuated zones were 50±33%.

For the under actuated zones, the lowest energy savings by percent were on

Tuesday (29%); the highest energy savings by percent were on Saturday (80%).265

Although Saturday had the highest energy savings by percent, more energy

savings (in kJ) were achieved each on Wednesday, Thursday, and Friday. Over-

all, the three test zones had a reduction in energy consumption of 62% over

baseline; see Fig. 10, which shows the aggregate and component-wise energy

consumptions for the test zones.270

While generally consumption from cooling was reduced, rooms 2 and 3 con-

sumed more cooling energy during two test days (Tuesday and Monday) under

MOBSua control compared to baseline. The AHU discharge-air temperature

was much lower on the Tuesday and Monday of the test week than on the base-

line Tuesday and Monday. This resulted in more cooling energy consumption to275

reduce the mixed air’s temperature to a lower set point. This is why the cooling

energy percent savings were smaller on Tuesday and Monday in Fig. 10.

Heating energy accounted for 40% of the total energy consumed by the

baseline controller, but 50% of the total energy savings came from heating. The

baseline controller supplies large amounts of cooling throughout the day. As a280

result, re-heating is required when rooms become too cold. Since less cooling

was supplied to the rooms during MOBSua control, the room temperatures did

not decrease as much compared to baseline. This in turn required less heating

to maintain comfortable room temperatures.

The MOBSua controller also significantly reduced fan power due to its large285

flow rate reduction; the fan consumed 75% less energy under MOBSua control.

However, total energy savings from the supply fan were 12% because the fan

accounts for less than 15% of the total energy consumption.

In [12], it was shown that there is a large variation in energy consumption

(and savings) among zones. The AHU that serves the three zones controlled290

by the MOBSua controller also serves 22 other zones. Fig. 11 shows the per-

cent energy reduction (between the baseline days and the test week) of the 3
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MOBSua-controlled and the 22 baseline-controlled zones. As is evident, varia-

tions in load between the baseline and test days resulted in variations in total

energy consumption for the zones controlled by the baseline controller during295

both baseline and test days. These variations, however, are small. Conversely,

the zones which were controlled by the MOBSua controller clearly show signifi-

cant energy savings.

Fig. 12 is a box plot of the reduction in energy consumption from each zone

served by the AHU. Zones 4-25 are the other zones served by the same AHU and300

are controlled by the baseline controller on all days. As is clear from the figure,

the zones under MOBSua control consumed significantly less energy than did

those under baseline control. The reduction in zones 4-25 can be interpreted as

the change in consumption due to differing conditions between the baseline and

test days (such as weather). The additional savings in zones 1-3 are the changes305

in consumption due to the MOBSua control logic. Note that zone 2 consumed

more energy on Tuesday and Monday as discussed above—resulting in a taller

box in the plot.

The MOBSua controller also reduced peak power consumption of two of the

three test zones compared to baseline. This is critical for energy efficiency be-310

cause many commercial buildings are charged for their peak power consumptions

in addition to overall energy consumptions. It should be noted, however, that

the peak power consumption in zone 2 increased on Tuesday, Wednesday, and

Monday; see Fig. 13. This is a result of the increased flow rate of the MOBSua

controller; compare with Fig. 9.315

6. Conclusions

The MOBSua controller was shown to offer significant energy savings (29-

80%) for under-actuated zones. A method for determining a baseline for com-

paring the performances of distinct controllers was proposed as well. Despite

the test week having extraordinarily cold weather, heating energy was reduced320

significantly, and 50% of the total energy savings came from heating.
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Cooling energy consumption was found to be dependent on AHU discharge-

air temperature. This suggests that control of AHU-level variables may be

required for energy savings guarantees because the AHU controller may “fight”

the MOBSua controller by changing the AHU discharge-air temperature set325

point. The MOBSua controller also resulted in significantly fewer temperature

constraint violations compared to the baseline controller as well—even when

one room of an under-actuated zone was hot and the other was cold.

These positive results were achieved by the MOBSua algorithm without using

any model of the building or its zones. This is an important point as modeling330

a building’s hygro-thermal dynamics is non-trivial and requires extensive time

and labor. Only building parameters such as duct ratios, outside-airflow ratio,

room sizes, and room types are needed a priori. Furthermore, because control

actions are decided independently for each zone, the algorithm is fully scalable

to a large number of zones without any increase in complexity. Additionally, no335

expensive occupancy estimation algorithm or detection equipment was used—a

simple estimate of occupancy count using the design occupancy was satisfactory.

On the other hand, measurements of the exact number of occupants in a room

can increase savings even further due to ASHRAE Standard 62.1.
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Figure 8: Temperature (left axis) and CO2 and relative humidity (right axis) of two rooms
served by the same VAV box. Note that the temperature constraints are stricter when the
room is occupied. Despite the rooms having very different temperatures, comfort constraints
were generally still maintained.

25



0 6 12 18 24 30 36 42 48 54 60 66 72 78 84 90 96 102 108 114 120 126 132 138 144 150 156 162 168
0

0.05

0.1

0.15

0.2

Flow set point

Max

Time (hours)

F
lo

w
 r

at
e 

(m
 /

s)
3

Figure 9: Flow rate for zone 2 (rooms 2 and 3).

26



(a) Aggregate energy consumption

TC
TC

TC
TC

TC
TC

TC

BC

BC

BC BC

BC

BC

BC

TH TH
TH

TH
TH

TH

BH
BH

BH
BH

BH

BH
BH

TF TF TF TF TF TF TF

BF BF BF BF BF BF BF

T� � T��� �����	
 ����


B� � Baseline �����	
 ����


T� � T��� �����	
 ����


B� � Baseli	� �����	
 ����


T� � T��� ��	 ����


B� � Baseli	� ��	 ����


(b) Energy consumption by component

Figure 10: Aggregate and component-wise energy consumptions during test week and baseline
days.
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Figure 11: Percent energy reduction for test group and baseline group on the test days over
the baseline days. Test group (left) was under MOBSua control during the test week; baseline
group (right) was under baseline control during the test week.

28



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

−50

0

50

100

n
er

 r
e

u
ct

io
n

 (
)

Test

ones

Baseline ones

Figure 12: Daily energy reduction in each zone between the test days and the baseline days.
Zones 1-3 were under MOBSua control during the test week and under baseline control during
the baseline days. Zones 4-25 were under baseline control for both the test week and the
baseline days.

29



0 12 24 36 48 60 72 84 96 108 120 132 144 156 168
0

1

2

3

4

5
MOBS

ua

Baseline

Time (hours)

Figure 13: Power consumption of zone 2 for both MOBSua and baseline control.
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Table 1: Temperature set points used by MOBSua and the baseline controller in the experi-
ments.

Tcool Theat Treheat

Occupied 23.6 ◦C 21.9 ◦C 21.8 ◦C
Unoccupied 24.4 ◦C 21.1 ◦C 20.9 ◦C
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