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ABSTRACT 

Ferrandino, F. J. 2008. Effect of crop growth and canopy filtration on the 
dynamics of plant disease epidemics spread by aerially dispersed spores. 
Phytopathology 98:492-503. 

Most mathematical models of plant disease epidemics ignore the 
growth and phenology of the host crop. Unfortunately, reports of disease 
development are often not accompanied by a simultaneous and commen-
surate evaluation of crop development. However, the time scale for in-
creases in the leaf area of field crops is comparable to the time scale of 
epidemics. This simultaneous development of host and pathogen has 
many ramifications on the resulting plant disease epidemic. First, there is 
a simple dilution effect resulting from the introduction of new healthy 
leaf area with time. Often, measurements of disease levels are made pro 
rata (per unit of host leaf area or total root length or mass). Thus, host 
growth will reduce the apparent infection rate. A second, related effect, 
has to do with the so-called “correction factor,” which accounts for inocu-
lum falling on already infected tissue. This factor accounts for multiple 
infection and is given by the fraction of the host tissue that is susceptible 
to disease. As an epidemic develops, less and less tissue is open to infec-

tion and the initial exponential growth slows. Crop growth delays the im-
pact of this limiting effect and, therefore, tends to increase the rate of dis-
ease progress. A third and often neglected effect arises when an increase 
in the density of susceptible host tissue results in a corresponding in-
crease in the basic reproduction ratio, R0, defined as the ratio of the total 
number of daughter lesions produced to the number of original mother 
lesions. This occurs when the transport efficiency of inoculum from in-
fected to susceptible host is strongly dependent on the spatial density of 
plant tissue. Thus, crop growth may have a major impact on the develop-
ment of plant disease epidemics occurring during the vegetative phase of 
crop growth. The effects that these crop growth-related factors have on 
plant disease epidemics spread by airborne spores are evaluated using 
mathematical models and their importance is discussed. In particular, 
plant disease epidemics initiated by the introduction of inoculum during 
this stage of development are shown to be relatively insensitive to the 
time at which inoculum is introduced. 

Additional keywords: mass-action, spore deposition. 

 
During the vegetative growth phase of an annual field crop, 

ground cover or light interception increases logistically with time, 
and the leaf area, after an initial exponential growth period, in-
creases approximately linearly with time (12,18). The maximum 
growth rate is such that a square meter of leaf area per unit of 
ground area is produced every 5 to 7 days (19). This vegetative 
phase, depending on the crop, lasts from between 30 and 50 days, 
during which time leaf area density often increases by a factor of 
4 to 6. Toward the end of the growing season, leaves grow more 
slowly as carbohydrate is allocated to the storage and reproduc-
tive parts of the plant and senescent leaves are shed. One way to 
describe the overall behavior of a growing crop is to use the 
logistic equation asymptotically approaching a maximum leaf 
area (36). Waggoner (38) reported logistic crop growth rate 
parameters, rc (d–1), varying from 0.06 to 0.24 d–1. For compari-
son, logistic fits to disease progress curves yield a range for 
Vanderplank’s r (d–1) varying from 0.05 to 0.5 d–1 (37). Thus, the 
relative rate of growth and timing of disease development com-
pared with crop growth will probably play an important role in 
the temporal development of plant diseases. 

Almost all mathematical models describing the time course of an 
epidemic are based on some form of the following product law: 

SHS
dt

dY ⋅⋅α=  (1) 

where Y is some measure of the cumulative total infected tissue 
and α is a rate constant. The underlying assumption is that the 
number of new infections per unit of time is directly proportional 
to some measure of the amount of infective (sporulating) tissue, S, 
multiplied by some measure of the amount of healthy susceptible 
tissue, HS (1,11,37). The analogy has been drawn between equa-
tion 1 and the principle of mass-action used to describe the dy-
namics of chemical reactions (10,23,39). The rate constant, α, in 
equation 1 represents a number of different processes: propagule 
production, dispersal, deposition to new host sites, survival over 
the course of this process, and the eventual production of new in-
fections. Host growth may affect any or all of these processes. 
Furthermore, it is well known that the ability of a pathogen to 
infect a host can be a strong function of the phenological age of 
the attacked tissue (2,4,8,14–16,25). Due to this ontogenic resis-
tance, a portion of the standing healthy plant area may not be 
susceptible to disease. Therefore, the number of susceptible and 
still healthy standing sites, HS, will explicitly depend on the age 
distribution of the host sites (11), which is determined by the time 
course of crop growth. 

If S and HS in equation 1 are expressed in terms of number of 
infection sites, then the product S⋅HS represents the total number 
of sporulating site-healthy site pairs in the population, which 
represent every possible pathway by which a propagule of disease 
can result in a new infection. For a field of fixed area, such a 
formulation is consistent with observations showing that apparent 
infection rates are dependent on initial plant density (5,7). The 
above assumption is equivalent to what Anderson et al. (1) and de 
Jong et al. (10) call “pseudo mass-action.” There are many rea-
sons why this simple assumption may lead us astray. For plant 
diseases disseminated by airborne spores, the deposition of pro-
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pagules to plant foliage is definitely not a simple linear function 
of susceptible sites as implied above (3,12). On the other hand, if 
HS in equation 1 is expressed as the fraction of the total number of 
infection sites that are healthy and susceptible, then the resulting 
epidemic model is based on what Anderson et al. (1) and de Jong 
et al. (10) call “true mass-action” (1,10). In this case, any effect of 
plant growth on disease progress is implicit in the factor α. There 
has been some discussion in the literature (17,28) as to appro-
priate use of the above nomenclature. In the ecological literature 
(28), the pseudo mass-action case is characterized by density-
dependent transmission, whereas the true mass-action case is de-
pendent on frequency-dependent transmission. Irrespective of the 
names given to these models, they are based on, perhaps, unac-
ceptably simple mathematical abstractions from reality. McCallum 
et al. (28) suggest that a more realistic epidemic model should 
reflect the physical mechanisms of the transmission of disease. 

The fate of airborne spores is the result of a three-way com-
petition between deposition to the ground, deposition to plants, 
and escape from the field. The relative rates of these competing 
processes are governed by leaf area density, the gravitational 
settling speed of the spores, as well as wind speed and turbulence 
within and above the plant canopy. In fact, as I will show, this 
competitive system follows Michaelis-Menten kinetics (29) with 
respect to leaf area density, so that the probability of infection per 
host site decreases as the number of host sites increases. This is 
due to the fact that leaves, in a dense canopy, shield one another 
from the flux of airborne spores. Furthermore, if spore survival is 
dependent on canopy density, the spore survival fraction is also 
explicitly dependent on the number of host sites. The net result is 
that the parameter α in equation 1 has a strong functional depen-
dence on crop growth and is definitely not constant in time. At 
low foliar densities, the amount of spores deposited increases with 
increasing leaf area and pseudo mass-action is the appropriate 
model. Later in the season, for dense plant canopies, spore catch 
on leaves approaches a maximum value and true mass-action 
describes the situation. 

The purpose of this paper is to demonstrate that pseudo mass-
action and true mass-action epidemic models are really extreme 
cases of a range of more realistic epidemic models based on crop 
density-dependent inoculum transmission. To achieve this goal, I 
incorporate a crop growth model (12,18) and an estimate for 
canopy filtration efficiency into the derivation of an epidemic 
model. Leaf area as a function of time is assumed to follow a 
logistic law. The relationship of leaf area to canopy filtration 
efficiency is estimated using dimensional analysis and a gradient 
diffusion approximation (K-theory) for turbulent transport (3). 
The results of model calculations are then used to evaluate the 
ramifications of crop growth on the basic reproduction ratio, R0 
(defined as the ratio of the total number of daughter lesions pro-
duced to the number of original mother lesions), of aerially dis-
persed pathogens and on the temporal development of the ensuing 
epidemic. The variables and parameters used are listed in Table 1. 

THEORY AND APPROACHES 

Epidemic models: previous work and present outlook. 
Mass-action models. The product law (equation 1) has three 
population variables: Y, S, and HS, as well as a rate parameter α, 
which is usually assumed to be a constant. Thus, a closed form 
solution to equation 1 will depend on our ability to express two of 
these variables in terms of the remaining one. The specification of 
S involves some assumption about the phenology of infected 
tissue and will, in general, depend on the time course of infection. 
By analogy, the specification of HS involves some assumption 
about the phenology and susceptibility of plant tissue to disease 
and will depend on the time course of crop growth. 

Vanderplank (37) solved this problem by ignoring crop growth 
and assuming that a newly infected host site is latent for a discrete 

time period p and then remains infectious for a time i. Since the 
total number of host sites, N0, was assumed to be constant, equa-
tion 1 could be divided through by this value and expressed in 
terms of fractional values. Alternatively, compartment models 
characterize the total number of host sites, N, as either being 
healthy, H, latently infected, L, sporulating, S, or removed, R, 
such that N = H + L + S + R and Y = L + S + R (9,21,26,32). The 
development of the epidemic is then expressed as a series of 
coupled linear differential equations (35). Recently, it has been 
shown that both the Vanderplank discrete time model and the 
compartmental models fit into a larger theoretical framework of 
the classic Kermack-McKendrick epidemic model (23,27,35). 
Following Diekman et al. (11) and Heesterbeek (20), we now de-
fine the basic reproduction ratio, R0, as “the expected number of 
secondary cases produced, in a completely susceptible population, 
by a typical infected individual during its entire period of infec-
tiousness.” In addition, we assume that the rate of spore produc-
tion per lesion can be expressed as a function I(τ) (spores d–1 
lesion–1) of lesion age, τ (d). With the above assumptions and 
definitions, the Kermack-McKendrick epidemic model results in a 
disease progress curve that is totally determined by R0, the shape 
of the sporulation curve (I(τ)), and the initial conditions (19,35). 
However, what happens to the above analysis when the crop 
grows and the rate parameter α is a function of time? 

Explicit models. We can, of course, examine the problem nu-
merically and include the time dependence of host tissue suscep-
tibility to disease as well as crop growth and variable α. There are 
many numerical plant disease models in the literature based on 
either the true mass-action or the pseudo mass-action assumption 
(6,22,24,25,34,40). These models account for the effect of crop 
growth as an increase in the amount of susceptible healthy tissue, 
but do not include the increased efficiency by which airborne 
spores are captured by plant tissue as foliar density increases. 
Ferrandino (12) presented a combined analytical/numerical model 
for the spread of late blight on potato and its effects on yield, 
which included the rudiments of canopy filtration. 

In what follows, I seek analytical solutions for disease devel-
opment, which include the effects of crop density on disease 
transmission to illuminate both the physical and biological nature 
of the infection process. To this end, following Vanderplank (37), 
I will make the following simplifying assumptions. 
• S, the number of sporulating sites, is a constant fraction, fR, 

of Y, the total number of infected sites. 
• All healthy sites, H, are susceptible to disease. 
• Ignoring removals, the total number of sites, N, is equal to 

the sum of H and Y. 
In this description, sites could be infection courts, leaflets, 

leaves, stems, or whole plants. The above assumptions lead to 
three relations among Y, S, H, HS, and N: 

⎪
⎭

⎪
⎬

⎫

=
−=

⋅=

HH

YNH

YfS

S

R

 (2) 

which when combined with equation 1 yield 

( )YNYf
dt

dY
R −α=  (3) 

The general solution to equations of the above form (Appendix 
equation A1) can be obtained by quadrature or direct integration 
if the quantities αfR and N are given as functions of time (Appen-
dix equations A3 to A5). For the special case where N = N0 is a 
constant, equation 3 can be divided by N0 to yield 

)1( yry
dt

dy −=  (4) 

where the diseased fraction, y, is defined by y = Y/N0 and 
Vanderplank’s rate constant, r (d–1), is set equal to the product, 
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αfRN0. If r is assumed constant, then the solution to equation 4 re-
sults in a logistic epidemic (Appendix equation A7). 

In what follows, I will assume that the total number of host 
sites, N, is similarly given by a logistic equation which asymp-
totically approaches a maximum value of Nmax with the logistic 
rate of crop growth denoted by rc (d–1), such that 

max

max

N

NN
Nr

dt

dN
c

−
=  (5) 

True mass-action. In order to account for logistic crop growth, 
by simultaneously solving equations 3 and 5, Waggoner (38) 
assumed that the quantity rW (d–1) = αfRN remains constant for a 

TABLE 1. Symbols 

Symbol Unitsa Definition 

a m2 The area of a site 
A ND Leaf area index (leaf area per unit ground area) 
AH ND Healthy host leaf area per unit ground area 
Amax ND Maximum leaf area per unit ground area in logistic crop growth model 
AY ND Infected host leaf area per unit ground area 
b1 [X]–1 s–1 Rate parameter in equation A1 
b2 [X] Limit parameter in equation A1, corresponding to the maximum value of the arbitrary function X  
C Nsp m–3 Aerial spore concentration 
CF  Acronym for canopy filtration 
COFR ND The correction factor (H/N, literature citation 40) 
C1, C2, C3 ND Parameters defined to simplify the equations A16 to A26 
fh ND Horizontally projected fraction of leaf area 
fp ND Canopy filtration efficiency, defined as the probability that an airborne spore is deposited on foliage 
fR ND Fraction of infected sites which are reproductive 
FA m2 The area of the field under study 
h m Crop height 
H Nst Total number of healthy sites 
H0 Nst Initial number of healthy sites 
HS Nst Total number of susceptible healthy sites 
I(τ) Nsp Nst

–1 d–2 The time rate of spore production per lesion as a function of lesion age 
IF(t) ND Integrating factor which renders equation A2 exact (Appendix) 
JE Nsp m–1 s–1 Flux of spores escaping from the plant canopy 
JG Nsp m–1 s–1 Flux of spores deposited to the ground 
JP Nsp m–1 s–1 Flux of spores deposited to the plant canopy 
k ND von Karman’s constant (30, k = 0.4) 
KM m2 s–1 Eddy diffusivity for momentum (30) 
L Nle Number of latently infected sites 
N Nst and Nle Total cumulative number of standing sites, including healthy and infected sites 
N0 Nst and Nle Assumed constant number of standing sites, including healthy and infected sites 
Nmax Nst and Nle Maximum number of standing sites, including healthy and infected sites 
n ND Normalized leaf area per unit ground area (n = A/Amax) 
PMA  Acronym for pseudo mass-action 
r d–1 Vanderplank’s rate constant 
rc d–1 Logistic rate parameter for crop growth model 
rCF d–1 Rate constant for canopy filtration model 
rP d–1 Rate constant for pseudo mass-action model 
rW d–1 Rate constant for Waggoner’s true mass-action model 
R Nst Total cumulative number of removed sites 
R0 ND The basic reproduction ratio, defined as the ratio of the total number of daughter lesions produced to the number of original

   mother lesions 
S Nle  Number of infective actively sporulating sites 
tstart d Time at which a disease lesion is initiated 
TE s Characteristic time for escape from the plant canopy 
TG s Characteristic time for deposition to the ground 
TMA  Acronym for true mass-action 
TP s Characteristic time for deposition to plant material 
u(z) m s–1  Horizontal wind speed 
u* m s–1 The friction velocity (30) 
vg m s–1 Gravitational settling speed of airborne spores 
X [X] Arbitrary function of time in equation A1 
Y ND The diseased fraction (y = Y/N) 
Y Nle  Total cumulative number of infected sites, including latent infections, infectious sites, and removals: Y = L + S + R 
z m Height 
z0 m Roughness scale (33) 
α Nst

–1 s–1 Rate constant for the law of mass action (equation 1) 
β ND The assumed constant value for the canopy filtration efficiency, fP, in the true mass-action model 
γ ND The assumed constant of proportionality in the equation: fP = γN/Nmax in the pseudo mass-action model 
δ ND The ratio of the number of spores lost to both the ground and the air above the canopy to the number of spores deposited  

   on plant tissue 
ξ Nst

–1 Probability per healthy host site that a spore is liberated, becomes airborne, and is physically transported and deposited to  
   such a site 

τ d Age of lesion 
τstart d Time at which inoculum is introduced into a field 
ψ Nle Nsp

–1  Fraction of spores that having landed on susceptible host cause a new lesion 

a ND = no dimension, kg = mass, Nst = number of sites, Nle = number of lesions, Nsp = number of spores, m = distance, MJ = energy (Mega Joules) and s and d = 
time. 
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logistically growing crop. The above assumption is equivalent to 
what Anderson et al. (1) and de Jong et al. (10) call true mass-
action. Hereafter, this model is denoted by TMA. In essence, the 
parameter α in equations 1 and 3 is assumed to be inversely 
proportional to the size of the host population, N. With these 
assumptions, equation 3 becomes 

N

YN
YrYNYf

dt

dY
WR

)(
)(

−
=−α=  (6) 

The development of disease in such a situation is modeled using 
two coupled nonlinear differential equations (equations 5 and 6) 
which can be solved analytically (Appendix equations A8 and A9; 
Ferrandino’s Appendix in literature citation 38). 

Pseudo mass-action. Alternatively, one can assume that the α 
in equations 1 and 3 is a constant. The above assumption is equiva-
lent to what Anderson et al. (1) and de Jong et al. (10) call pseudo 
mass-action. Hereafter, this model is denoted by PMA. Letting rP 

(d–1) = αfRNmax, equation 3 becomes 

max

)(
)(

N

YN
YrYNYf

dt

dY
PR

−
=−α=  (7) 

The development of disease in such a situation is once again 
modeled using two coupled nonlinear differential equations (equa-
tions 5 and 7). The time integrals in the quadrature solution to 
equation 5 coupled to equation 7 can be written in closed form 
when rP is an integer multiple of rc (Appendix equations A10 to 
A12). 

Note that if the total number of sites, N, is constant then both 
equation 6 and equation 7 revert to equation 3. As will be shown 
below for aerially dispersed pathogens, Waggoner’s true mass-
action approach (equation 6) is appropriate for dense canopies or 
low wind speeds when spore deposition is transport-limited (13). 
In this case, most of the airborne spores are deposited to foliage, 
independent of leaf area. The pseudo mass-action compatible 
approach (equation 7) is appropriate for sparse canopies or high 
wind speeds when spore deposition is sink-limited (13). In this 
case, most of the spores are either deposited to the ground or 
escape from the plant canopy, and spore deposition to foliage 
increases linearly with leaf area. In reality, spore deposition in a 
growing crop will lie somewhere between the above two extremes 
depending on wind, within canopy turbulence, and changing 
foliar density. 

Repercussions of the finite nature of spore production. Con-
sider the pseudo mass-action form of equation 1 with all popu-
lation variables (Y, S, H = HS) expressed as sites or sites per unit 
of ground area. As long as vegetation is sparse we would expect 
the per diem rate of new infections to increase with the product of 
the number of sporulating sites, S, and the number of uninfected 
susceptible sites, H. However, as foliar density increases a diffi-
culty with this simple product law arises. To illustrate the prob-
lem, assume that only one site in an entire field of plants is 
infected and sporulating. This sporulating site (S site) liberates a 
finite number of spores per day, I (spore d–1 (S site)–1). Thus, even 
under the most optimal conditions, such that every spore pro-
duced results in a new infected site, a maximum of I new infected 
sites can be produced per diem. However, according to equation 
1, if we continue to increase the size of the field, the number of 
target sites, H (T site), will increase and the number of lesions 
produced per day, αH (remember S = 1), will continue to increase 
and eventually become larger than I. Obviously, the plants cannot 
catch more spores than are released, so that the law of pseudo 
mass-action breaks down at high plant densities, and the param-
eter α cannot remain constant independent of the number of 
healthy sites, H. Models based on the true mass-action assump-
tion avoid this difficulty through the assumption that the param-
eter α is inversely proportional to N, the total number of sites. 
Under this unrealistic assumption, disease progress is not expli-

citly dependent on crop growth and the plant canopy intercepts a 
constant fraction of the airborne inoculum independent of leaf 
area density. 

As stated above, the rate constant, α, in equation 1 represents a 
number of different processes. For aerially dispersed spores, α 
can be expressed as the product of three quantities: the time rate 
of aerial propagule production per infectious site (I [spore (S 
site)–1 d–1]), the probability of an airborne spore being deposited 
on a healthy site per healthy site (ξ [(T site)–1]), and the fraction 
of the spores deposited on healthy sites that go on to produce a 
new infected site (ψ [lesion spore–1]). To analyze the implications 
of nonconstant α, we will first reexamine the dimensionality of 
equation 1 and the role of the parameter α: 
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The nomenclature of equation 8 is consistent with that of Segarra 
et al. (35). The dimensionality of the parameter ξ is proble-
matical. For an epidemic in a growing crop the number of healthy 
sites is simultaneously decreased by new infections and increased 
by crop growth. Since ξ is defined per healthy site, this parameter 
is implicitly dependent on both the stage of the epidemic and the 
stage of crop growth. We need to make these dependencies ex-
plicit. If spores are deposited equally to every site irrespective of 
whether the site is infected or not, then the probability of an air-
borne spore being deposited on any site, fP (not dimensioned ND), 
divided by the total number of sites, N, must equal ξ (i.e., ξ = 
fP/N). The product ξH in equation 1, the fraction of spores which 
are deposited on healthy sites, can then be expressed as the pro-
duct of fP and the fraction of all sites that are healthy, H/N. The 
canopy filtration efficiency, fP, is dependent on the physical 
properties of the canopy and the mechanical properties of wind 
and turbulence and independent of epidemic development. The 
ratio, H/N, the fraction healthy sites, is what Zadoks (40) called 
the correction factor (COFR), which accounts for the effect of 
disease progress on the fractional spore deposition to healthy 
sites. A comparison of the above models (equations 6 and 7) with 
equation 8 leads us to the following conclusions. 
• True mass-action. Equation 6 is based on the assumption 

that fp is a constant, so that α ∝ Iψ/N and rW ∝ IψfR. For 
later reference, this constant value for the canopy filtration 
efficiency will be denoted by β. 

• Pseudo mass-action. Equation 7 is based on the assumption 
that the quantity, fp, is proportional to the total number of 
sites, N. Letting fp ∝ N gives α ∝ Iψ and rP ∝ IψfR. For later 
reference, the proportionality constant for the canopy filtra-
tion efficiency will be denoted by γ such that fp = γN/Nmax. 

Thus, the major difference between the above two models 
(equations 6 and 7) involves the assumed relationship between 
efficiency with which foliage captures airborne spores and the 
number of host sites. 

Canopy filtration model. The information provided by N(t), 
the number of host sites as a function of time, is inadequate to 
provide a mechanistic view of crop growth and spore dissemi-
nation. Other information about the host sites, the crop, and the 
field must be supplied, e.g., What is the site density per unit 
volume? How large are these host sites? How are they physically 
oriented? What is their spatial distribution? How large is the 
field? How tall is the crop? 

Assuming that the area of a site is given by a (m2) and that 
there are a total of N(t) sites at time, t, within a field of area FA 
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(m2), then the total leaf area per unit of ground area, A (the leaf 
area index), the infected leaf area per unit of ground area, AY, and 
the healthy leaf area per unit of ground area, AH, are given by 

A
H

A
Y

A F

atH
tA

F

atY
tA

F

atN
tA

⋅
=

⋅
=

⋅
=

)(
)(;

)(
)(;

)(
)(  (9) 

The principle of mass-action, upon which equations 1 and 2 are 
based, is not appropriate for aerially dispersed pathogens within a 
rapidly growing field crop (3,10,12). Mechanically, the fraction of 
airborne spores deposited on leaves is dependent on the leaf area 
index, which is a function of time. For that reason, in what fol-
lows all variables enumerating the number of host sites (N, Y, H, 
etc.) are multiplied by the ratio a/FA to express them as leaf area 
indices (equation 9). 

The fate of airborne spores released from infective tissue within 
a crop depends on the relative rates of escape from the field, 
deposition to the ground, and deposition to plant material. Fol-
lowing Aylor (3), I draw the analogy to an electric circuit, where 
JP, JG, and JE are spore fluxes assumed directly proportional to the 
inverse of the time scales TP, TG, and TE (resistances) and corre-
sponding to deposition on the plant canopy, deposition on the 
ground, and escape from the plant canopy, respectively. These 
three fluxes are in parallel, so that the fraction of spores landing 
on plant material, fP (the canopy filtration efficiency), is equal to 
the ratio of the spore flux deposited on the plants, JP, divided by 
the total spore flux, JP + JG + JE, such that  
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The evaluation of the canopy filtration efficiency, fP, above de-
pends on the deposition of airborne spores to foliar elements in 
the turbulent air within the plant canopy. If we assume that the 
airborne spores are distributed evenly throughout the plant canopy 
with aerial concentration, C (spores m–3), and that deposition onto 
foliage is dominated by gravitational settling, then the spore flux 
onto plant surfaces and the ground are given by 

⎪⎭
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⎬
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CAfvJ
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hgP
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where vg (m s–1) is the gravitational settling speed of spores and 
the product fhA is the horizontally projected leaf area per unit of 
ground area. 

The time scale for escape from the plant canopy will depend on 
the wind and air turbulence within and above the crop. Above the 
canopy wind speed and turbulence are governed by Monin-
Obukhov similarity theory (30). Above the plant canopy under 
neutrally stable conditions, wind speed, u (m s–1), varies logarith-
mically and eddy diffusivity for momentum, KM (m2 s–1), varies 
linearly with aerodynamic height, (z – d) (m): 
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where k (ND) is von Karman’s constant (k = 0.4), u* (m s–1) is the 
friction velocity, d (m) is the zero plane displacement height, and 
z0 (m) is the roughness scale (33). In what follows, I assume that 
the eddy diffusivity for momentum, KM, also applies to airborne 
spores (33). Thus, the time scale for escape from the plant canopy 
can be approximated as 
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where h is the height of the plant canopy and the zero-plane dis-
placement height, d, is assumed equal to 0.3⋅h (33). Simple di-
mensional analysis yields 
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and the above approximations (equations 11 and 13) combined 
with equation 10 yield 
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where 
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and n = A/Amax = N/Nmax. Equation 15 has the same form as the 
Michaelis-Menten equation (29), wherein, the rate of reaction for 
a substrate of concentration A is proportional to A divided by the 
sum of a constant and A. The parameter δ is the ratio of the 
number of spores lost to both the ground and the air above the 
canopy to the number of spores deposited on plant tissue. The 
value of δ is of the order of unity, which can be seen by inserting 
reasonable values into the above definition (for vg = 0.01 m s–1,  
u* = 0.2 m s–1, fh = 0.5, Amax = 6, and δ = 1.13). When the leaf area 
is very small, pseudo mass-action applies, i.e., fP is approximately 
proportional to leaf area. However, as the crop grows, leaf area 
increases, and fP approaches the maximum value of (1 + δ)–1. So 
that, for dense canopies, fP is a constant and true mass-action 
applies. Hereafter, this canopy filtration model is denoted by CF. 
Combining equations 3, 8, 9, and 15 yields 
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where rCF (d–1) = IψfR/(1 + δ). Alternatively, using equation 9, the 
above equation (equation 16) can be expressed in terms of sites as 
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The time integrals in the quadrature solution to equation 5 
coupled to equation 17 can be written in closed form when rCF is 
an integral multiple of rc (Appendix equations A17 and A18). 

RESULTS 

Model calculations. A comparison of models. The above three 
models (TMA [equation 6], PMA [equation 7], and CF [equation 
17]) differ only in the assumed expression for fP (Table 2). The 
two arbitrary parameters, β and γ, for the PMA and TMA models, 
respectively, can be chosen such that all three models give the 
same results for late season epidemics (Table 2: β = γ = (1 + δ)). 
The role of the parameter δ (equation 15) in determining the 
canopy filtration efficiency for the CF model is illustrated in 
Figure 1. Note fP for the CF model is bounded by the assumptions 
of the other two models (PMA and TMA). The solutions of the 
three models (TMA [equation 6], PMA [equation 7], and CF 
[equation 17] with rW = rP = rCF = 2rc, Y0/Nmax = 0.00167, n0 = 
0.01, δ = 1) are plotted in Figure 2. Due to the low spore catch 
when leaf area is small for both the PMA and CF models, plant 
disease epidemics are delayed until the canopy starts to grow. 
These mass-action-based epidemics are characterized by acceler-
ating logistic growth rates and are negatively skewed in time, as 
illustrated in Figure 2. Note that all three models degenerate to 
the same simple logistic equation for epidemics starting at a time, 
τstart = 10/rc, after the vegetative period for which n is very close 
to unity. 
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The diseased fraction y. Experimentally, one does not directly 
measure the number of infected sites, Y. Usually, a sample (a col-
lection of leaves, stems, or plants) is assayed for disease to obtain 
the diseased fraction, y = Y/N. Diseased fractions for the epi-
demics shown in Figure 2 are plotted in Figure 3. The initial 
decrease in the diseased fraction for the PMA and CF models is 
due to the dilution effect of the growing crop. This effect is also 
what causes the time lag in these epidemics. Basically, the crop 
must grow to a certain size before enough spores are captured so 
that disease increases at least as fast as the crop grows. To put the 
above statement into more formal terms we must reexamine the 
model equations. 

Our next task is to describe the time course of disease devel-
opment in terms of y when the crop is growing. Combining equa-
tions 5 and 6 with the definition of the derivative of the quotient, 
Y/N, yields 
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where n = N/Nmax and the negative term on the right side of equa-
tion 18 accounts for dilution due to crop growth. Setting the de-
rivative in equation 18 equal to zero, we define the critical disease 
severity, ycrit, as a function of time: 
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where the logistic solution for crop growth (Appendix equation 
A7) has been substituted for n(t). Analogous analyses for the 
pseudo mass-action case (PMA: equations 5 and 7) yield 
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and for the canopy filtration case (CF: equations 5 and 17), the 
results are 
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where y = Y/N = AY/A, n = N/Nmax = A/Amax, and ycrit is given by 
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The solution to equation 22 is illustrated in Figure 4A for the CF 
model where y is plotted versus nondimensional time rct. The 

short line segments in Figure 4A represent the derivative in equa-
tion 22 and the hatched line is a plot of ycrit (equation 23). For dis-
ease severities less than the critical value (equation 23), the dis-
eased fraction increases with time. For disease severities greater 
than the critical value (equation 23), the crop grows faster than 
the epidemic and the fractional disease severity decreases with 
time. At the critical value, both disease levels and crop density 
grow at the same rate, so that the diseased fraction remains con-
stant. The relationships among the values of ycrit for all of the 
models (TMA, equation 19; PMA, equation 21, and CF, equation 
23) are illustrated in Figure 4B. Note that the canopy filtration 
model smoothly transforms from the PMA case (δ→0) to the MA 
case (δ→∞) as the parameter δ increases. 

The time lag. The initial behavior of the three models is ex-
amined in the Appendix. The TMA model corresponds to an 
increase of Y over time (equation A22). However, the behavior of 
the other two models is more complex. Due to the low efficiency 
of foliar spore capture in the early stages of crop growth, disease 
progress is stifled for the PMA and CF models when compared 
with the TMA model. The net result (Appendix equations A19 to 
A26) is that the initial epidemic curves for the PMA and CF 
models approach exponential curves after periods of time, τP and 
τCF, respectively, given by 
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where C1 is defined in equation A16. This behavior is independent 
of the initial level of disease [Y(0) or y(0)]. For comparison, 
consider the time it takes for a logistically growing crop to attain 
half its maximum leaf area, τc½, given by 
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If the initial value of n is small (n < 0.1), the two time scales τP 
(equation 24) and τc½ (equation 26) are almost identical, with τP ~ 
τc½ + n(0)/rc. The time lags for CF models (equation 25) are 
smaller by a factor depending on the value of the parameter δ. For 
example, if n(0) = 0.01 and δ = 1, then rcτc½ = 4.595, rcτP = 4.605, 
and rcτCF = 2.30, 3.53, 3.92, and 4.43 for δ = 0.1, 0.5, 1.0, and 
5.0, respectively (Fig. 5A). Once again, as δ increases, the CF 
model approaches the behavior of the PMA model. 

The effect of time of initial infection. For most of the above 
epidemics, we have assumed that there was some initial level of 
diseased tissue at time zero. Consider the situation where the crop 
is allowed to grow uninfected for a certain time period, τstart, at 
which time a certain amount of disease, Y(τstart), is introduced. 
This situation is illustrated in Figure 5B for the parameters of the 

TABLE 2. A comparison of the three models presented in the texta 

Model fP fP; n→1 α r 

True mass-action (equation 6)  β β 
N

Iψβ
 rW = βIψfR 

Pseudo mass-action (equation 7)  γn γ 
maxN

Iψγ
 rP = γIψfR 

Canopy filtration (equation 17)  
δ+n

n
 ( )δ+1

1
 ( )δ+

ψ

nN

nI
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1
R
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a All three models are described by the same differential equation: 
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α=  with suitable values for the canopy filtration

efficiency, fP. In order for the three models to give the same results as n→1, β = γ = (1 + δ). Note n = A/Amax = N/Nmax. 
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CF epidemic illustrated in Figure 4A (τstart = 0, n(0) = 0.01, 
Y(τstart)/Nmax =0.001667, rCF/rc = 2, and δ = 1). For values of τstart < 
τCF, the resultant epidemics are almost identical. To illustrate this 
fact, note that the dimensionless time at which the diseased 
fraction y is 0.5 are 7.10, 7.13, 7.22, 7.42, 7.83, 8.48 for values of 
rcτstart = 0, 1, 2, 3, 4, 5, 6, respectively. In this case, rcτCF = 3.92 
(equation 25) and the dimensionless time lag between τstart = 0 
and τstart = 3 is only 0.32. To put this information in perspective, a 
typical value for rc is 0.1 d–1, so that a 30 day delay in the 
introduction of inoculum results in a mere 3.2 day lag in the time 
for the epidemic to reach the 50% point (y = 0.5). Basically, 
disease development is delayed until the flush of crop growth. 

Population effects and lesion phenology. The above models 
of disease development are based on rather simplistic assumptions 
concerning the population of lesions and the population of host 
sites. First sporulating or infective sites, S, are assumed to be a 
constant fraction, fR, of infected sites. Due to the latency period 
and the dependence of sporulation on the age of a lesion, the age 
distribution of the population of infected sites must be taken into 
account in order to correctly relate infective sites, S, to infected 
sites, Y. 

Canopy filtration and the basic reproduction ratio, R0. Segarra 
et al. (35: equation 4) defined the basic reproduction ratio, R0, as 

∫
∞

ττψξ=
0
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where H0 is the total number of healthy sites (assumed suscepti-
ble) at time 0, ξ and ψ are defined as in equation 8, and I(τ) is the 
time rate of aerial spore production per lesion, as before. How-
ever, equation 27 is no longer valid for a growing crop where the 
total number of host sites, N(t), is an explicit function of time. Crop 
growth (equation 5) and the canopy filtration efficiency, fP (equation 
15), must be incorporated into the definition of R0. Note the 
fraction of deposited spores generating lesions, ψ (lesion spore–1), 
was also assumed constant in equation 27 (35: equation 4). If ψ is 
a function of time, it must be brought inside the time integral. 

The initial product, ξH0, on the right side of equation 27, by 
definition, is the fraction of the total number of spores which end 
up on the maximal number of susceptible host sites, H0, the initial 
value. The analog of ξH0, for a growing crop, is ξN(t) = fP[n(t), δ], 
which is an explicit function of time. Therefore, in this case, the 
maximal number of available susceptible host sites is not initially 
present. In order to account for the increasing availability of host 
sites, the product, ξN(t), must be also be brought inside the time 
integral in equation 27. Recalling that ξ = fP/N(t) and assuming 
that all sites are healthy and susceptible, the total number of 
daughter lesions per mother lesion infected at time, tstart, is given 
by 
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where fP and δ are defined in equation 15. In writing equation 28, 
I have, intentionally, left out the zero subscript on “R(tstart)” in 

Fig. 2. Plot of the epidemics resulting from the three models discussed in the
text (true mass-action [TMA, equation 6]; pseudo mass-action [PMA, equa-
tion 7]; and canopy filtration [CF, equation 17] with rW = rP = rCF = 2rc, 
Y0/Nmax = 0.00167, n0 = 0.01, δ = 1). Y is the cumulative number of infected
sites and Nmax is the maximum number of total sites. All three models give the
same result when the epidemic is started as the crop approaches maximum
ground cover (rct = 10; lag TMA, lag PMA, lag CF). For comparison, nor-
malized crop growth is also plotted (n = N/Nmax; heavy line). 

Fig. 3. Diseased fraction, y, versus dimensionless time, rct, for the epidemics 
plotted in Figures 2 and 3 (rW = rP = rCF = 2rc, Y0/Nmax = 0.00167, n0 = 0.01, 
δ = 1). Note that y decreases for the pseudo mass-action (PMA) and canopy 
filtration (CF) models during the early stages of the epidemic as the crop 
grows faster than disease increases. All three models give the same result 
when the epidemic is started after the crop has grown (rcτstart = 10, ylag 
dashed line). For comparison, normalized crop growth is also plotted (n = 
N/Nmax; heavy line). 

Fig. 1. The effect of crop growth on canopy filtration. The fraction of airborne
spores that land on plants, fP, divided by its maximum value (1 + δ)–1, is 
plotted versus normalized leaf area index (n = A/Amax) for different values of
the parameter δ (equation 15). The parameter δ is defined as the ratio of the
number of spores lost to both the ground and the air above the canopy to the
number of spores deposited on plant tissue. For comparison, the assumed
canopy filtration for the true mass-action model (TMA, dashed line, equation
6) and the pseudo mass-action model (PMA, heavy solid line, equation 7) are 
also shown. Smaller values of δ correspond to denser canopies, faster spore 
settling velocities, and lower wind speeds. 
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equation 28 to remind the reader that this quantity is a function of 
the time of lesion initiation, tstart. For most pathosystems, due to 
the favorable conditions for infection associated with increasing 
leaf area, the first two terms within the integrand of equation 28 
will both, on average, be monotonically increasing functions of 
time throughout the vegetative phase of crop growth. There is an 
additional stochastic variation in ψ, the spore survival-infection 
probability, due to episodic meteorological events such as rainfall. 
Since a successful invasion of the pathogen requires that R0 > 1 

(11), there may be a threshold value for tstart before which an epi-
demic is not likely to occur. In other words, lesions initiated before 
this critical time may not cause a self-sustainable epidemic (31). 

An example: sporulation given by Vanderplank’s step function. 
Assume that ψ is constant and I(t) is given by the product of a 
constant rate of spore release, q (spores day–1), and a unit step 
function in time, which has the value of 1 for p > t > p + i and is 
zero at all other times (37). Thus, after a latent period of duration, 
p (d), a new lesion produces spores at a constant rate q for a 

Fig. 5. A, Log plots of approximate solutions for Y<<N (Appendix equations A19 to A26). A straight line indicates an exponential increase of disease. For these 
calculations it was assumed that n(0) = 0.01, rW = rP = rCF = 2rc, and the asymptotic slopes of all lines is 2. The pseudo mass-action (PMA) solution (heavy line) 
has the maximum dimensionless delay time, rcτP, equal to the natural logarithm of 100 or, approximately, 4.6 (note rcτP = –ln(0.01), equation A25). The 
asymptotic line for the PMA solution is also shown (dot-dash line). B, Plot of diseased fraction, y, versus dimensionless time, rct, illustrating the effect of the time 
of initial infection (τstart) on the canopy filtration (CF) epidemic illustrated in Figure 6 (τstart = 0, n(0) = 0.01, Y(τstart)/Nmax =0.001667, rCF/rc = 2, and δ = 1). The 
dimensionless delay time, rcτCF, for this epidemic is 3.92 (equation 25). As the initial inoculum is introduced later and later, very little happens until rcτstart > rcτCF.

 

Fig. 4. A, Short line segments representing dy/dt calculated for rCF/rc = 2 and δ = 1 using equation 22 in text, together with equation A7 in the Appendix, are 
plotted versus dimensionless time, rct. The “U” shaped line corresponds to the rCF/rc = 2 solution plotted in Figures 2 to 5. rCF (d–1) is the maximum logistic rate of 
disease increase and rc (d–1) is the logistic rate of crop growth. The hatched line is the critical diseased fraction, ycrit, given by equation 23 in the text. Note slopes 
are negative above and to the left of this line and positive below and to the right. The logistic curve describing the fractional leaf area, n(t), is also shown for 
comparison (bold sigmoidal line). Figure was calculated assuming n(0) = 0.01, y(0) = 0.16667. B, The effect of crop growth on the critical diseased fraction, ycrit, 
calculated for the canopy filtration model (CF, equation 17), which is plotted versus normalized crop size (n = N/Nmax = A/Amax) for different values of the 
parameter δ (equation 23). The parameter δ is defined as the ratio of number of spores lost to both the ground and the air above the canopy to the number of spores
deposited on plant tissue. For comparison, the assumed filtration for the true mass-action model (TMA, dashed line, equation 19) and the pseudo mass-action 
model (PMA, heavy solid line, equation 21) are also shown. Smaller values of δ correspond to denser canopies, faster falling spores, and lower wind speeds. These 
calculations were carried out assuming rW = rP = rCF = 2rc. 
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period of time equal to the infectious period, i (d). The total 
amount of spores produced over this time period is equal to the 
product iq. Then, using equation 15 for fP, equation 28 can be 
integrated to yield 
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where the maximum value for fP is (1 + δ)–1, which when inserted 
into equation 27, yields R0 = iψq/(1 + δ), and 
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which was defined in equation A16. The ratio R(tstart)/R0 is plotted 
versus rctstart in Figure 6A and B for δ = 1. In Figure 6A, the value 
of the ratio of the infectious period to the latent period, i/p, is set 
equal to 1 and rcp is varied from 0.25 to 2. In Figure 6B, the value 
of the ratio rcp is set equal to 1 and i/p is varied from 0.1 to 4. In 
general, an increase in either p or i reduces the impact of the 
lesion start time on the effective reproductive ratio (R(tstart)). 

The Kermack-McKendrick epidemic model. The above speci-
fication of the relations between lesion age, spore production, 
transport, and deposition used in the derivation of R0 (equation 27) 
suggests a restatement of the mass-action equation (equation 1). 
In particular, the product αS can be expressed as 
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where τ is the age of a lesion, I(τ) is the time rate of spore pro-
duction per lesion as a function of lesion age, ξ is the probability 
per susceptible uninfected host site that a spore is physically 
transported to such a site, and ψ is the fraction of spores that 
having landed on susceptible host cause a new lesion. The deriva-
tive in equation 31 represents the rate at which lesions were being 
initiated at time t – τ. With all the above assumptions, equations 1 
and 31 can then be combined to yield 
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where g(t) is the spore production of lesions initiated before t = 0 
and all healthy tissue is assumed susceptible. Equation 32, as 
written, still includes two population variables, Y and H. Thus, an 

explicit solution of equation 32 involves some assumption about 
the relation between these two variables. Following Segarra et al. 
(35), we assume that the total number of host sites remains con-
stant and is given by N0 = H + Y, such that dH/dt = –dY/dt, which, 
when combined with equation 32, gives the classic form of the 
Kermack-McKendrick epidemic model (KM model: 23): 
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The solution of equation 33 results in a disease progress curve 
that is totally determined by the value of R0 (equation 27), the 
sporulation curve (I(τ)), and the time rate of spore production 
from the initial infection (g(t)). 

Our task at hand is to modify the above analysis to include a 
growing crop for which the total number of standing sites, N(t), is 
an explicit function of time. For equation 32, this process is 
simple. Expressing the parameter ξ in equation 32 as an explicit 
function of time, ξ = fP/N(t), and ignoring removals such that N = 
H + Y, yields 
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The derivation of equation 33 involved an assumption concerning 
the time derivatives of H and Y which is no longer valid for a 
growing crop. Instead, ignoring removals, we have 

( ) ( ) ( ) ( ) ( ) ( )
dt

tdY

dt

tdH

dt

tdN
tYtHtN +=→+=  (35) 

so that, equation 33 can be expressed as 
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Direct comparison of equation 36 with equation 33 reveals two 
addition terms involving the time derivative of the total number of 
sites, dN/dt. Of course, if N remains constant, these terms are zero 
and equation 36 reverts to equation 33. The second positive term 
on the right side of equation 36 represents the effect of crop 
growth on the number of healthy sites, H, and the negative last 
term on the right side of equation 36 is a correction to the spore 

 

Fig. 6. The normalized effective reproduction ratio, R(tstart)/R0 (equation 29), is plotted versus dimensionless lesion start time, rctstart (δ =1, n(0) = 0.01). A, The 
value of the ratio of the infectious period to the latent period, i/p, is set equal to 1 and rcp is varied from 0.25 to 2. An increase in the latent period, p, reduces the 
impact of the lesion start time on the effective reproductive ratio (R(tstart)). B, The value of the ratio rcp is set equal to 1 and i/p is varied from 0.1 to 4. An increase 
in the infectious period, i, reduces the impact of the lesion start time on the effective reproductive ratio (R(tstart)). 
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production term (bracketed convolution integral in the first term 
on the right side of equation 36) accounting for increases in H due 
to crop growth, which is independent of Y and has nothing to do 
with spore production. 

As the above analysis indicates, the expression of epidemic 
development in terms of healthy sites is complicated by crop 
growth. In this situation, equation 34 is more useful than the 
modified KM model above (equation 36), since it is expressed in 
terms of infected sites, which are not directly affected by the 
introduction of a new host. For equation 34, crop growth enters 
explicitly in the functional dependence of fP on canopy density 
(equation 15) and the dilution effect occurring in the correction 
factor (1 – Y/N). There is no explicit dependence on dN/dt. 

Lesion production days. The form of equation 28 for R and the 
nondimensional premultiplier, fPψ, in equations 34 and 36 suggest 
the introduction of a transformed time variable, ℑ(t) (d), defined as 

( ) ∫ ′ψ=ℑ
t

P tdft
0

 (37) 

which I shall call lesion production days. If spores are produced 
at a constant rate of I per day, and all host tissue is assumed 
susceptible so that there are no multiple infections, then the total 
number of lesions produced in time, t, is Iℑ(t). Dividing both 
sides of equation 34 by the product, fP(t)ψ(t), and multiplying  
and dividing the integrand in equation 34 by the product, 
fP(tstart)ψ(tstart), yields 
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where τ = t – tstart, and all time variables have been transformed 
using equation 37. Thus, a simple time transformation (equation 
37) can account for the time dependence in spore deposition and 
spore survival. There still remains the effect of dilution due to 
crop growth in the correction factor of equation 38 (first term on 
the right side), which accounts for the introduction of new healthy 
tissue. However, early in an epidemic, the term Y/N is small and 
can be ignored. 

If we assume that spore infection probability, ψ, is constant in 
time, then the time dependence of ℑ is identical to the time depen-
dence of ln(IF) for the CF model (equations A15 and A24). This 
function, illustrated in Figure 5A, is characterized by the time lag, 
τCF, given by equation 25. This time lag is independent of the spore 
production rate and is totally given by crop-based parameters. 

DISCUSSION 

The epidemiological principle of pseudo mass-action (equation 
7), wherein the number of new lesions per unit of time is pro-
portional to the number of sporulating sites multiplied by the 
number of susceptible host sites, has been reexamined. For spores 
spread by wind, this simple linear hypothesis breaks down at high 
plant canopy densities. On the other hand, the simple modifica-
tion of this rule, which leads to true mass-action models (equation 
6), does not properly account for the variable efficiency with 
which a growing plant canopy intercepts airborne spores. A 
simple physical model of spore transport and deposition provided 
a reasonable and more realistic approximation for the changing 
canopy filtration efficiency. Solutions of the resulting differential 
equation (equations 16 and 17) for disease severity as a function 
of time in a growing crop provide some interesting insights. 
• Disease progress is determined by two time scales, one de-

scribing crop growth and the other describing spore pro-
duction rate. 

• The basic reproduction ratio, R0, defined as the number of 
daughter lesions per mother lesion when all host tissue is 
susceptible, increases dramatically during the vegetative stage 
of crop growth. This increase is due to increased canopy 

spore filtration. As the crop grows, fewer and fewer spores 
are deposited to the ground and/or escape from the field. 

• The increase in the value of R0, described above, can be 
accounted for by a transformation in the time variable. 

The development of plant disease epidemics spread by airborne 
spores during the vegetative period is strongly dependent on 
canopy growth. The overall effect of the increasing canopy filtra-
tion efficiency is to delay the normal initial exponential growth of 
the epidemic. The magnitude of this time delay is explicitly de-
pendent on the crop growth rate and the wind dependent canopy 
filtration probability. One of the ramifications of this time delay is 
the synchronization of early epidemics with the flush of crop 
growth, which is relatively independent of the time of the initial 
introduction of inoculum. 

APPENDIX 

The quadrature solution to the law of mass-action for a 
logistically growing crop. We seek the solution to the following 
set of coupled nonlinear equations: 

)( YNYf
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dY
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NN
Nr

dt

dN
c

−
=  (5) 

The general procedure is to first solve equation 5 for N(t) as an 
explicit function of time, which is then inserted into equation 3. 

Both of the above differential equations have the same general 
form, that is 

( )XtbXtb
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dX
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where b1(t) and b2(t) are arbitrary functions of time. We start by 
transforming equation A1 by setting Z(t) = X(t)–1 such that 
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Multiplying both sides of equation A2 by the integrating factor, 
IF(t), defined by 
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renders equation A2 exact, such that 
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yielding the following quadrature solution for equation A1: 
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A direct comparison of equations 5, 6, 7, and 21 with equation A1 
yields 
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Since equations 6, 7, and 17 explicitly depend on N(t), equation 5 
must be solved first. Combining equations A3, A5, and A6 yields 
the following logistic equation solution for equation 5: 
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where n = N/Nmax. For this case, the integrating factor (equation 
A3) is fairly simple (IF(t) = exp(rct)). 

The solution for true mass-action (α ∝ N–1). For equation 6, 
we note the product b1

.b2 is a constant and IF(t) = exp(rWt) 
(equation A6). So that, the integral in the denominator of equation 
A5 can be directly evaluated: 
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Inserting equation A11 into equation A5, we obtain the solution to 
equation 6 (equation A9 in 38): 
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The solution to the law of pseudo mass-action with constant 
α. In order to write the solution to equation 7 coupled with equa-
tion 5, we need to evaluate IF(t) (equation A3) subject to the 
value of the product b1

.b2 (equation A6): 
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where rP (d–1) = αfRNmax. Thus, the integral in the denominator of 
equation A5 can be written as 
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which can be integrated, in closed form, if the ratio rP/rc is an 
integer, i: 
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The solutions to equation 7 are obtained by inserting equations 
A8 and A9 into equation A5. For the special cases rPMA/rc = i = 1 
and 2, the solutions are shown below and the solutions for rPMA/rc = 
i = 1, 2, 3, and 4 are plotted in Figure 1: 
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In the general case when the ratio rPMA/rc is not an integer, the 
solution can be obtained by numerical integration. 

The solution with variable canopy filtration. For equation 
17, the form of the integrating factor is a bit more complex. The 

parameter b1 is given by 
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and product b1
.b2 (equation A6) is given by 
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In order to write the solution to equation 17 coupled with equa-
tion 5, we need to evaluate IF(t) (equation A3) subject to the 
value of the product b1

.b2 (equation A14). The result is 
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where rCF (d–1) = IψfR/(1 + δ). Thus, the integral in the denomi-
nator of equation A5 can be written as 
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which can be integrated in closed form when the ratio rCF/rc is an 
integer i: 
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The solutions to equation 17 are obtained by inserting equations 
A15 and A17 into equation A5. For the special cases rCF/rc = i = 1 
and 2, the solutions are shown below and the solutions for rP/rc =  
i = 1, 2, 3, and 4 are plotted in Figure 3: 
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In the general case when the ratio rCF/rc is not an integer, the 
solution can be obtained by numerical integration. 

Estimating the time lag. Let us reexamine equation A2: 
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dividing by the product b1b2, we obtain 
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For equations 6, 7, and 17, b2 = N(t), the total number of host 
sites. If we assume a very low incidence of disease at the start of 
the epidemic, then Y(0) << N(0) and thus Z(0) >> 1/b2(t). Neglect-
ing the second term on the right side of equation A19, and setting 
Z = 1/Y, we obtain 
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which implies 
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since IF(0) = 1 (equation A3). Equation A21 is valid as long as 
disease incidence is low (Y << N). For the above three models, 
equation A21 becomes 
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where C1 was defined in equations A16. Equation A22 is linear in 
time and equations A23 and A24 approach temporal linearity 
asymptotically (Fig. 5A) after time lags, τP (d) and τCF (d), 
respectively, given by 
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