Discrete Cosine Transform and Karhunen Loéve Transform Approximation of Correlated Signals

by Bryan Davis

alias Mojo

EEL5701:

Digital Signal Processing Foundations

Dr. Talyor

August 2, 1999

Discrete Cosine Transform and Karhunen Loéve Transform Approximation of Correlated Signals

Purpose

The purpose of this project is to estimate the compression ratio and reconstruction accuracy of signals compressed using the Karhunen Loéve Transform (KLT) and the Discrete Cosine Transform (DCT) with a given error acceptance. The signal will be assumed to be a realization of a stationary process having a autocorrelation of RSS = ((. The covariance matrix will then have the form {M: Mij = (|i-j|(2}, where (2 is the variance of the individual signal. Because of the correlation between samples, the KLT should be able to compress the signal data significantly, while still retaining most of the information in the signal. Since the DCT is an approximation for the KLT for signals with this type of correlation, it should do approximately the same thing, with much less computation than the KLT.

Creating Covariant Samples

The first thing we need to do is construct a discrete random process S with the given autocorrelation. First, we decompose the covariance matrix M (letting (2 = 1) into the form Q-1DQ, where D is diagonal. Now, D will transform into M if it undergoes a basis transformation from the stand basis into the columns of Q. D represents a discrete random process with no covariance between individual random variables (RVs), but rather the samples have weighted variances. Since the variance is not a linear characteristic, we cannot perform linear transformations on D and expect the variance of the new matrix to be a linear transformation. But the standard deviation for Gaussian RVs possess the property of linearity. We need to use Gaussian RVs because only they possess the property of closure under any linear transformation. Gaussian RVs with variances contained in D, have standard deviations contained in (D. So, if we left multiply R by (D, we get a vector of uncorrelated Gaussian RVs with a mean of zero and variances contained D. When left multiply this vector with Q, we transform the uncorrelated random variables into a discrete random process with the desired autocorrelation. Note that this is not an attempt to be a formal proof, but merely an explanation as to why the following code works.

So the steps in Matlab are:

1) M = Markov(N,();
% M is an NxN matrix with Mij = (|i-j|
2) R = randn(N,Ns);
% Create N normally distributed random varaibles with mean 0, and variance 1,

with a sample space of size Ns.
3) [Q,D] = eig(M);
% Find Q and D such that Q-1DQ = M, and D is diagonal.
4) S = Q*(D*r;

% Transform R into S with mean 0, variance 1, and covariance matrix M.
This result is experimentally verified using the included Matlab function ‘proj2’. 

 Here is part of the code related to creating the random process S and verifying that it has the correct autocorrelation function:


This first section generates the specified discrete random process as outlined above. Note that the random process is represented a sample space of size NS, where NS is hopefully rather large.


To clarify the explanation, use the following definitions:

Random Process S - 
the NxNS matrix S, where each column is a realized signal of length N, and each row is a sample space for the RV S(i).

Random Variable (RV) - 
a row of S. It is an NS dimensional vector that represents the random process S taken at some instance in time.

Sample Space - 
a row of S. Meaning the sample space of a RV.

Realization of S -
any column of S. This represents a realization of the random process S.

Signal - 


a realization of S.

Sample - 

an individual signal sample. (not related to sample space).

Signal Energy - 

the sum of the squares of a signal’s samples.

The first statistic collected is the expected energy of S, and is displayed in the variable avg_signal_energy. This is calculated by taking the average of the signal energies for each realization of S. Ideally, this should equal N.

The next statistic is the covariance matrix of S, and is contained in the variable covariance_matrix. This is a NxN matrix where each entry Cij corresponds to the covariance between the RV at time i and the RV at time j. This is calculated using a function in Matlab called cov. Ideally, this should be identical to the matrix M. Since this can be a large matrix, it is not directly displayed. To see its value type: covariance_matrix at the prompt after proj2() is displayed.

The next statistic is the root-mean-squared error of the coefficients in the covariance matrix, and is contained in the variable covariance_rms_error. This is a metric of the accuracy of the covariance matrix to M. It should approach 0, as NS approaches (.

A plot of the autocorrelation and power spectral density (PSD) are also displayed. The black graph represents the ideal random process, and the red graph represents this approximation. The process is supposed to stationary and therefore the autocorrelation should only be a function of the time difference, and not the absolute time. Assuming that, the autocorrelation is found by the covariance between the RV taken at time 0, and the RV taken at time (. The PSD is just the Fourier transform of the autocorrelation. As NS approaches (, the two graphs should converge.

Creating a Karhunen-Loéve Approximation to the Covariant Signal s
Once we have a discrete random process S with the desired autocorrelation, we can use eigenvalue 

decomposition to create a transformation that transforms S into an uncorrelated random process. (The reverse process is how we created S in the first place. We started with uncorrelated RVs and transformed them into a random process S using eigenvalue decomposition). This uncorrelated random process is just a collection of independent Gaussian RVs. I’m assuming that Karhunen and Loéve proved that if we take the smallest r eigenvalues and zero them out, leaving err% of the sum of eigenvalues, then s, a realization of S  will be compressed by a factor of N/(N-r), and contain err% of the energy of the original signal, and also that this is the most efficient way to do this.

So first, we decompose S’s covariance matrix M into Q-1*D*Q. Then we create an Nx(N-r) diagonal matrix U that has the effect of removing the columns of Q that correspond to the smallest diagonal entries in D. These smallest entries in D should make up (1-err)% of the total value of D. Now, Q-1*s will transform the highly correlated signal s, into one with no correlation. Then UT*Q-1*s will throw away the least significant entries in Q-1*s.  This (UT*Q-1) will be our compression matrix. The corresponding decompression matrix will be Q (or equivalently, Q*U). So in a real system (which I am not modeling), we would predetermine T=UT*Q-1, the compression matrix, and TT=Q*U, the decompression matrix, based the assumption that our future signal has a known covariance matrix. We right multiply the signal s by T, send the signal (which has N-r samples instead of N samples), receive it, right multiply it by TT, and we have our reconstructed signal. All of this compression-decompression can me modeled by TT*T*s, or equivalently Q*U*UT*Q-1 = Q*U`*Q-1, where U’ = U*UT. U` is a diagonal matrix with zeros in the diagonal entries corresponding to the thrown away columns of Q, and ones in the diagonal entries corresponding to the retained columns of Q.

So, here’s the code that does this:


Since we already calculated Q and D, there is no need to do it again. Otherwise, we produce U` (called just U in the code), and perform the calculation Q*U`*Q-1*S to model the compression-decompression losses.

Discrete Cosine Transform approximation to the Covariant Signal s
The DCT is an approximation to the KLT for random processes that have certain correlation characteristics. The question we are asking here is: How good of an approximation to the KLT is the DCT. The DCT-II matrix ( is an approximation to the Q matrix derived using eigenvalue decomposition. Given this, decomposing M into (-1*E*( (or E = (*M*(-1) should result in E being almost diagonal. If E was diagonal, then ( would transform a random process S with covariance matrix M into an uncorrelated random process as described in the KLT. If we have a signal s, a realization of S, we should be able to compress then decompress it, as in the KLT.

So first, we decompose S’s covariance matrix M into (-1*E*(. Then we create an Nx(N-r) diagonal matrix V that has the effect of removing the columns of ( that correspond to the smallest diagonal entries in E. These smallest diagonal entries in E should make up (1-err)% of the total value of the diagonal entries in E. Now, (-1*s should approximately transform the highly correlated signal s, into one with no correlation. Then VT*(-1*s will throw away the least significant entries in (-1*s.  This (VT*(-1) will be our compression matrix. The corresponding decompression matrix will be ( (or equivalently, (*V). So in a real system (which I am not modeling), we would predetermine T=VT*(-1, the compression matrix, and TT=(*V, the decompression matrix, based the assumption that our future signal has a known covariance matrix. We right multiply the signal s by T, send the signal (which has N-r samples instead of N samples), receive it, right multiply it by TT, and we have our reconstructed signal. All of this compression-decompression can me modeled by TT*T*s, or equivalently (*V*VT*(-1 = (*V`*(-1, where V’ = V*VT. V` is a diagonal matrix with zeros in the diagonal entries corresponding to the thrown away columns of (, and ones in the diagonal entries corresponding to the retained columns of (.

Here’s the code that does this:


The function DCT(N) produces the DCT-II matrix of order N.

The rest is the same as the KLT method.

KLT and DCT analysis

Here is the code that analyzes the results of the KLT and DCT compression-decompression using many signal instances. It is found in the function proj2(N,(,err,NS).

KLT_avg_percent_energy_loss is the average energy lost in each signal by KLT. Ideally, it should have a value of 1-err.

DCT_avg_percent_energy_loss is the average energy lost in each signal by DCT. Ideally, it should have a value of 1-err.

KLT_avg_error is the average squared difference in each signal using KLT. Ideally, it should have a value of 1-err

DCT_avg_error is the average squared difference in each signal using DCT. Ideallt, it should have a value of 1-err

KLT_compression_ratio is the decompressed signal length to KLT compressed signal length ratio.

DCT_compression_ratio is the decompressed signal length to DCT compressed signal length ratio.

Here is the code that analyzes the results of the KLT and DCT compression-decompression using a single signal. It is found in the function proj(N,(,err).


signal_energy is the sum of the squares of the samples in the signal s. It is random with an expected value of N.

KLT_percent_energy_loss is the percentage of the energy lost using KLT. Also random, with an expected value of 1-err.

DCT_percent_energy_loss is the percentage of the energy lost using DCT. Also random, with an expected value of 1-err.

KLT_error is the mean of the square of the difference between each sample of s1 and s. Again, random with an expected value of 1-err.

DCT_error is the mean of the square of the difference between each sample of s2 and s. Random, with an expected value of 1-err.

KLT_compression_ratio is the decompressed signal length to KLT compressed signal length ratio.

DCT_compression_ratio is the decompressed signal length to DCT compressed signal length ratio.

Graph Tendencies

In the function proj graph s, s1 and s2 are displayed on the same plot. Another plot shows a magnitude plot of the signals’ Fourier transforms.

The signals should be smooth but wavy as the value of ( (the correlation coefficient) increases. For a negative value of (, the signal should be very jagged, but overall rather flat. As |(| increases towards 1, the compression ratio should increase. For ( = 0, the signals should be very jagged and wavy, and little compression should be possible.

The closer ‘err’ is to 1, the closer the approximations should match the original signal s. This is at a cost of a decreased compression ratio.

The larger N is, the more data points there are on the graph. If a power of 2 is used for N, Matlab goes a little faster. Values larger than 512 take exceedingly long to run. This is because of the calculation of the KLT transform matrices, not the actual compression-decompression algorithm.

An interesting deviation from what is expected, is that for very high correlated signals (|(| ~ 0.999), the DCT does not approximate the signal very well at the end points. Otherwise, the DCT and the KLT are comparable, although the KLT always slightly outperforms the DCT, as far as compression goes. They both perform very well (better than I expected).

proj2 takes four parameters. The first three parameters are the same. NS is the size of the sample space for each RV. 1,000-10,000 are good values. >100,000 is very slow.

Conclusions

This project was very successful in that it taught me a lot about signal compression. The graphical results are very revealing in that they show the output of compressed signals along side of their Fourier transforms. The compression-decompression algorithms are highly compressive and reconstruct rather accurately the original signal. As the Fourier transforms display, the compression for positively correlated signals losses the frequencies near the Nyquist frequency, and compression for negatively correlated signals losses frequencies near DC. This is what is expected, since a highly positively correlated signal is smooth and wavy, which suggests it has very little energy in the high frequencies. Likewise, a highly negatively correlated signal is jagged and flat overall, which suggests it has very little energy in the low frequencies.

A very serious limitation to the application of the compression algorithms is that the 1st and 2nd order statistics of the signal must be known a priori. The algorithm exploits the fact that the signal has a known autocorrelation to compress it. Autocorrelation cannot be inferred just from one signal. Also interesting to note is that when the original signal is right multiplied by (-1 (or Q-1), and then most of the vector entries are removed by V or(U), that is not necessarily the smallest entries that are zeroed out. There really is no correlation between the size of the entry and whether or not it is kept, or zeroed out. This is determined by the matrix V, and is independent of the signal. It is just that the information contained in those entries is insignificant when reconstructing the signal.

Source Code

Here is the source code in its entirety. Included here but not metioned in the text is the source code for creating the covariance matrix, Markov(N,(), creating the DCT transform matrix, DCT(N), and code for creating the matrices U and V, reduce(D,1-err).

Markov.m

% creates a Markov covariance matrix where M(i,j) = p^abs(i-j)
function M = Markov(N,p)

for i = 1:N


for j = 1:N



M(i,j) = p^abs(i - j);


end

end

return

DCT.m

% creates the DCT-II transform matrix
function A = DCT(N)

for j = 1:N


A(1,j) = sqrt(2)/2;

end

for i = 2:N


for j = 1:N



A(i,j) = cos((i-1)*(j-0.5)*pi/N);


end

end

A = sqrt(2/N)*A;

return      

reduce.m

% creates a diagonal matrix R which has ones in the locations where 1-err%

% of the diagonal value of D's largest entries lies.
function R = reduce(D, err)

D = abs(diag(D));

N=length(D);

err=err*N;






% normalize the error to trace(D), which equals N.

R=eye(N);






% start of with idenity matrix, and slowly reduce the 1's

%                             % on the diagonal until err% of the trace is gone.

[small,index] = min(D);

while ((err > small) & (small ~= 100)) ,

   D(index) = 100;

   R(index,index) = 0;

   err = err - small;

   [small,index] = min(D);

end

return
proj.m

% This function generates a realization of the random process S and calls it s.

% It also generates two signals s1 and s2, which are the compression-decompression

% approximations that result from the KLT and DCT, respectively.

% It plots these signals along with their Fourier transforms, and gives some analysis metrics.

function output = proj(N,p,err)

% The first thing to do is to generate a realization of the discrete random process S

M=Markov(N,p);




% generate a NxN Covariance martix with correlation p^abs(i-j)

[Q,D] = eig(M);         
% find eigenvalues and eigenvectors of M

r=randn(N,1);




% a Gaussian random signal with no covariance between samples

s=Q*sqrt(D)*r;




% a Gaussian random signal with covariance matrix M

% The next step is to find the KLT approximation to the signal s.

% Since the KLT uses eigenvalue decomposition of the matrix M, we need Q and D,

% such that inv(Q)*D*Q = M. But we already did this calculation in creating s.

% We need to reduce D so it contains at least err% of it's energy in the fewest possible

% coefficents (U=reduce(D,1-err) does this). Then we need to calculate the matrix Q*U*inv(Q).

% This matrix will perform the compress-decompress operation on s,

% producing s1, a facsimile to s.

U = reduce(D,1-err);


% U is a diagonal martix with ones corresponding to the largest

%








% values that together contain err% of the energy in D

s1 = Q*U*inv(Q)*s;


% approximation to s using KLT compression-decompression

% The next step is to find the DCT approximation to the signal s.

% The DCT uses an NxN transformation matrix R that approximates the eignevectors of M.

% We need to find E (an approximation to a diagonal) such that inv(R)*E*R = M.

% We need to reduce E so it contains at least err% of it's energy in the fewest possible

% diagonal coefficents (V=reduce(E,1-err) does this). Then we need to calculate the matrix

% R*E*inv(R). This matrix will perform the compress-decompress operation on

% the signal s, producing s2, a facsimile to s.

R = DCT(N);





% NxN DCT-II martix

E = R*M*inv(R);



% DCT approximation to a diagonal matrix

V = reduce(E,1-err);


% U is a diagonal martix with ones corresponding to the largest
%








% values that together contain err% of the energy in D

s2 = R*V*inv(R)*s;


% approxiamtion to s using DCT

% Here we calculate some metrics about s, s1 and s2.

% the signal energy of s
output.signal_energy = sum(s.^2);

% the percentage of energy lost from using the KLT

output.KLT_percent_energy_loss = (output.signal_energy - sum(s1.^2))/N;

% the percentage of energy lost from using the KLT

output.DCT_precent_energy_loss = (output.signal_energy - sum(s2.^2))/N;

% the energy (squared) error from KLT compression-decompression
output.KLT_error = mean((s-s1).^2);

% the energy (squared) error from DCT compression-decompression

output.DCT_error = mean((s-s2).^2);

% the KLT and DCT compression ratios, respectively

output.KLT_compression_ratio = N/trace(U);

output.DCT_compression_ratio = N/trace(V);

% Here we plot a graph of s, s1 and s2 on the same plot,
% and we also plot a graph of their Fourier transforms

x=linspace(0,N-1,N);

subplot(2,1,1),plot(x,s,'k',x,s1,'b',x,s2,'r');

axis([0 N-1 -4 4]);

ylabel('signal value');

xlabel('sample index');

title('black = original signal, blue = KLT approx., red = DCT approx.');

subplot(2,1,2),semilogy(x,abs(fft(s)),'k',x,abs(fft(s1)),'b',x,abs(fft(s2)),'r');

xlabel('DFT index');

ylabel('log(mag(X[i]))');

title('Discrete Fourier Transform of each signal');

axis([0 N/2 .01 N*2]);

return
proj2.m

% This function analyzes the average case over Ns samples for proj(N,p,err). This is used to

% verify the validity of the random process S, and show that the averages for the KLT and DCT

% approximations are as expected.

function output = proj2(N,p,err,Ns)

% The first thing to do is to generate a discrete random process, where the covariance between

% random samples is given by the Markov covariance matrix M: M(i,j)=p^abs(i-j).

% Each random variable is represented by a vector of size Ns whose elements form

% the sample space of the random variable.

M = Markov(N,p);



% generate a NxN Covariance martix with covariance: p^abs(i-j)

[Q,D] = eig(M);         
% find eigenvalues and eigenvectors of M

R = randn(N,Ns);



% a normally dist. discrete random process w/ no cov. between samples

S = Q*sqrt(D)*R;



% a normally dist. discrete random process w/ a cov. matrix M

% Does the discrete random process possess the orignal covariance matrix?

% Calculate the average signal energy of the realiztions of S. This should approximate N.

output.avg_signal_energy = mean(sum(S.^2));

% Calculate the covariance matrix of S. This should approximate M.

output.covariance_matrix = cov(transpose(S));

% How close is the covariance matrix? Calculate the rms value of M - covariance_matrix.

% This should ideally be zero.

output.covariance_rms_error = sqrt(mean(mean((M - output.covariance_matrix).^2)));

% Plot the autocorrelation function and the power spectral density

% and compare them to the ideal.

x = linspace(0,N-1,N);

subplot(2,1,1),plot(x,output.covariance_matrix(1,:),'r',x,M(1,:),'k');

axis([0 N-1 -.5 1.1]);

title('Characteristics of the Random Process S');

xlabel('time difference');

ylabel('autocorrelation');

subplot(2,1,2),semilogy(x,abs(fft(output.covariance_matrix(1,:))),'r',x,abs(fft(M(1,:))),'k');

axis([0 N/2 .01 N*2]);

xlabel('frequency');

ylabel('Power Spectral Density');

title('Black - ideal, Red - actual');

% The next step is to find the KLT approximation to each realization of the random process S.

% Since the KLT uses eigenvalue decomposition of the matrix M, we need Q and D,
% such that inv(Q)*D*Q = M. But we already did this calculation in creating the random process.

% We need to reduce D so it contains at least err% of it's energy in the fewest possible

% coefficents (U=reduce(D,1-err) does this). Then we need to calculate the matrix Q*U*inv(Q).
% This matrix will perform the compress-decompress operation on each realization of S,

% producing S1, a facsimile to S.

U = reduce(D,1-err);


% U is a diagonal martix with ones corresponding to the largest
%








% values that together contain err% of the energy in D

S1 = Q*U*inv(Q)*S;


% approximation to S using KLT

% The next step is to find the DCT approximation to each realization of the random process S.

% The DCT uses an NxN transformation matrix R that approximates the eignevectors of M.

% We need to find E (an approximation to a diagonal) such that inv(R)*E*R = M.
% We need to reduce E so it contains at least err% of it's energy in the fewest possible

% diagonal coefficents (V=reduce(E,1-err) does this). Then we need to calculate the matrix

% R*E*inv(R). This matrix will perform the compress-decompress operation on
% each realization of S, producing S2, a facsimile to S.

R = DCT(N);





% NxN DCT-II martix
E = R*M*inv(R);



% DCT approximation to a diagonal matrix

V = reduce(E,1-err);


% U is a diagonal martix with ones corresponding to the largest

%








% values that together contain err% of the energy in D
S2 = R*V*inv(R)*S;


% approxiamtion to s using DCT

% Lastly we need to analyze the array of signals created by the KLT and the DCT.
% Calculate the KLT and DCT average percent energy loss. This should be (1-err).

output.KLT_avg_percent_energy_loss = mean((output.avg_signal_energy - sum(S1.^2))/N);

output.DCT_avg_percent_energy_loss = mean((output.avg_signal_energy - sum(S2.^2))/N);

% Calculate the KLT and DCT average energy error. This is the average over all signals of 

% the sum of the energy difference between S and SX for each sample of the signal.
output.KLT_avg_error = mean(sum((S-S1).^2)/N);

output.DCT_avg_error = mean(sum((S-S2).^2)/N);

% calculate the KLT and DCT compression ratio. This corresponds to the ratio of coefficents in

% in S vs. to the non-zero coefficents in Q*D*S (KLT) or R*E*S (DCT).

output.KLT_compression_ratio = N/trace(U);

output.DCT_compression_ratio = N/trace(V);

return
% This function analyzes the average case over Ns samples for proj(N,p,err). This is used to


% verify the validity of the random process S, and show that the averages for the KLT and DCT


% approximations are as expected.





function output = proj2(N,p,err,Ns)


% The first thing to do is to generate a discrete random process, where the covariance between


% random samples is given by the Markov covariance matrix M: M(i,j)=p^abs(i-j).


% Each random variable is represented by a vector of size Ns whose elements form


% the sample space of the random variable.





M = Markov(N,p);		% generate a NxN Covariance martix with covariance: p^abs(i-j)


[Q,D] = eig(M);       	% find eigenvalues and eigenvectors of M


R = randn(N,Ns);		% a normally dist. discrete random process w/ no cov. between samples


S = Q*sqrt(D)*R;		% a normally dist. discrete random process w/ a cov. matrix M





% Does the discrete random process possess the orignal covariance matrix?





% Calculate the average signal energy of the realiztions of S. This should approximate N.


output.avg_signal_energy = mean(sum(S.^2));


% Calculate the covariance matrix of S. This should approximate M.


output.covariance_matrix = cov(transpose(S));


% How close is the covariance matrix? Calculate the rms value of M - covariance_matrix.


% This should ideally be zero.


output.covariance_rms_error = sqrt(mean(mean((M - output.covariance_matrix).^2)));





% Plot the autocorrelation function and the power spectral density


% and compare them to the ideal.


x = linspace(0,N-1,N);


subplot(2,1,1),plot(x,output.covariance_matrix(1,:),'r',x,M(1,:),'k');


axis([0 N-1 -.5 1.1]);


title('Characteristics of the Random Process S');


xlabel('time difference');


ylabel('autocorrelation');


subplot(2,1,2),semilogy(x,abs(fft(output.covariance_matrix(1,:))),'r',x,abs(fft(M(1,:))),'k');


axis([0 N/2 .01 N*2]);


xlabel('frequency');


ylabel('Power Spectral Density');


title('Black - ideal, Red - actual');








% Does the discrete random process possess the origial covariance matrix?





% Calculate the average signal energy of the realizations of S. This should approximate N.


output.avg_signal_energy = mean(sum(S.^2));


% Calculate the covariance matrix of S. This should approximate M.


output.covariance_matrix = cov(transpose(S));


% How close is the covariance matrix? Calculate the rms value of M - covariance_matrix.


% This should ideally be zero.


output.covariance_rms_error = sqrt(mean(mean((M - output.covariance_matrix).^2)));





% Plot the autocorrelation function and the power spectral density


% and compare them to the ideal.


x = linspace(0,N-1,N);


subplot(2,1,1),plot(x,output.covariance_matrix(1,:),'r',x,M(1,:),'k');


axis([0 N-1 -.5 1.1]);


title('Characteristics of the Random Process S');


xlabel('time difference');


ylabel('autocorrelation');


subplot(2,1,2),semilogy(x,abs(fft(output.covariance_matrix(1,:))),'r',x,abs(fft(M(1,:))),'k');


axis([0 N/2 .01 N*2]);


xlabel('frequency');


ylabel('Power Spectral Density');


title('Black - ideal, Red - actual');








% The next step is to find the KLT approximation to each realization of the random process S.


% Since the KLT uses eigenvalue decomposition of the matrix M, we need Q and D,


% such that inv(Q)*D*Q = M. But we already did this calculation in creating the random process.


% We need to reduce D so it contains at least err% of it's energy in the fewest possible


% coefficents (U=reduce(D,1-err) does this). Then we need to calculate the matrix Q*U*inv(Q).


% This matrix will perform the compress-decompress operation on each realization of S,


% producing S1, a facsimile to S.


U = reduce(D,1-err);		% V is a diagonal martix with ones corresponding to the largest


%							% values that together contain err% of the energy in E


S1 = Q*U*inv(Q)*S;			% approximation to s using KLT








% The next step is to find the DCT approximation to the signal s.


% The DCT uses an NxN transformation matrix R that approximates the eignevectors of M.


% We need to find E (an approximation to a diagonal) such that inv(R)*E*R = M.


% We need to reduce E so it contains at least err% of it's energy in the fewest possible


% diagonal coefficents (V = reduce(E,1-err) does this). Then we need to calculate the matrix


% R*E*inv(R). This matrix will perform the compress-decompress operation on


% the signal s, producing s2, a facsimile to s.





R = DCT(N);					% NxN DCT-II martix


E = R*M*inv(R);			% DCT approximation to a diagonal matrix


V = reduce(E,1-err);		% U is a diagonal martix with ones corresponding to the largest


%							% values that together contain err% of the energy in D


s2 = R*V*inv(R)*s;			% approxiamtion to s using DCT








%% proj2 continued . . .


% Lastly we need to analyze the array of signals created by the KLT and the DCT.





% Calculate the KLT and DCT average percent energy loss. This should be (1-err).


output.KLT_avg_percent_energy_loss = mean((output.avg_signal_energy - sum(S1.^2))/N);


output.DCT_avg_percent_energy_loss = mean((output.avg_signal_energy - sum(S2.^2))/N);





% Calculate the KLT and DCT average energy error. This is the average over all signals of 


% the sum of the energy difference between S and SX for each sample of the signal.


output.KLT_avg_error = mean(sum((S-S1).^2)/N);


output.DCT_avg_error = mean(sum((S-S2).^2)/N);





% calculate the KLT and DCT compression ratio. This corresponds to the ratio of coefficents in


% in S vs. to the non-zero coefficents in Q*D*S (KLT) or R*E*S (DCT).


output.KLT_compression_ratio = N/trace(U);


output.DCT_compression_ratio = N/trace(V);








% Here we calculate some metrics about s, s1 and s2.





% the signal energy of s


output.signal_energy = sum(s.^2);


% the percentage of energy lost from using the KLT


output.KLT_percent_energy_loss = (output.signal_energy - sum(s1.^2))/N;


% the percentage of energy lost from using the KLT


output.DCT_precent_energy_loss = (output.signal_energy - sum(s2.^2))/N;


% the energy (squared) error from KLT compression-decompression


output.KLT_error = mean((s-s1).^2);


% the energy (squared) error from DCT compression-decompression


output.DCT_error = mean((s-s2).^2);





% the KLT and DCT compression ratios, respectively


output.KLT_compression_ratio = N/trace(U);


output.DCT_compression_ratio = N/trace(V);








% Here we plot a graph of s, s1 and s2 on the same plot,


% and we also plot a graph of their Fourier transforms


x=linspace(0,N-1,N);


subplot(2,1,1),plot(x,s,'k',x,s1,'b',x,s2,'r');


axis([0 N-1 -4 4]);


ylabel('signal value');


xlabel('sample index');


title('black = original signal, blue = KLT approx., red = DCT approx.');


subplot(2,1,2),semilogy(x,abs(fft(s)),'k',x,abs(fft(s1)),'b',x,abs(fft(s2)),'r');


xlabel('DFT index');


ylabel('log(mag(X[i]))');


title('Discrete Fourier Transform of each signal');


axis([0 N/2 .01 N*2]);











