
NETWORK MODEL FOR DISASTER MANAGEMENT

By

ASHWIN ARULSELVAN

A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL
OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY

UNIVERSITY OF FLORIDA

2009

1

c© 2009 Ashwin Arulselvan

2

To my family and friends

3

ACKNOWLEDGMENTS

I must thank my advisor Dr. Panos M. Pardalos for constant support and encouragement

for the last five years of my graduate studies. He has been a good guide, friend and

colloborator. He was responsible for my transformation from a student to a researcher. He

helped me sustain my interests in graduate studies as a constant source of motivation.

I would like to express my gratitude my co-advisor Dr. Lily Elefteriadou. She has

been a great support and gave me so much leverage in helping me finish the disseration.

She has also been a good colloborator and great supervisor by being flexible and giving me

independence in research.

I greatly appreciate the efforts of my committee members, Dr. Jonathan C. Smith,

Dr. Joseph Geunes, Dr. My T. Thai for their time and constructive criticisms that helped

in improving the quality of dissertation. I would also like to thank them for their valuable

insights that provided directions to me.

I am greatly indebted to my parents and my brother for their immense moral support.

This accomplishment would not have been possible without them.

I wish to thank to my friends: Altannar Chinchuluun, Bharath Badrinarayanan,

Clayton Commander, Michael J. Hirsch, Steffen Rebennack, Sriram Sethuraman,

Raagavendra Hareesh, Anand Srinivasan, Vera Tomaino, Balachandran Vaidyanathan,

Ashish Nemani, Suchandan Guha, Manisha Goswami, Erhun Kundakcioglu, Petros

Xanthopoulos, Mehmet Onal, Gubjrt Gylfadttir, Arni Jonsson, Ingrida Radziukyniene,

Artyom Nahapetyan, Nikita Boyko, Sibel Sonuc, Andy Fan, Alex Grassas, Alexey Sorokin,

Vladimir Boginski, Erika Short and Oleg Shylo. They have been my company in the last

five years and they were present during the good and bad times. They were always proud

of me and I am overwhelmed by their companionship.

Finally, I would like to thank all my colloborators: Vladimir Boginski, Clayton

Commander, Michael J. Hirsch, Alla Kammaradiner, Steffen Rebennack, Oleg Shylo,

4

Maruccio Resende, Petros Xanthopoulos, Qipeng Zheng and Pilar Mendoza. They taught

me to be a good researcher and have been terrific working with them.

5

TABLE OF CONTENTS

page

ACKNOWLEDGMENTS . 4

LIST OF TABLES . 7

LIST OF FIGURES . 8

ABSTRACT . 10

CHAPTER

1 INTRODUCTION . 11

2 CRITICAL NODE DETECTION PROBLEMS 14

3 PATH PLANNING PROBLEMS . 46

4 REVIEW OF EVACUATION PROBLEMS . 99

5 NETWORK FLOW PROBLEMS WITH LANE REVERSALS 130

6 MULTIMODAL SOLUTIONS FOR EVACUATION PROBLEMS 152

7 CONCLUSIONS . 161

REFERENCES . 163

BIOGRAPHICAL SKETCH . 179

6

LIST OF TABLES

Table page

2-1 Results of IP model and heuristic on terrorist network data from Krebs. 42

2-2 Results of IP model and heuristic on randomly generated scale free graphs. . . . 43

2-3 Results of IP model and heuristics on terrorist network data from [123]. 43

2-4 Results of the IP model and genetic algorithm and the combinatorial heuristic
on randomly generated scale free graphs. 44

2-5 Comparative results of the genetic algorithm and the combinatorial heuristic
when tested on the larger random graphs. Due to the complexity, we were unable
to compute the corresponding optimal solutions. 45

3-1 Comparative results of the optimal solutions to the corresponding tsp, lop,
and tvp for each instance. The absolute value of the tsp solutions are reported. 66

3-2 The corresponding objective function values of each of the lop, tsp, and tvp
are given for each instance. For each column, one of the objectives is considered
and the problem solved to optimality. The solution of the remaining two problems
is given when evaluated with the optimal function value. 67

3-3 Parameters used for the GA and HGA heuristics. 68

3-4 This table provides the numerical results for a set of randomly generated instances.
The first columns provide information about the instance. Next, the optimal
solution and required computation time is listed. Both the HGA and the standard
GA were ran 250 times on each instance, and we provide the maximum, minimum,
and average solutions computed by each for all 250 tests. The average computation
time required by each heuristic to compute the best solution is also listed. . . . 69

6-1 Results of the Branch & Price model tested on grid graphs 159

6-2 Results of the Branch & Price model tested on planar graphs with one bus commodity160

7

LIST OF FIGURES

Figure page

2-1 Heuristic for detecting critical nodes. 25

2-2 Local search algorithm for critical node heuristic. 27

2-3 Heuristic with local search for detecting critical nodes. 28

2-4 Terrorist network compiled by Krebs. 30

2-5 Optimal solution when k = 20. 31

2-6 Connectivity Index of nodes A,B,C,D is 3. Connectivity Index of E,F,G is 2.
Connectivity Index of H is 0. 32

2-7 Heuristic for the cardinality constrained critical node problem. . . . 34

2-8 Pseudo-code for a generic genetic algorithm. 35

2-9 An example of the crossover operation. In this case, CrossProb = 0.65. 36

2-10 Terrorist network compiled by Krebs [123]. 38

2-11 Optimal solution when L = 4. 39

3-1 This example compares the optimal solution for the tvp instance with the related
tsp and lop solutions. 48

3-2 Pseudo-code for generic genetic algorithm. 60

3-3 An example of the crossover operation. In this case, CrossProb = 0.65. 62

3-4 Graphical representation of generational evolution. 62

3-5 2-exchange local search. 63

3-6 Time-to-Target plot comparing the Hybrid GA and standard GA for instance
rand12-1. The target value is the optimal solution for the problem. 72

3-7 Time-to-Target plot for instance rand14-2. As above, the target values is the
optimal solution. 73

3-8 Time-to-Target plot for instances rand16-1. The target value is .95 times the
optimal solution. 74

3-9 Pseudo-code for the shortest-path construction heuristic. 79

3-10 Pseudo-code for the Hill Climbing intensification procedure. 80

3-11 Pseudo-code for the one-pass heuristic. 81

8

3-12 GRASP for maximization. 81

3-13 The Heaviside function, H1. 84

3-14 H2, continuous approximation to H1. 85

3-15 H3, continuously differentiable approximation of H1. 86

3-16 Example with 5 agents. 91

3-17 Example with 7 agents. 92

3-18 Example with 10 agents. 93

3-19 Example derived from 10 agent example, with one agent removed. 94

3-20 Example derived from 10 agent example, with two agents removed. 94

3-21 Example derived from 10 agent example, with three agents removed. 95

3-22 Example derived from 10 agent example, with four agents removed. 95

3-23 Example derived from 10 agent example, with five agents removed. 96

3-24 Example derived from 10 agent example, with six agents removed. 96

5-1 Transformed graph G3SAT corresponding to 3SAT instance C = {{u1, u2, u3}, {u1, u2, u3}}143

5-2 A tough instance of DTCF . 146

5-3 Instance for DTCF with time bound T = 2L+ 2 resulting from PARTITION . . 147

9

Abstract of Dissertation Presented to the Graduate School
of the University of Florida in Partial Fulfillment of the
Requirements for the Degree of Doctor of Philosophy

NETWORK MODEL FOR DISASTER MANAGEMENT

By

Ashwin Arulselvan

Aug 2009

Chair: Dr. Panos M. Pardalos
Major: Department of Industrial & Systems Engineering

We propose network models to study applications related to risk control and disaster

management. We also perform a detailed complexity analysis and provide solution

approaches for these problems. More specifically, we examine three different problems in

detail, study their complexity and provide techniques to solve them. The first problem

studies the connectivity properties of a node deleted subgraph. The objective is to identify

important nodes of a graph responsible for the connectivity of the graph. This problem

finds applications in studying robustness of a network, identifying important individuals

of a social network and critical nodes of a telecommunication or transportation network.

We study the complexity of the problem and develop heuristic procedures to solve the

problem. We then study path planning problems that arises in military applications. The

problem involves in routing unmanned vehicles in a network in order to visit targets in

the most efficient way. We look at the complexity of these problems and provide heuristic

solutions to solve the problems. We then provide a comparison of the heuristic solution

with the optimal solution. Finally, we examine the evacuation problem that arises in an

emergency situation. We provide complexity analysis for the contraflow problem, where

in we allow arc reversals. We then develop a branch and price mechanism for establishing

optimal evacuation routes for a bimodal multicommodity flow problem. We provide

computational results for planar and grid graphs.

10

CHAPTER 1
INTRODUCTION

The need for analysis of disaster management is necessary in many real world

applications. Many studies in this area under different names such as network survivability,

resilience studies, vulnerability analysis is already known. The management of disasters

could either be proactive, where we prepare ourselves better for a disaster or a reactive,

where we plan to cope up with the hazards caused by the disaster. In this dissertation, we

present the some proactive strategies in chapters 2 and 3 and some reactive strategies in

chapters 5 and 6. Chapter 4 deals with a survey of evacuation studies as the subsequent

chapters 5 and 6 primarily deal with emergency management.

Identifying critical nodes in a graph is important to understand the structural

characteristics and the connectivity properties of the network. In chapter 2, we focus

on detecting critical nodes, or nodes whose deletion results in the minimum pair-wise

connectivity among the remaining nodes. This problem, known as the CRITICAL

NODE PROBLEM, has applications in several fields including transportation,

biomedicine, telecommunications, and military strategic planning. We show that the

decision version of the problem is NP-complete and derive a mathematical formulation

based on integer linear programming. In addition, we propose a heuristic for the

problem which is then enhanced by the application of a local improvement method. A

computational study is presented in which we apply the integer programming formulation

and the heuristic to real and randomly generated data sets. For all instances tested,

the heuristic is able to efficiently provide optimal solutions in a fraction of the time

required by a commercial software package. We also study a variation of this problem,

which involves in minimizing the number of nodes deleted by constraining the size of the

connected components in the node-deleted subgraph.

In chapter 3, we consider the problem of determining an optimal path for an

unmanned aerial vehicle which needs to visit multiple targets. The objective is to

11

minimize the travel distance while maximizing the utility of the visitation order. This

is known as the TARGET VISITATION PROBLEM and has several applications

including combat search and rescue, environmental assessment, and disaster relief.

First, we provide a mathematical model based on integer linear programming and prove

that the problem is NP-complete. Then we describe the implementation of a genetic

algorithm for finding approximate solutions. The heuristic is then hybridized by the

implementation of a local search procedure. Numerical results are presented demonstrating

the effectiveness of the proposed procedure. We also consider the problem of maximizing

the total connectivity for a set of wireless agents in a mobile ad hoc network. That is,

given a set of wireless units each having a start point and a destination point, our goal

is to determine a set of routes for the units which maximizes the overall connection time

between them. Known as the cooperative communication problem in mobile

ad hoc networks (ccpm), this problem has several military applications including

coordination of rescue groups, path planning for unmanned air vehicles, and geographical

exploration and target recognition. The ccpm is NP-hard; therefore heuristic development

has been the major focus of research. In this work, we survey the ccpm examining first

some early combinatorial formulations and solution techniques. Then we introduce new

continuous formulations and compare the results of several case studies. By removing the

underlying graph structure, we are able to create a more realistic model of the problem as

supported by the numerical evidence.

Over the years, investigators from various fields have studied the evacuation problem,

which resulted in a multitude of evacuation models. In chapter 4, we consolidate this work

and make an assay of the existing models available in the literature. The methodology

or approaches employed in these models were broadly classified as either optimization

or simulation methods and presented. Further, we analyze the features considered by

either techniques by identifying the major factors influencing the evacuation efficiency and

briefing the shortcomings in these techniques.

12

Chapter 5 provides a comprehensive study on network flow problems with arc reversal

capabilities. The problem is to identify the arcs to be reversed in order to achieve a

maximum flow from source(s) to sink(s). The problem finds its applications in emergency

transportation management, where the lanes of a road network could be reversed to enable

flow in the opposite direction. We present several network flow problems with the arc

reversal capability and discuss their complexity in this chapter. More specifically, we

discuss the polynomial time algorithms for the maximum dynamic flow problem with

arc reversal capability having a single source and a single sink, and for the maximum

(static) flow problem. The presented algorithms are based on graph transformations and

reductions to polynomially solvable flow problems. In addition, we show that the quickest

transshipment problem with arc reversal capability and the problem of minimizing the

total cost resulting from arc switching costs are NP-hard.

Finally in chapter 6, we provide solutions to bimodal transportation problem in an

emergency situation, which incorporates multicommodity flows. This problem is similar

to a line planning problem. We have two modes of transportation, namely private cars

and buses. We assume that the demands at every node for both cars and buses are known

and the a set of feasible tours of buses has been established. We need to determine the

efficient paths and optimal set of buses routes to satisfy the demand. We provide a path

based formulation, which enables us to employ a branch and price approach to solve the

problem. We discuss the assumptions, formulations, subproblems and branching strategies.

The computational results for some grid and planar graphs are provided for the branch

and price mechanism.

13

CHAPTER 2
CRITICAL NODE DETECTION PROBLEMS

2.1 Introduction

In this chapter, we study two variants of the critical node problem. In general,

the objective of the critical node problem (cnp) is to find a set of k nodes in a

graph whose deletion results in the maximum network fragmentation. By this we mean,

maximize the number of components in the k-vertex deleted subgraph. Studies carried

out in this line include those by Bavelas [22] and Freeman [78] which emphasize node

centrality and prestige, both of which are usually functions of a nodes degree. However,

they lacked applications to problems which emphasized network fragmentation and

connectivity.

Given a graph and an integer k, the objective of the critical node problem

(cnp) is to find a set of k nodes in the graph whose deletion results in the maximum

network fragmentation. By this we mean, minimize the pair-wise connectivity between

the nodes in the the k-vertex deleted subgraph. In the second version of the problem, we

seek the minimum number of nodes whose deletion constrains the cardinality of connected

component.

The critical node problems has several applications in the field of social network

analysis. Social networks have attracted a significant amount of attention in recent

years. The study of these graphs is important to better understand several properties

which are most common in network depictions of social interactions including cohesion,

transitivity, and centrality of specific actors of the graph [20]. The study of the various

properties of social networks such as diameter, radiality, and connectivity are responsible

for social contagion and provide scope for containment of an epidemic outbreak. These

properties also help in designing strategies for communication breakdowns in human and

telecommunication networks [172].

14

The cnp finds applications in network immunization [54, 204] where mass vaccination

is an expensive process and only a specific number of people, modeled as nodes of a

graph, can be vaccinated. The immunized nodes cannot propagate the virus and

the goal is to identify the individuals to be vaccinated in order to reduce the overall

transmissibility of the virus. There are several vaccination strategies in the literature

(see e.g., [54, 204]) offering control of epidemic outbreaks; however, none of the proposed

are optimal strategies. The vaccination strategies suggest emphasizing the centrality

of nodes as a major factor rather than critical nodes whose deletion will maximize the

disconnectivity of the graph. Deletion of central nodes may not guarantee a fragmentation

of the network or even disconnectivity, in which case disease transmission cannot be

prevented. Because social networks model the patterns of humans, they very greatly

over time. The relationships between people, represented by edges in the social network,

are transient and there is a constant rewiring between the nodes as new relationships

are established. The proposed critical node technique minimizes the transmission of the

disease over an instance of the dynamic network.

Furthermore, the cnp can be applied to the study of covert terrorist networks, where

a certain number of individuals have to be identified whose deletion will result in the

maximum breakdown of communication between individuals in the network [123]. Likewise

in order to stop the spreading of a virus over a telecommunication network, one can

identify the critical nodes of the graph and take them offline. Similarly, if one’s ultimate

goal is to prevent communication on a wired telecommunication network, an efficient way

of doing so would be to jam the critical nodes. This has been studied in the context of

wireless networks by Commander et al. in [59].

Before proceeding, we mention one final area in which the critical node problem

finds several applications, and that is in the field of transportation engineering [71]. Two

particular examples are as follows. In general, for transportation networks, it is important

to identify critical nodes in order to ensure they operate reliably for transporting people

15

and goods throughout the network. Further, in planning for emergency evacuations,

identifying the critical nodes of the transportation network is crucial. The reason is

two-fold. First, knowledge of the critical nodes will help in planning the allocation of

resources during the evacuation. Secondly, in the aftermath of a disaster they will help in

re-establishing critical traffic routes.

Borgatti [27] has studied a similar problem, focusing on node detection resulting

in maximum network disconnectivity. Other studies in the area of node detection

such as centrality [22, 78] focus on the prominence and reachability to and from the

central nodes. However, little emphasis is placed on the importance of their role in the

network connectivity and diameter. Perhaps one reason for this is because all of the

aforementioned references relied on simulation to conduct their studies. Although the

simulations have been successful, a mathematical formulation is essential for providing

insight and helping to reveal some of the fundamental properties of the problem [153]. In

the next section, we present a mathematical model based on integer linear programming

which provides optimal solutions for the critical node problem.

We organize this chapter by first formally defining the problem and discussing its

computational complexity. Next, we provide an integer programming (IP) formulation

for the corresponding optimization problem. In Section 2.2.4 we introduce a heuristic

to quickly provide solutions for instances of the problem. We present a computational

study in Section 2.2.5, in which we compare the performance of the heuristic against the

optimal solutions which were computed using a commercial software package. We perform

the same study on the cardinality constrained problem in section 2.3. Some concluding

remarks are given in Section 2.4.

2.2 Critical Node Detection Problem

2.2.1 Problem Definition

The formal definition of the problem is given by:

CRITICAL NODE PROBLEM (CNP)

16

INPUT: An undirected graph G = (V,E) and an integer k.

OUTPUT: A = arg min
∑

i,j∈(V \A) uij

(
G(V \ A)

)
: |A| ≤ k, where

uij :=





1, if i and j are in the same component of G(V \ A),

0, otherwise.

The objective is to find a subset A ⊆ V of nodes such that |A| ≤ k, whose deletion

minimizes the pair-wise connectivity among the nodes in the induced subgraph G(V \ A).

This problem is similar to minimum k-vertex sharing [151], where the objective

is to minimize the number of nodes deleted to achieve a k-way partition. Here we are

considering the complementary problem, where we know the number of vertices to be

deleted and we try to maximize the number of components formed and implicitly limit the

sizes of the components. Borgatti [27] has given a comprehensive illustration to facilitate

the understanding of the objective function and its non-triviality.

2.2.2 Computational Complexity

We now prove that the recognition version of the cnp is NP-complete. Consider the

recognition version of the cnp:

K-CRITICAL NODE PROBLEM (K-CNP)

INPUT: An undirected graph G = (V,E) and an integer k.

QUESTION: Is there a set M , where M is the set of all maximal connected

components of G obtained by deleting k nodes or less, such that
∑

∀ i∈M
σi(σi−1)

2
≤ K,

where σi is the cardinality of component i, for each i ∈M?

In order to prove that the K-cnp is NP-complete, we make use of the following

lemmata. In particular, we prove that optimizing the objective function not only

maximizes the pair-wise disconnectivity among the nodes, but also minimizes the variance

in the cardinalities of the components. Particularly, in Lemma 2.1 we show that for any

two solutions resulting in the same number of components, if the cardinalities of the

17

components are equal in one solution, and not equal in the other, then the objective value

of the latter will always be worse than that of the former.

Lemma 2.1. Let M be a partition of G = (V,E) in to L components obtained by

deleting a set D of nodes, where |D| = k. Then the objective function
∑

∀ i∈M
σi(σi−1)

2
≥

(|V |−k)
(

|V |−k

L
−1

)

2
, with equality holding if and only if σi = σj , ∀ i, j ∈ M , where σi is the size

of ith component of M .

Proof.

Case 1: σi 6= σj, ∀ i, j ∈M.

Note that
∑

i∈M σi = |V | − k. Then given a solution for an instance of the cnp, we

have that

1

L

∑

i∈M

(
σi −

1

L

∑

i∈M

σi

)2

=
1

L

∑

i∈M

σ2
i −

(1

L

∑

i∈M

σi

)2

(2–1)

≥ 0 (2–2)

=

(|V | − k
L

)2

−
(|V | − k

L

)2

. (2–3)

This implies that

1

L

∑

i∈M

σ2
i ≥

(|V | − k
L

)2

. (2–4)

Therefore,

1

L

∑

i∈M

σ2
i −

1

L

∑

i∈M

σi ≥
(|V | − k

L

)2

− 1

L

∑

i∈M

σi (2–5)

=

(|V | − k
L

)2

− |V | − k
L

. (2–6)

Thus, we have that

∑

i∈M

σi(σi − 1)

2
≥

(|V | − k)
(

|V |−k
L
− 1

)

2
. (2–7)

Case 2: σi = σj, ∀ i, j ∈M.

18

In this case, each component of M will be of size |V |−k
L

, which is obviously the average

size of a component of M . Thus

∑

∀ i∈M

σi(σi − 1)

2
=

(|V | − k)
(
|V |−k

L
− 1

)

2
. (2–8)

Conversely, if (2–8) holds, but each component of M is not the same size, it follows that

not all components will be of average size and hence

1

L

∑

i∈M

σ2
i −

(1

L

∑

i∈M

σi

)2

> 0 (2–9)

=

(|V | − k
L

)2

−
(|V | − k

L

)2

. (2–10)

Similar to the above result, we see that

1

L

∑

i∈M

σ2
i >

(|V | − k
L

)2

. (2–11)

Thus,

1

L

∑

i∈M

σ2
i −

1

L

∑

i∈M

σi >

(|V | − k
L

)2

− |V | − k
L

. (2–12)

⇒
∑

i∈M

σi(σi − 1)

2
>

(|V | − k)
(

|V |−k
L
− 1

)

2
. (2–13)

This is a contradiction and we have the proof.

The following lemma provides a similar result as above. However in this case, the

number of components induced by each solution are not assumed to be equal.

Lemma 2.2. Let M1 and M2 be two sets of partitions obtained by deleting D1 and D2 sets

of nodes respectively from graph G = (V,E), where |D1| = |D2| = k. Let L1 and L2 be the

number components in M1 and M2 respectively and L1 ≥ L2. If σi = σj , ∀ i, j ∈ M1, then

we obtain a better objective function value by deleting the set D1.

Proof. Let f(M1) and f(M2) be the objective function values obtained by deleting D1 and

D2 respectively. Let us assume that f(M1) > f(M2). Let u = (|V |−k)
L2

. From Lemma 2.1, we

19

have that L2(u)(u−1)
2

≤ f(M2). Then we have

L2(u)(u− 1)

2
≤ f(M2) < f(M1) =

L1

(
|V |−k

L1

)(
|V |−k

L1
− 1

)

2
. (2–14)

Examining (2–14) carefully reveals the necessary contradiction. Notice that (2–14) states

L2

(
|V |−k

L2

)(
|V |−k

L2
− 1

)

2
<

L1

(
|V |−k

L1

)(
|V |−k

L1
− 1

)

2
(2–15)

⇒ (|V | − k)(|V | − k − L2)

2
<

(|V | − k)(|V | − k − L1)

2
(2–16)

⇒ L2 > L1. (2–17)

This contradicts the hypothesis that L1 ≥ L2, and we have the result.

We can now prove the following theorem regarding the complexity of the cnp.

Theorem 2.1. The K-critical node problem is NP-complete.

Proof. To show this, we must prove that (1) K-cnp ∈ NP; (2) Some NP-complete problem

reduces to K-cnp in polynomial time.

K-cnp ∈ NP since given any graph G = (V,E), and deleting any set of at most k

nodes, we can determine the objective value in O(|E|) time using a depth-first search [5].

To complete the proof, we show a reduction from the independent set problem

(isp) [35], which is well-known to be NP-complete [83]. Given a graph G = (V,E), the

isp seeks to determine if G contains an independent set of size k. This is equivalent to

determining if there exists an empty subgraph of G of size k by deleting |V | − k nodes and

their adjacent edges.

Let Ḡ = (V̄ , Ē) be the graph obtained by replacing each node u ∈ G by a T -clique

with one of the clique nodes coinciding with u. Note that if T = 1, then we have the

original graph G. Consider the K-cnp on Ḡ which asks if there exists a partition M of Ḡ

obtained by deleting |V | − k nodes such that

∑

∀ i∈M

σi(σi − 1)

2
≤ kT (T − 1)

2
+

(|V | − k)(T − 1)(T − 2)

2
.

20

We claim there is a one-to-one correspondence between the isp on G and the cnp on Ḡ.

If there is an independent set of size k in G, it is clearly a solution to the cnp, as we will

have k components of size T and |V | − k components of size T − 1. This would result in

the required objective function value for the cnp. Conversely, if there is a partition of M

satisfying the objective by deleting |V | − k nodes, then we have an independent set of size

k.

We give a constructive proof to show this. The first part involves showing that the

objective value of the cnp on Ḡ is always better when the nodes of the original graph G

are deleted from Ḡ as opposed to deleting clique nodes. For a given cnp solution, let us

assume that in a clique, a non-coinciding node is deleted and the coinciding node from

this clique is not deleted. If we swap these nodes in the solution, that is, if we delete the

coinciding node and replace the non-coinciding node, then the objective function value

either remains the same, or decreases if the number of components increases.

Now let us assume that a non-coinciding clique node and its coinciding node are

deleted from Ḡ. In this case, if we swap from the solution set the non-coinciding node with

an undeleted coinciding node, then again the objective value will either decrease or remain

unchanged. To see this, let us assume the component corresponding to the clique with

both its coinciding and non-coinciding nodes deleted is of size (T − b), where b ≥ 2, as

there may be other non-coinciding nodes deleted from this clique. Also, let the coinciding

node that was not deleted be a part of some component of size T + a. Now the objective

function before the swap will be

Z1 = S +
(T + a)(T + a− 1)

2
+

(T − b)(T − b− 1)

2
, (2–18)

where S is the contribution from other components present in the graph. After swapping

these two nodes, the objective function value would be

Z2 = S +
(T − 1)(T − 2)

2
+

(a)(a− 1)

2
+

(T − b)(T − b+ 1)

2
. (2–19)

21

Now, if we take the difference we see that

Z1 − Z2 = aT + b− 1 ≥ 0, ∀ T ≥ 0. (2–20)

Since we are deleting only |V | − k nodes, we have a partition M with

∑

∀ i∈M

σi(σi − 1)

2
≤ kT (T − 1)

2
+

(|V | − k)(T − 1)(T − 2)

2
,

by deleting only the nodes of the original graph. Since none of the new nodes (i.e., the

nodes from the T -cliques) are deleted from Ḡ, the deletion of the |V | − k nodes results in

exactly |V | − k components of size T − 1. This contributes exactly (|V |−k)(T−1)(T−2)
2

towards

the objective function. The remaining kT nodes form at most k components. Hence from

Lemma 2.2, this contributes at least kT (T−1)
2

to the objective function. From Lemma 2.1,

the kT nodes involve exactly k components of size T , representing the T -cliques of Ḡ, with

one node in each T -clique present in the original graph G, and none of them connected to

each other. Hence deletion of |V | − k nodes from Ḡ results in k independent nodes in the

original graph G. This completes the proof.

2.2.3 Integer Programming Formulations

When studying combinatorial problems, integer programming models are usually

quite helpful for providing some of the formal properties of the problem [153]. With this in

mind we now develop a linear integer programming formulation for the cnp.

To begin with, define the surjection u : V × V 7→ {0, 1} as above. Further, we

introduce a surjection v : V 7→ {0, 1} defined by

vi :=





1, if node i is deleted in the optimal solution,

0, otherwise.

(2–21)

22

Then the critical node problem admits the following integer programming

formulation

(CNP-1) Minimize
∑

i,j∈V

uij (2–22)

s.t.

uij + vi + vj ≥ 1, ∀ (i, j) ∈ E, (2–23)

uij + ujk − uki ≤ 1, ∀ (i, j, k) ∈ V, (2–24)

uij − ujk + uki ≤ 1, ∀ (i, j, k) ∈ V, (2–25)

−uij + ujk + uki ≤ 1, ∀ (i, j, k) ∈ V, (2–26)

∑

i∈V

vi ≤ k, (2–27)

uij ∈ {0, 1}, ∀ i, j ∈ V, (2–28)

vi ∈ {0, 1}, ∀ i ∈ V . (2–29)

Note the objective is to find the set of k nodes whose removal results in a graph

which has the minimum pari-wise connectivity between the remaining nodes. This is

accomplished by the objective function. The first set of constraints in (2–23) implies that

if nodes i and j are in different components and if there is an edge between them, then

one of them must be deleted. Furthermore, constraints (2–24)-(2–26) together imply that

for all triplets of nodes i, j, k, that if i and j are in same component and j and k are in

same component, then necessarily k and i must be in the same component. Constraint

(2–27) ensures that the total number of deleted nodes is less than or equal to k. Finally,

(2–28) and (2–29) define the proper domains for the variables used. Thus, a solution to

the integer programming formulation CNP-1 characterizes a feasible solution to the cnp.

On the other hand, it is clear that a feasible solution to the cnp will define at least one

feasible solution to CNP-1. Therefore, CNP-1 is a correct formulation for the cnp.

We note here that in all likelihood, there exist alternative mathematical programming

formulations for the cnp. For example, notice that the conditions which satisfy the

23

circular constraints (2–24), (2–25), and (2–26) in CNP-1 can be satisfied by the single

constraint uij + ujk + uki 6= 2, ∀ (i, j, k) ∈ V. By appropriately defining a new set of

binary variables, this constraint set could be incorporated into the model. This might be

useful for breaking down the symmetry of the problem if one was attempting to exploit

the polyhedral structure of the model.

Notice that if the objective was a function of the number of components, then an

approximation for the maximum K-cut problem [83, 119] could be employed by

modifying the cost function of the Gomory-Hu tree [92]. An even simpler approach would

be to identify the cut vertices in the graph, if any exist. Studies to assess the vulnerability

of a network with similar objective functions are studied in [137, 149]. The objective

function in [149] is to maximize traffic flow while deleting a set of k edges [149] from the

graph. In [137], a very similar objective to the one proposed in this work is presented.

Whereas our objective is to minimize the pair-wise connectivity between the nodes after

deleting k nodes, the objective in [137] maximizes the node disconnectivity between a set

of source nodes and sink nodes by deleting a set of k arcs.

Recall that
∑

i,j∈V uij is a measure of the total pair-wise connectivity of the graph.

Notice that since uij is binary and equal to 1 if and only if i and j are in the same

component in the optimal solution, the objective function could be rewritten as

∑

j∈S

σj(σj − 1)

2
, (2–30)

where S is set of all components and σj is the size of the j-th component, which can be

easily identified by fast algorithms like breadth or depth first search algorithms in O(|E|)

time using an adjacency list representation of the network [5, 61]. We will use (2–30) as

the objective function optimized by the heuristic in the following section. In addition to

the relative ease of calculating the cardinality of the components of a graph, there is an

intuitive explanation for the choice of (2–30) as our objective function. As we proved in

Lemma 2.1 and Lemma 2.2 above, optimizing (2–30) maximizes the number of connected

24

procedure CriticalNode(G, k)
 MIS ← MaximalIndepSet(G)
 while (|MIS| 6= |V | − k) do

 i← arg min
{∑

j∈S
σj(σj−1)

2
: S ∈ G(MIS ∪ {j}), j ∈ V \MIS

}

 MIS← MIS ∪ {i}
 end while
 return V \MIS /∗ set of k nodes to delete ∗/
end procedure CriticalNode

Figure 2-1. Heuristic for detecting critical nodes.

components while simultaneously minimizing the variance in the component sizes. For

example, consider an arbitrary unweighted graph with 150 nodes. According to our

objective, it is more preferable to have a partition with 3 components each with 50 nodes,

as opposed to a partition with 5 components with one having 146 nodes and the rest of

them having a single node.

2.2.4 Heuristic for Detecting Critical Nodes

Pseudo-code for the proposed heuristic is provided in Figure 2-1. To begin with,

the algorithm finds a maximal independent set (MIS). This set is initially empty, and

is computed sequentially as follows. First, a single vertex is added to the set. Next by

iterating through the vertices, a node that is not adjacent to the starting node is added to

the MIS. Then a vertex adjacent to neither of these is added, and so on. This is continued

until we can find no more vertices to include, and thus the set is maximal independent.

After the initial MIS is computed, in the loop from lines 2-5, the heuristic greedily

selects the node i ∈ V not currently in the MIS which returns the minimum objective

function for the graph G(MIS ∪ {i}). The set MIS is augmented to include node i, and the

process repeats until |MIS| = |V | − k. At this time, the method terminates and the set of

critical nodes to be deleted is given as those nodes j ∈ V such that j ∈ V \MIS.

The intuition behind using an independent set is that the subgraph induced by this

set is empty. Stated otherwise, the deletion of those nodes that are not in the independent

set will result in an empty subgraph. Notice that this will provide the optimal solution

25

for an instance of the cnp if |MIS| ≥ |V | − k. However, if the size of the MIS is less

than |V | − k, we simply keep adding nodes which provide the best objective value to the

set until it reaches the desired size. The heuristic is computationally efficient and the

complexity is given in the following theorem.

Theorem 2.2. The proposed algorithm has complexity O(|V |2|E|).

Proof. To begin with, finding the MIS using the sequential method described above

requires linear time. Next, the while loop from lines 2-5 will iterate at most O(|V | − k)

times. In each iteration, the number of search operations decreases from |V | − 1 to

|V | − (|V | − k) = k. Note that we are performing the search of a sparse graph, which is

initially empty. There will be one comparison step for every search performed in order to

determine the node that provides the minimum increase in the objective function. This

will in turn be dominated by the complexity of the search procedure which requires O(|E|)

time. Hence, the total number of iterations will be

O(|V | − 1 + |V | − 2 + · · ·+ |V | − |V |+ k) = O




|V |−1∑

i=1

i−
k−1∑

i=1

i


 = O(|V |2 − k2) = O(|V |2).

Thus the overall complexity is O(|V |2|E|), and the proof is complete.

The proposed algorithm finds a feasible solution to the critical node problem;

however, the solution is not guaranteed to be globally or locally optimal. Therefore,

we can enhance the heuristic with the application of a local search routine as follows.

Consider the pseudo-code presented in Figure 2-2. The routine receives as input the

solution from the CriticalNode heuristic and performs a 2-exchange local search. Let

f : V 7→ Z be a function returning the objective function value for a given set in the

sense of (2–30) above. That is, consider a pair of nodes i and j such that i ∈ MIS and

j 6∈ MIS. Then for all such pairs, we set j ∈ MIS and i 6∈ MIS and examine the change in

the objective function. If it improves, then the swap is kept; otherwise, we undo the swap

and continue to the next node pair. Notice that the loop from lines 3-16 repeats while

26

procedure LocalSearch(V \MIS)
 X∗ ← MIS
 local improvement← .TRUE.
 while local improvement do
 local improvement← .FALSE.
 if i ∈ MIS and j 6∈ MIS then
 MIS← MIS \ i
 MIS← MIS ∪ j
 if f(MIS) < f(X∗) then
 X∗ ← MIS
 local improvement← .TRUE.
 else
 MIS← MIS \ j /∗ undo swap ∗/
 MIS← MIS ∪ i
 end if
 end if
 end while
 return (V \X∗) /∗ set of k nodes to delete ∗/
end procedure LocalSearch

Figure 2-2. Local search algorithm for critical node heuristic.

the solution is not locally optimal. This general statement can lead to implementation

problems and it is a common practice to limit the number of local search iterations by

some user defined value, say U . The intuition is that the as U → ∞, the solution becomes

optimal with respect to its local neighborhood.

Theorem 2.3. If the number of iterations of the local search is bounded by a constant

U ∈ R as described above, then the complexity of the procedure is O(|V |2U).

Proof. The is clear as the while loop from lines 3-16 will iterate U times. Since each

iteration requires an examination of |V |2 components, we have the proof.

Finally, we can combine the construction and local improvement algorithms into one

multi-start heuristic CriticalNodeLS as shown in Figure 2-3. This procedure produces

MaxIter local optima and the overall best solution from all iterations is returned. In order

to implement the multi-start framework, the starting node for each maximal independent

set is randomly chosen. Since the initial MIS is created deterministically, this node is only

27

procedure CriticalNodeLS(G, k)
 X∗ ← ∅
 f(X∗)←∞
 for j = 1 to MaxIter do
 X ← CriticalNode(G, k)
 X ← LocalSearch(X)
 if f(X) < f(X∗) then
 X∗ ← X
 end if
 end
 return (V \X∗) /∗ set of k nodes to delete ∗/
end procedure CriticalNodeLS

Figure 2-3. Heuristic with local search for detecting critical nodes.

accepted as a starting node if it has not been previously selected. Therefore, we see that

MaxIter will be bounded above by |V |. This simple randomization scheme ensures that

different areas of the solution space are explored in each iteration.

Theorem 2.4. The CriticalNodeLS heuristic has overall complexity of O(T (|V |2|E| +

|V |2U)), where T = MaxIter, and U is the iteration limit on the local search.

Proof. This result follows directly from Theorem 2.2 and Theorem 2.3 above.

2.2.5 Computational Results

The proposed heuristic was implemented in the C++ programming language and

compiled using GNU g++ version 3.4.4, using optimization flags -O2. It was tested on a

PC equipped with a 1700 MHz IntelR© PentiumR© M processor and 1.0 gigabytes of RAM

operating under the MicrosoftR© WindowsR© XP Professional environment. The parameter

MaxIter was set equal to |V |, and the number of iterations of the local search U was 2.

It is reasonable to forgo the implementation with U , and simply allow the local search to

examine all swaps until the solution is locally optimal. Alternatively, one could allow the

local search to iterate for some maximum number of iterations after which no improving

solution was found. Our experiments indicated that for the graphs tested, a value of U = 2

was sufficient to provide excellent solutions within reasonable computing times.

28

As a basis of comparison, we have implemented the integer programming model for

the critical node problem using the CPLEXTM version 9 optimization suite from

ILOG [63]. CPLEX contains an implementation of the simplex method [110], and uses

a branch and bound algorithm [199] together with advanced cutting-plane techniques

[118, 154].

We tested the IP model and heuristic on a set of randomly generated graphs ranging

in size from 75 to 150 nodes with varying densities. The graphs were generated with

version 1.4 of the publicly available Barabási graph generator by Dreier [70]. For each

random instance, we report solutions for 3 values of k, the number of nodes to be deleted.

In addition, we have tested the algorithms on the terrorist network compiled by Krebs

[123] shown in Figure 2-10. This network depicts the relationships between the terrorists

involved in the horrific attacks of September 11, 2001. The graph was constructed after

the attacks with data which were publicly available before 9/11.

We begin by providing the results from the terrorist network [123] shown in

Figure 2-10. This graph has 62 nodes and 153 edges. Notice that node 38 is the central

node with degree 22. We applied the IP formulation and the heuristic to this network

with 6 values of k. The results are provided in Table 2-1. Notice that for all values of

k, the heuristic computed the optimal solution requiring on average 0.013 seconds of

computation time. The average time to compute the optimal solution using CPLEX was

5387.31 seconds. Clearly even for this relatively small network, the heuristic is the method

of choice. Figure 2-5 shows the resulting graph of the terrorist network according to the

optimal solution to the cnp for the instance of k = 20.

In order to determine the scalability and robustness, the proposed heuristic was

tested on a set of randomly generated scale-free graphs. Table 3-4 presents the results

of the heuristic and the optimal solver when applied to the random instances. For each

instance, we report the number of nodes and arcs, value of k being considered, the optimal

solution and computation time, and finally the heuristic solution and the corresponding

29

Figure 2-4. Terrorist network compiled by Krebs.

computation time. For each graph, we report solutions for 3 different values of k. The

graphs were generated with version 1.4 of the publicly available Barabási graph generator

by Dreier [70].

Notice that for all instances tested, our method was able to compute the optimal

solution. Furthermore, the required time to compute the optimal solution was less than

one second for all but one instance, averaging only 0.33 seconds for all 27 instances. On

the other hand, CPLEX required 289.44 seconds on average to compute the optimal

solution, requiring over 5000 seconds in the worst case. Our computational experiments

30

Figure 2-5. Optimal solution when k = 20.

indicate that the proposed heuristic is able to efficiently provide excellent solutions for

large-scale instances of the cnp∗ .

2.3 Cardinality Constrained Problem

We now provide the formulation for a slightly modified version of the cnp based

on constraining the connectivity index of the nodes in the graph. Given a graph G =

(V,E), the connectivity index of a node is defined as the number of nodes reachable

from that vertex (see Figure 2-6 for examples). To constrain the network connectivity in

optimization models, we can impose constraints on the connectivity indices.

∗ The experimental data including the instances tested are available at the following url:
http : //plaza.ufl.edu/clayton8/cnp/

31

Figure 2-6. Connectivity Index of nodes A,B,C,D is 3. Connectivity Index of E,F,G is 2.
Connectivity Index of H is 0.

This leads to a cardinality constrained version of the cnp which we aptly refer to as

the cardinality constrained critical node detection problem (cc-cnp). The

objective is to detect a set of nodes A ⊆ V such that the connectivity indices of the nodes

in the vertex deleted subgraph G(V \ A) is less than some threshold value, say L. Using

the same definition of the variables as in the previous subsection, we can formulate the

cc-cnp as the following integer linear programming problem.

(CC-CNP-1) Minimize
∑

i∈V

vi (2–31)

s.t.

uij + vi + vj ≥ 1, ∀ (i, j) ∈ E, (2–32)

uij + ujk + uki 6= 2, ∀ (i, j, k) ∈ V, (2–33)

∑

i,j∈V

uij ≤ L, (2–34)

uij ∈ {0, 1}, ∀ i, j ∈ V, (2–35)

vi ∈ {0, 1}, ∀ i ∈ V, (2–36)

where L is the maximum allowable connectivity index for any node in V .

First, we see that the objective function given clearly minimizes the number of nodes

deleted. Constraints (2–32) and (2–33) follow exactly as in the cnp formulation. The

only difference is now we must constrain the connectivity index of each node. This is

32

accomplished by constraint (2–34). Finally constraints (2–35) and (2–36) define the

domains of the decision variables.

The proof of NP-completeness is obtained from the result proved by Krishnamoorthy

and Deo [124] for a class of node deletion problems.

Lemma 2.3. [124] Let π be a specified graph property that is determined by its compo-

nents, and suppose there is a graph F with a node “s” such that the following hold:

(1) The graph F and the subgraph resulting after deleting node “s” from F satisfy .

(2) If a node x is added to the graph F and nodes x and “s” are joined by an edge, then
the resulting graph is a forbidden induced subgraph for property .

then the node-cover problem is polynomially transformable to the node deletion problem for

property π.

Let us consider the graphs with the property that the size of any connected

component in the graph is less than or equal to L, where L > 0. Then CC - CNP is

a node deletion problem [124] for this property. Additionally, the property satisfies the

conditions stated in Lemma 1 (one can take any connected component of size L as graph

F). Thus we have a polynomial time reduction from the NODE COVER PROBLEM

which is well-known to be NP-complete [82]. A precise generalization of the property

is provided in [131] as hereditary and non-trivial. A property π is hereditary if a graph

satisfies π , then every node and edge induced subgraph of the graph satisfies π and

it is non-trivial if there are infintiely many graphs that satisfy the property. The node

deletion problem for hereditary properties was later proved to be max-SNP hard as the

transformation provided was approximation preserving [136]. This implies that there is no

polynomial time approximation scheme to solve the problem unless P=NP.

2.3.1 CC-CNP Heuristic

We can appropriately modify the heuristics for cnp to solve instances of cc-cnp.

To do this, notice that now we are only concerned with the connectivity indices of the

nodes. Stated differently, we are only concerned with the sizes of the components in

33

procedure ConstrainedCriticalNode(G,L)
 MIS ← MaximalIndepSet(G)
 OPT ← FALSE

 NoAdd ← 0
 while (OPT .NOT.TRUE) do
 for (i = 1 to |V |) do

 if
(
|s|(|s|−1)

2
≤ L ∀ s ∈ S ⊆ G(MIS ∪ {i}) : i ∈ V \MIS

)
then

 MIS← MIS ∪ {i}
 else
 NoAdd ← NoAdd +1
 end if
 if (NoAdd = |V | − |MIS|) then
 OPT ← TRUE

 BREAK

 end if
 end for
 end while
 return V \MIS /∗ set of nodes to delete ∗/
end procedure ConstrainedCriticalNode

Figure 2-7. Heuristic for the cardinality constrained critical node problem.

the vertex deleted subgraph. Unlike before, there is no limit on the number of critical

nodes we choose, so long as the connectivity constraints are satisfied. We could generate

pathological instances to demonstrate its inefficiency, so we provide a genetic algorithm in

a later section.

Pseudo-code for the proposed algorithm is provided in Figure 2-7. The heuristic starts

off the same as before by identifying a maximal independent set (MIS). Then, the boolean

variable OPT is set to FALSE. Finally in line 3, a variable NoAdd is initialized to 0. This

variable determines when to exit the main loop from lines 4-16. After this loop is entered,

the procedure iterates through the vertices and determines which can be added back to

the graph while still maintaining feasibility. If vertex i can be added, MIS is augmented to

include i in step 7, otherwise NoAdd is incremented. If NoAdd is ever equal to |V |− |MIS|,

then no nodes can be returned to the graph and OPT is set to TRUE. Then loop is then

exited and the algorithm returns the set of nodes to be deleted, i.e. V \MIS.

34

Theorem 2.5. The worst-case complexity of the ConstrainedCriticalNode heuristic is

O(|V |2 + |V ||E|).

Proof. This proof is similar to the proof of Theorem 2.2 above. The loop from lines 4-16

will iterate at most O(|V |) times. Each loop requires at most O(|V | + |E|) time to verify

the if a solution will remain feasible after a node is re-included in the graph. Thus we have

the result.

2.3.2 Genetic Algorithm for the CC-CNP

procedure GeneticAlgorithm

 Generate population Pk

 Evaluate population Pk

 while terminating condition not met do
 Select individuals from Pk and copy to Pk+1

 Crossover individuals from Pk and put in Pk+1

 Mutate individuals from Pk and put in Pk+1

 Evaluate population Pk+1

 Pk ← Pk+1

 Pk+1 ← ∅
 end while
 return best individual in Pk

end procedure GeneticAlgorithm

Figure 2-8. Pseudo-code for a generic genetic algorithm.

Genetic algorithms (GAs) mimic the biological process of evolution. In this subsection,

we describe the implementation of a GA for the cc-cnp. Recall the general structure of

a GA as outlined in Figure 2-8. When designing a genetic algorithm for an optimization

problem, one must provide a means to encode the population, define the crossover

operator, and define the mutation operator which allows for random changes in offspring

to help prevent the algorithm from converging prematurely [13].

For our implementation, we use binary vectors as an encoding scheme for individuals

within the population of solutions. When the population is generated, (Figure 2-8, line 1),

a random deviate from a distribution which is uniform onto (0, 1) ∈ R is generated for

35

each node. If the deviate exceeds some specified value, the corresponding allele is assigned

value 1, indicating this node should be deleted. Otherwise, the allele is given a 0, implying

it is not deleted. In order to evaluate the fitness of the population, per line 2, we must

determine whether each individual solution is feasible or not. Determining feasibility is a

relatively straightforward task and can accomplished in O(|V | + |E|) using a depth-first

search [5].

In order to evolve the population over successive generations, we use a reproduction

scheme in which the parents chosen to produce the offspring are selected using the binary

tournament method [144, 198]. Using this method, two chromosomes are chosen at

random from the population and the one having the best fitness, i.e. the lowest objective

function value, is kept as a parent. The process is then repeated to select the second

parent. The two parents are then combined using a crossover operator to produce an

offspring [107].

To breed new solutions, we implement a strategy known as parameterized uniform

crossover [186]. This method works as follows. After the selection of the parents, refer

to the parent having the best fitness as MOM. For each of the nodes (alleles), a biased

coin is tossed. If the result is heads, then the allele from the MOM chromosome is chosen.

Otherwise, the allele from the least fit parent, call it DAD, is selected. The probability

that the coin lands on heads is known as CrossProb, and is determined empirically.

Figure 3-3 provides an example of a potential crossover when the number of nodes is 5 and

CrossProb = 0.65 [13].

Coin Toss T H H T H
MOM 0.56 0.81 0.22 0.7 0.86
DAD 0.29 0.49 0.98 0.12 0.32

Offspring 0.29 0.81 0.22 0.12 0.86

Figure 2-9. An example of the crossover operation. In this case, CrossProb = 0.65.

After the child is produced, the mutation operator is applied. Mutation is a

randomizing agent which helps prevent the GA from converging prematurely and

36

escape to local optima. This process works by flipping a biased coin for each allele of

the chromosome. The probability of the coin landing heads, known as the mutation rate

(MutRate) is typically a very small user defined value. If the result is heads, then the value

of the corresponding allele is reversed. For our implementation, MutRate = 0.03.

After the crossover and mutation operators create the new offspring, it replaces a

current member of the population using the so-called steady-state model [55, 107, 144].

Using this methodology, the child replaces the least fit member of the population, provided

that a clone of the child is not an existing member in the population. This method

ensures that the worst element of the population is monotonically improving in every

generation. In the subsequent iteration, the child becomes eligible to be a parent and the

process repeats. Though the GA does converge in probability to the optimal solution,

it is common to stop the procedure after some “terminating condition” (see Figure 2-8,

line 3) is satisfied. This condition could be one of several things including, a maximum

running time, a target objective value, or a limit on the number of generations. For our

implementation, we use the latter option and the best solution after MaxGen generations is

returned.

2.3.3 Computational Results

All of the proposed heuristics were implemented in the C++ programming language

and complied using GNU g++ version 3.4.4, using optimization flags -O2. It was tested on

a PC equipped with a 1700MHz IntelR© PentiumR© M processor and 1.0 gigabytes of RAM

operating under the MicrosoftR© WindowsR© XP Professional environment.

In order to determine the scalability and robustness, the proposed heuristic was tested

on a set of randomly generated scale-free graphs. Table 3-4 presents the results of the

heuristic and the optimal solver when applied to the random instances. For each instance,

we report the number of nodes and arcs, the value of k being considered, the optimal

solution and computation time required by CPLEX, and finally the heuristic solution and

37

Figure 2-10. Terrorist network compiled by Krebs [123].

the corresponding computation time. For each graph, we report solutions for 3 different

values of k.

Notice that for all instances tested, our method was able to compute the optimal

solution. Furthermore, the required time to compute the optimal solution was less than

one second for all but one instance, averaging only 0.33 seconds for all 27 instances. On

the other hand, CPLEX required 289.44 seconds on average to compute the optimal

solution, requiring over 5000 seconds in the worst case. Our computational experiments

indicate that the proposed heuristic is able to efficiently provide excellent solutions for

large-scale instances of the cnp.

2.3.4 CC-CNP Results

We continue with the results of the two algorithms developed for the cc-cnp, namely

the combinatorial algorithm and the genetic algorithm. As above, we tested the IP model

38

and both heuristics on the terrorist network [123] and a set of randomly generated graphs.

For each instance tested, we report solutions for 3 values of L, the connectivity index

threshold. Finally, we have implemented the integer programming model for the cc-cnp

using CPLEXTM.

Table 2-3 presents computational results of the IP model and heuristic solutions when

tested on the terrorist network data. Notice that for all 5 values of L tested, the genetic

algorithm and the combinatorial algorithm with local search (ComAlg + LS) computed

optimal solutions. Figure 2-11 shows the optimal solution for the case when L = 4.

Figure 2-11. Optimal solution when L = 4.

We now consider the performance of the algorithms when tested on the randomly

generated data sets containing up to 50 nodes taken from [11]. The results are shown

in Table 2-4. For these relatively small instances, we were able to compute the optimal

solutions using CPLEX. For each instance, we provide solutions for 3 values of L, the

39

maximum connectivity index. Notice that for these problems, the genetic algorithm

computed optimal solutions for each instance tested in a fraction of the time required by

CPLEX. The combinatorial heuristic found optimal solutions for all but 3 cases requiring

approximately half of the time of the GA.

Table 2-5 presents the solutions for the random instances from 75 to 150 nodes

[11, 15]. Again, in order to demonstrate the robustness of the heuristics, we provide

solutions for 3 values of L for each instance. In this table, we provide the results for

the genetic algorithm and combinatorial heuristic with and without the local search

enhancement. CPLEX was unable to compute optimal solutions within reasonable time

limits for any of the instances represented in this table.

We see from this table that the in terms of solution quality the GA is the best

performing method. The ComAlg + LS also favors well, but requires more computation

time than the GA and requires more computing time on average. The combinatorial

algorithm without the local search procedure produces solution which are arguably

reasonable given that the required computation time is over 36 times faster than the GA,

while the solutions are only 1.2 times worse than those computed by the GA. Nevertheless,

the genetic algorithm required only 5.748 seconds on average to compute the best solution.

The trade-off of solution quality versus computation time is a decision that would be made

by an operator depending on the size of the network and the time constraints imposed on

detecting the critical nodes of a given graph.

2.4 Concluding Remarks

In this chapter, we proposed several methods of for the the detection of the critical

nodes whose deletion results in the maximum network disconnectivity. In general, the

problem of detecting critical nodes has a wide variety of applications from jamming

communication networks and other anti-terrorism applications, to epidemiology and

transportation science [11, 15].

40

In particular, we examined two problems, namely the critical node problem

(cnp) as well as the cardinality constrained cnp (cc-cnp). Given a graph and

an integer k, the objective of the cnp is to detect a set of k critical nodes whose deletion

results in the maximum number of disconnected components whose cardinalities have the

minimum variance. The definition of the cc-cnp is slightly different in that instead of

given k ∈ Z, the maximum number of nodes to delete, we are given some value L ∈ Z

which represents the maximum connectivity index a node may have. The objective in this

case is to delete the minimum number of nodes while ensuring that the connectivity index

of each node does not exceed L.

The proposed problems were modeled as integer linear programming problems. Then

we proved that the corresponding decision problems are NP-complete. Furthermore, we

proposed a several heuristics for efficiently computing quality solutions to large-scale

instances. The heuristic proposed for the cnp was a combinatorial algorithm which

exploited properties of the graph in order to compute basic feasible solutions. The method

was further intensified by the application of a local search mechanism. By using the

integer programming formulation we were able to determine the precision of our heuristic

by comparing their relative solutions and computation times for several networks. The

computational experiments indicated that the heuristic found optimal solutions for all

instances tested in a fraction of the time required by the commercial IP solver CPLEX.

For the cc-cnp we proposed two algorithms, namely a modified version of the

combinatorial algorithm described above and a genetic algorithm [90]. Once again, the

computational experiments indicated that both methods are robust and are able to

efficiently compute approximate solutions for instances up to 150 nodes.

We also conclude with a few words on the possibility of future expansion of this

work. A heuristic exploration of cutting plane algorithms on the IP formulation would

be an interesting alternative. Other heuristic approaches worthy of investigation include

hybridizing the genetic algorithm with the addition of a local search or path-relinking

41

enhancement procedure [87]. Finally, the local search used in the combinatorial algorithm

was a simple 2-exchange method, which was the cause of a significant slow down

in computation as noted in Table 2-5. A more sophisticated local search such as a

modification of the one proposed by Resende and Werneck [174, 175] should be a major

focus of attention.

Furthermore, a node weighted version will be an interesting study. As it is rational to

perceive applications containing weighted networks in which the cost of deleting one node

is different from another. Also, pertaining to applications outside the scope of jamming

networks, a study of epidemic threshold variation with respect to the heuristic results will

help determine the impacts on contagion suppression in biological and social networks.

Table 2-1. Results of IP model and heuristic on terrorist network data from Krebs.

Instance IP Model Heuristic
Nodes Objective Execution Objective Execution

Deleted (k) Value Time (s) Value Time (s)
20 20 12.69 20 0.01
15 61 277.77 61 0.01
10 169 3337.06 169 0.02
9 214 2792.33 214 0.02
8 282 15111.94 282 0.01
7 327 10792.08 327 0.01

42

Table 2-2. Results of IP model and heuristic on randomly generated scale free graphs.

Instance IP Model Heuristic Heuristic + LS
Nodes Arcs Deleted Obj Comp Obj Comp Obj Comp

Nodes (k) Value Time (s) Value Time (s) Value Time (s)
75 140 20 36 66.7 92 0.12 36 0.03
75 140 25 18 33.28 39 0.28 18 0.03
75 140 30 7 4.23 18 0.02 7 0.04
75 210 25 26 93.71 78 0.1 26 0.04
75 210 30 8 3.57 31 0.05 8 0.05
75 210 35 2 4.36 16 0.18 2 0.04
75 280 33 26 749.19 54 0.00 26 0.04
75 280 35 20 164.34 38 0.09 20 0.06
75 280 37 13 83.98 24 0.39 13 0.11
100 194 25 44 151.14 142 0.731 44 0.09
100 194 30 20 59.66 72 0.56 20 0.11
100 194 35 10 8.51 33 0.66 10 0.12
100 285 40 23 136.47 48 1.151 23 0.11
100 285 42 17 263.82 38 0.4 17 0.17
100 285 45 11 16.78 29 0.53 11 0.23
100 380 45 22 128.13 58 0.58 22 0.15
100 380 47 16 243.07 42 1.191 16 0.16
100 380 50 10 228.72 23 0.31 10 0.11
125 240 33 62 5047.51 97 0.721 62 0.30
125 240 40 29 118.92 49 1.562 29 0.24
125 240 45 16 17.09 32 0.14 16 0.39
150 290 40 40 41.6 125 1.832 40 0.47
150 290 50 12 26.29 64 2.773 12 0.831
150 290 60 1 24.92 35 1.091 1 0.851
150 435 61 19 29.55 53 2.313 19 0.741
150 435 65 13 31.45 37 0.991 13 1.952
150 435 67 11 37.91 31 0.52 11 0.801

Table 2-3. Results of IP model and heuristics on terrorist network data from [123].

Instance IP Model Genetic Alg ComAlg ComAlg + LS
Max Conn. Obj Comp Obj Comp Obj Comp Obj Comp
Index (L) Val Time (s) Val Time (s) Val Time (s) Val Time (s)

3 21 188.98 21 0.25 22 0.01 21 0.1
4 17 886.09 17 0.741 19 0.01 17 0.45
5 15 30051.09 15 0.871 20 0.18 25 1.331
8 − − 13 0.39 14 0.05 13 0.07
10 − − 11 0.741 12 0.07 11 0.05

43

Table 2-4. Results of the IP model and genetic algorithm and the combinatorial heuristic
on randomly generated scale free graphs.

Instance IP Model Genetic Alg ComAlg + LS

Nodes Arcs Max Conn. Obj Comp Obj Comp Obj Comp
Index (L) Value Time (s) Value Time (s) Value Time (s)

20 45 2 9 0.04 9 0.02 9 0.03
20 45 4 6 0.13 6 0.04 6 0.862
20 45 8 5 0.39 5 0.04 5 1.482

25 60 2 11 0.07 11 0.49 11 0.08
25 60 4 9 14.1 9 2.113 10 0.01
25 60 8 7 26.64 7 0.05 8 0.06

30 50 2 11 0.07 11 0.06 11 0.01
30 50 4 8 0.1 8 0.05 8 0
30 50 8 6 1152.15 6 0.09 6 0

30 75 4 10 18.77 10 0.14 10 0.02
30 75 6 9 442.41 9 0.09 9 0.04
30 75 10 7 64.94 7 0.18 8 0

35 60 2 12 0.13 12 0.14 12 0.14
35 60 4 8 29.89 8 0.711 8 0
35 60 6 7 31.61 7 0.31 7 0.01

40 70 2 15 0.17 15 0.1 15 0.101
40 70 4 11 341.97 11 0.06 11 0
40 70 6 8 78.94 8 0.2 8 0.04

45 80 2 16 0.24 16 0.06 16 0.1
45 80 4 11 48.17 11 0.05 11 0.02
45 80 6 8 118.23 8 0.09 8 0.071

50 135 2 19 0.36 19 0.27 19 0.05
50 135 4 15 165.18 15 0.63 15 0.291
50 135 6 14 5722.88 14 0.721 14 0.03

Total (Sum) 24 8257.58 24 6.705 27 3.417

44

Table 2-5. Comparative results of the genetic algorithm and the combinatorial heuristic
when tested on the larger random graphs. Due to the complexity, we were
unable to compute the corresponding optimal solutions.

Instance Genetic Algorithm ComAlg ComAlg + LS

Nodes Arcs Max Conn. Obj Comp Obj Comp Obj Comp
Index (L) Value Time (s) Value Time (s) Value Time (s)

75 140 5 18 1.622 21 0 18 1.502
75 140 8 14 1.442 20 0.02 14 1.181
75 140 10 12 1.231 20 0.12 12 3.364

75 210 5 23 1.532 29 0.01 23 18.476
75 210 8 21 2.443 23 0.01 22 2.934
75 210 10 20 2.794 24 0.09 20 21.17

75 280 5 31 3.464 35 0.101 31 3.144
75 280 8 29 2.874 31 0.05 29 3.746
75 280 10 28 3.775 30 0.13 28 4.787

100 194 5 22 5.317 33 0.02 22 2.774
100 194 10 17 3.224 22 0.241 17 6.499
100 194 15 15 2.954 22 0.021 15 0.44

100 285 5 33 5.08 38 0.02 33 1.262
100 285 10 28 4.376 31 0.05 28 11.076
100 285 15 27 5.728 28 0.16 27 1.142

100 380 5 40 9.052 47 0.051 42 5.739
100 380 10 36 11.506 41 0.02 37 3.866
100 380 15 35 6.198 40 0.39 36 3.034

125 240 5 29 7.951 37 0.251 31 1.472
125 240 10 24 9.984 29 0.07 24 1.993
125 240 15 22 5.888 26 0.18 22 9.233

150 290 5 31 7.981 40 0.421 30 5.798
150 290 10 26 4.967 32 0.2 25 5.107
150 290 15 23 5.457 29 1.101 23 19.889

150 435 5 49 9.143 57 0.06 49 6.459
150 435 10 40 19.407 50 0.44 41 5.518
150 435 15 38 9.703 45 0.07 38 13.699

Total (Sum) 731 155.183 880 4.297 737 165.304

45

CHAPTER 3
PATH PLANNING PROBLEMS

3.1 Target Visitation Problem

3.1.1 Introduction

Path planning problems are among the most studied topics in operations research [37,

38, 101, 147]. In fact, the traveling salesman problem (TSP), arguably the most

famous of all optimization problems falls in to this class [129]. In this chapter, we consider

the problem of determining the optimal route for an unmanned aerial vehicle (UAV)

which needs to visit multiple targets and return to its point of origin. The objective is to

minimize the total distance traveled and maximize the utility of the visitation sequence.

This is known as the target visitation problem (TVP) and has several applications

including combat search and rescue, disaster relief, and environmental assessment [100].

Work on the tvp is limited. It was first posed in a paper by Grundel and Jeffcoat

dating from 2004 [100]. In this work, the authors describe the problem and the implementation

of a greedy randomized adaptive search procedure (GRASP) for computing approximate

solutions. The aforementioned paper was intended to provide an introduction to the

problem, not an extensive computational analysis. Instead, the authors provide a

combinatorial formulation and examine the similarities between the tvp and two other

well-known problems, namely the traveling salesman problem [129] and the linear

ordering problem [83]. We provide a similar analysis in a later subsection.

We study another closely related problem in this chapter. The problem deals with

maximizing communication among agents while routing them in a cooperative network.

Research in the area of cooperative networks has surged in recent years [37, 38, 101, 147].

This particular branch of telecommunications is leading the way for future technologies

and the development of new network organizations [172]. In particular, so-called mo-

bile ad hoc networks (MANETs) are at the forefront of the work in autonomous

cooperative networks [58]. MANETs are comprised of a set of loosely coupled agents

46

which communicate via a shared radio channel with other agents within a specified range.

The unique feature of MANETs that separates them from traditional cellular networks is

the fact that the topology of MANETs is dynamic. That is, with each movement of the

agents, a new topology is established.

The lack of a pre-established infrastructure is an attractive feature of MANETs.

They are particularly useful in situations where communication is required, but no fixed

telecommunication system exists. MANETs are also helpful when a set of mobile users

need to be in constant contact with each other. Specific examples include combat search

and rescue teams, and medical teams. In the wake of disasters such as the terrorist

attacks of September 11, 2001, and Hurricane Katrina, the nation saw first hand that

communication among the emergency responders was critical to the success of the rescue

operations.

In this chapter, we describe the implementation of a genetic algorithm for finding

approximate solutions for the tvp. The encoding scheme is based on random keys [23].

The heuristic is then hybridized by the implementation of a local search procedure.

Numerical results are presented demonstrating the effectiveness of the proposed procedure.

The remainder of the chapter is organized as follows. Next, we provide a mathematical

model for the tvp and prove that finding an optimal solution is NP-complete. Then,

in Section 3.1.3 we describe a hybrid genetic algorithm for solving large instances.

Computational results are provided in Section 3.1.4 comparing the proposed heuristic

to a standard genetic algorithm and the optimal solutions as computed by a commercial

integer programming package. In Section 3.2, we study the Communication Models for

a Cooperative Network of Autonomous Agents (ccpm). Section 3.2.1, we provide the

problem formulation for the ccpm. Then in Section 3.2.2 we present a review of the

previous work in the area of communication in cooperative networks. In Section 3.2.3,

we derive two mixed integer formulations for the ccpm using the combinatorial problem

47

Origin

A

B
C

D

A The waypoints to be vis-
ited.

Origin

A

B
C

D �

K)

s

B The minimum distance
solution.

Origin

A

B
C

D k
-

Y

1

?

C The best sequence
solution.

Origin

A

B
C

D �
�

�

1

?

D The optimal tvp solu-
tion.

Figure 3-1. This example compares the optimal solution for the tvp instance with the
related tsp and lop solutions.

as a guide. We provide some preliminary numerical results in Section 3.2.4 and discuss

conclusions and directions of future research in Section 3.2.5.

3.1.1.1 Motivation

As technologies advance, the use of unmanned aerial vehicles (UAVs) for civilian and

military applications is increasing. Civilian applications include environmental assessment

and search and rescue. Moreover, UAVs have been used in military applications for

decades and help to ensure that coalition forces maintain a competitive advantage in

the global war on terrorism. Often times, path planning for the particular mission, be

it civilian or military, is a non-trivial process. Two important, often competing factors

are the overall distance traveled by the UAV and the sequence in which various “targets”

or “points of interest” are visited [100]. Before moving on to the rigorous mathematical

48

formulation, we provide a simple example demonstrating the idea behind the tvp and

motivating its use in several practical military and civilian applications. In [100], the

authors provide a similar example in the context of a UAV surveilling an environmental

mishap, which we follow with a modification of the theme.

Suppose that the set of points in Figure 3-1(a) represent a collection of villages in

which a sought after terrorist is suspected of hiding out. The point labeled “Origin” is the

location of the coalition force. Moreover assume the available intelligence data suggests

that the most likely hiding spot of the terrorist is point D, and the second most likely

location is point A. In an application such as the one described, it is well-known that the

person of interest moves frequently, and that the older the intelligence date is, the less

accurate it becomes. Suppose the coalition force has the ability to launch a miniature

UAV from the Origin and have it pass through a pre-established set of waypoints before

returning to the starting point. During its flight, the UAV is capable of telemetering data

back to the coalition force helping to establish the known location of the terrorist they

seek.

The remaining subfigures demonstrate the optimal solutions when various objectives

are considered. In Figure 3-1(b), only the overall distance traveled by the UAV is taken in

to account. Notice here that point D, the most probable location of the terrorist is visited

last. Clearly this is not a desirable visitation sequence. In Figure 3-1(c), maximizing

the preferences in which the villages are visited is the only objective considered. This

sequence, while better than the previous is still long and could perhaps be shortened a

bit without sacrificing too much time between visiting the highly probably waypoints.

The route given in Figure 3-1(d) does precisely this. Here, a combination of distance and

preference is considered in the path planning. We see that this route provides the optimal

mixture of visiting “high chance” waypoints quickly, so that the coalition force may act

on the intelligence they receive. This simple example demonstrates the importance of

considering both distance and visitation sequence when solving a path planning problem

49

for a UAV. As we will see in the next section, when considered individually, these two

objectives generalize two well-studied problems in combinatorial optimization. As it turns

out, both are NP-hard which provides some indication as to the complexity of the tvp.

3.1.2 Problem Description

In this section we provide a formal description of the target visitation problem

and discuss complexity issues. We also discuss the similarities between the tvp and other

combinatorial problems. What follows is a brief survey of this nature.

3.1.2.1 Related Problems

Here we briefly examine the similarities between the target visitation problem

and two well-known problems in discrete optimization, namely the traveling salesman

problem and the linear ordering problem.

Traveling Salesman Problem. The traveling salesman problem (tsp) is

the most studied and widely recognized problem in operations research [51, 66, 83, 129,

159, 160, 199]. It has been the focus of research for over 50 years and remains a challenge

even today. Given a graph G = (V,E), a subset of edges T ⊆ E is said to be a traveling

salesman tour if it is a simple cycle of G having length |V |. In this context (and our’s) a

tour is a Hamiltonian cycle, but this easily generalizes depending on one’s definition of a

tour.

Suppose now that the graph is weighted (G, c), where cij represents the cost of

traversing arc (i, j) ∈ E and that |V | = n. The objective is now to find a tour of minimum

cost. Then if we represent a tour as a permutation π of the nodes, then the goal is to find

π that minimizes

Z(π) =

n−1∑

i=1

cπ(i),π(i+1) + cπ(n),π(1). (3–1)

The original integer programming formulation of the tsp is due to Dantzig, Fulkerson,

and Johnson (DFJ) [66] and continues to be a popular formulation today. Let x : E 7→

{0, 1} be a decision variable associated with each arc. Then the DFJ formulation of the

50

tsp is given as the following 0-1 integer program [66].

DFJ : max
n∑

i=1

n∑

j=1

cijxij (3–2)

subject to
n∑

i=1
i6=j

xij = 1, ∀ j ∈ V, (3–3)

n∑

j=1
j 6=i

xij = 1, ∀ i ∈ V, (3–4)

∑

i∈S

∑

j∈S

xij ≤ |S| − 1, ∀ S ⊂ V, 2 ≤ |S| ≤ n− 1, (3–5)

xij ∈ {0, 1}, ∀ i, j ∈ V . (3–6)

The DFJ formulation contains n(n − 1) integer variables and 2n constraints. While

minimizing the total tour cost, the sets of constraints in (3–3) and (3–4) ensure that each

node is visited exactly once. Constraint set (3–5) prevents subtours, by ensuring that

feasible solutions are biconnected [199]. The major drawback of the DFJ formulation is

the exponential number of subtour elimination constraints.

Another formulation of the tsp that is widely used in practice is due to Miller,

Tucker, and Zemlin (MTZ), and was first published in 1960 [141]. The MTZ formulation

reduces the number of subtour elimination constraints to be polynomially bounded, at the

expense of increasing the number of decision variables. Let s : V 7→ R be a bijection where

si := the relative position of node i in the tour. (3–7)

For example, if node 2 is visited third in the tour, then s2 = 3. The si variables are

commonly referred to as sequencing variables and can have many interpretations [69].

Without the loss of generality suppose that the depot, or point of origin is defined to be

node 1. Using the decision variables defined above and the sequencing variables, we can

51

formulate the MTZ tsp as follows:

MT Z : max
n∑

i=1

n∑

j=1

cijxij (3–8)

subject to
n∑

i=1
i6=j

xij = 1, ∀ j ∈ V, (3–9)

n∑

j=1
j 6=i

xij = 1, ∀ i ∈ V, (3–10)

yi − yj + n · xij ≤ n− 1, ∀ i, j ∈ V \ {1}, i 6= j, (3–11)

xij ∈ {0, 1}, ∀ i, j ∈ V, (3–12)

yi ∈ R, ∀ i ∈ V \ {1}. (3–13)

The MTZ formulation contains n2 decision variables, and O(n2) constraints. The

sequencing variables used in this model allow considerable flexibility and the ability to

model related problems easily. We take advantage of this for our formulation of the tvp in

the following section. It has been shown however that the MTZ formulation is weaker than

the DFJ formulation [158]; however, the model can be strengthened by lifting additional

edges as shown by Desrochers and Laporte [69].

These represent just a few of the formulations which have been proposed for

solving traveling salesman problems. For extensive review and analysis of other

formulations, the reader is referred to [127] and [158]. As for the computational complexity

of the tsp, it is well-known to be NP-hard. Further, nonmetric instances of the tsp

cannot be approximated within a constant factor unless P = NP [83]. A thorough review

of the problem is available in [103].

Linear Ordering Problem. The linear ordering problem (lop) is another

optimal sequencing problem. Given a set N of n items and a corresponding matrix D =

{di,j}n×n, which represents the preferences for ordering item i before item j, the objective

is to find an ordering of the items which maximizes the preferences [43]. Applications

52

abound including ranking athletes or sports teams, ranking preferences to obtain ancestry

relationships, and in economics [86]. In terms of the matrix D, the optimal solution is a

permutation π of the rows and columns of D such that the sum of the values in the upper

triangle are maximized. The lop can represented as a combinatorial optimization problem

as follows:

maxZ(π) =

n−1∑

i=1

n∑

j=i+1

dπ(i),π(j),

where π(i) represents the item in position i of the permutation [100]. An equivalent graph

theoretical problem is to find an acyclic tournament in a complete weighted graph in

which the sum of the arc weights is maximal [130].

An integer programming formulation for the tvp can be computed as follows. Let

x : N ×N 7→ {0, 1} be defined as

xij :=





1, if i is ordered before j,

0, otherwise.

(3–14)

Then the lop admits the following integer programming formulation:

LOP : max
∑

(i,j)∈N

dijxij (3–15)

subject to

xij + xji = 1, ∀ i, j ∈ N, (3–16)

xij + xjk + xki ≤ 2, ∀ i, j, k ∈ N, i 6= j, i 6= k, j 6= k, (3–17)

xi,j ∈ {0, 1}, ∀i, j ∈ N. (3–18)

The lop formulation consists of n2 decision variables and O(n3) constraints. Constraint

set (3–16) ensures that each item is considered only once, thus enforcing the strict

precedence relation. The constraints in (3–17) ensure that the solution is acyclic.

Not surprisingly, the decision version of the lop is known to be NP-complete, and the

corresponding optimization problem is NP-hard [98, 99].

53

As we can see, the target visitation problem combines attributes of both the

traveling salesman problem and the linear ordering problem. We are now

ready to formally define the tvp and examine several math programming formulations.

3.1.2.2 Target Visitation Problem

An instance of the target visitation problem consists of a set N = {1, 2, . . . , n}

of targets located at distinct points. There is also an associated distance matrix D =

{di,j}m×m, where m := n + 1. The di,j entries represent the distances between nodes

i, j ∈ N . Note that the distances may be asymmetric, i.e. di,j 6= dj,i necessarily. Also,

for all targets i, there is a value d0,i which represents the distance from the UAVs point of

origin to target i. Furthermore, a matrix R = {ρi,j}n×n is provided where ρi,j represents

the preference or utility of visiting target i before target j. This can be interpreted as the

assumed “threat level” or relative importance of visiting one target before another. The

intuition is that targets with higher priorities should be visited earlier in the sequence.

As mentioned in [100], obtaining the values of di,j is usually an easy task since

literal distance measures or other metrics such as travel time are available or are trivial

to calculate. However, deriving the values of ρi,j, the value of visiting target i before

target j is not always so simple. There are several methods used by military planners

when developing routes for the tvp. The most common method, and the one we adopt

in this chapter, is known as “target value reconciliation” [100]. In this method a group of

experts offer a set of pair-wise rankings for the targets from which the preference matrix is

derived. More specifically, for all targets i and j, each expert is to specify a preference of

visiting target i before j [49]. The value of ρi,j is simply the cumulative number of experts

who prefer to visit i before j.

A feasible solution for the target visitation problem is one in which the UAV

leaves its point of origin, visits all targets exactly once, and returns to the origin. The

objective is to minimize the distance traveled while maximizing the utility of the visitation

sequence [100]. Let π be a permutation of the set of integers [1, . . . , n + 1) ∩ Z, such that

54

j =: π(i) implies that target j is the ith position of the visitation sequence. With this, we

can formulate the tvp as the following combinatorial optimization problem first given in

[100]:

Maximize Z(π) =
[n−1∑

i=1

n∑

j=i+1

ρπ(i),π(j)

]
−

[
d0,π(1) +

n−1∑

k=1

dπ(k),π(k+1) + dπ(n),0

]
(3–19)

Permutation based models of combinatorial problems are often useful for gaining an

intuitive understanding of the problem. However, integer programming models are usually

the most helpful for providing some of the formal properties of the problem [153]. With

this in mind we now develop a linear integer programming formulation for the tvp.

The target visitation problem can be conveniently described as a combinatorial

problem on a graph. Consider a doubly weighted directed graph (G, d, ρ), where V =

{0, 1, 2, . . . , n} is the set of nodes. Suppose that V represents the set of targets, hence

n = |N |. We include an extra node which represents the origin. Also, assume without

the loss of generality that G is a complete graph. For each edge (i, j) ∈ E, there is an

associated weight di,j which represents the distance from target i to target j. Furthermore,

for each edge (i, j) ∈ E, there is an associated value ρi,j which is the preference for the

corresponding target pair as described above. Now, let x : V × V 7→ {0, 1} be a surjection

defined by

xi,j :=





1, iff i = π(k)⇒ j = π(k + 1), for k ∈ Zn,

0, otherwise,

(3–20)

where π is defined as above. Said differently, xi,j = 1 implies that (i, j) ∈ E is a link in the

tour. Next, we introduce another surjective function w : V × V 7→ {0, 1} defined by

wi,j :=





1, iff i = π(k)⇒ j = π(l), for k, l ∈ Zn such that k < l,

0, otherwise.

(3–21)

55

Finally, we have a bijection y : V 7→ R, where

yi := sequence in which target i is visited. (3–22)

With this we can formulate the target visitation problem as the following integer

linear program.

T VP1 : max
n∑

i=1

n∑

j=1
i6=j

ρi,jwi,j −
n∑

i=0

n∑

j=0
i6=j

di,jxi,j (3–23)

subject to
n∑

i=0
i6=j

xi,j = 1, ∀ j ∈ V, (3–24)

n∑

j=0
j 6=i

xi,j = 1, ∀ i ∈ V, (3–25)

yi − yj + n · xi,j ≤ n− 1, ∀ i, j ∈ V \ {0}, i 6= j, (3–26)

wi,j + wj,i ≤ 1, ∀ i, j ∈ V, i 6= j, (3–27)

yi − yj + n · wi,j ≥ 0, ∀ i, j ∈ V \ {0}, i 6= j, (3–28)

xi,j ∈ {0, 1}, ∀ i, j ∈ V, (3–29)

wi,j ∈ {0, 1}, ∀ i, j ∈ V, (3–30)

yi ∈ R, ∀ i ∈ V \ {0}. (3–31)

This formulation has a total of 3n2 − 5n + 4 constraints and 2n2 − n− 1 integer variables.

Notice that in graph theoretical terms, the objective of the tvp is to find a Hamiltonian

cycle which is of minimum weight, but which also maximizes the visitation preferences.

This is accomplished by the objective function in (3–32). The 2n assignment constraints in

(3–33) and (3–34) ensure that each target is visited only once in the tour. The n2 − 3n+ 2

constraints in (3–35) are subtour elimination constraints and hence prevent disjoint cycles

from occurring in the tour.

56

The constraints in (3–27) ensure that only one of wi,j or wj,i is nonzero for all (i, j)

pairs. In order to ensure that wi,j = 1 only when i is visited before j, we have the O(n2)

constraints in (3–28). They insist that wi,j is nonzero only when yi < yj. Finally, (3–37),

(3–38), and (3–39), define the proper domains for the variables used. Thus, a solution

to the integer programming formulation P1 characterizes a feasible solution to the tvp.

On the other hand, it is clear that a feasible solution to the tvp will define at least one

feasible solution to P1. Therefore, P1 is a correct formulation for the tvp.

We have shown that formulation TVP1 is correct formulation for the tvp. However,

it is possible to formulate a more compact integer programming model which reduces the

number of constraints by n2. This model is based on the MTZ formulation for the tsp. It

is given as follows.

T VP2 : max
n∑

i=1

n∑

j=1
i6=j

ρi,jwi,j −
n∑

i=0

n∑

j=0
i6=j

di,jxi,j (3–32)

subject to
n∑

i=0
i6=j

xi,j = 1, ∀ j ∈ V, (3–33)

n∑

j=0
j 6=i

xi,j = 1, ∀ i ∈ V, (3–34)

yi − yj + n · wi,j ≤ n− 1, ∀ i, j ∈ V \ {0}, i 6= j, (3–35)

xi,j ≤ wi,j, ∀ i, j ∈ V, (3–36)

xi,j ∈ {0, 1}, ∀ i, j ∈ V, (3–37)

wi,j ∈ {0, 1}, ∀ i, j ∈ V, (3–38)

yi ∈ R, ∀ i ∈ V \ {0}. (3–39)

Constraint sets (3–33) and (3–34) imply that the indegree and outdegree, in the edge

induced subgraph of the solution set, has to be one for all the nodes. Constraint set (3–35)

57

and (3–36) together ensures that there cannot be subtours, as this is just the MTZ based

formulation for TSP. In order to prove that wij 6= wji, let us consider constraint set (3–35).

If i is visited before j, then we have yi − yj < 0 and maximization of the objective function

ensures that wij is one. If j is visited before i, then we have yi − yj > 0 and hence wij has

to be zero.

The tvp represents a set of combinatorial decisions that must be made [153]. Clearly,

for any asymmetric instance consisting of n targets there are n! possible routes to consider.

Now that we have an integer programming model for the tvp, we can examine the

computational complexity. It is not surprising that finding an optimal solution is

NP-hard as we will now show by proving that the recognition version of the problem

is NP-complete. The recognition version of the tvp can be stated as follows: (K-tvp)

Given an instance of the target visitation problem, does there exist a tour of cost

less than or equal to K?

Theorem 3.1. The decision version of the target visitation problem (K-tvp) is

NP-complete.

Proof. To show this, we must prove that (1) K-tvp ∈ NP; (2) Some NP-complete problem

reduces to K-tvp in polynomial time.

Clearly K-tvp ∈ NP since any solution can be verified in polynomial time to be feasible or

not.

To complete the proof, we show a simple reduction from the Hamiltonian cycle

problem which is well-known to be NP-complete [83]. Let G = (V,E) be a graph in

which a Hamiltonian cycle has to be determined. Construct a complete graph Ḡ = (V, Ē)

with arc distance 1 if (i, j) 6∈ E and 0 otherwise. Furthermore, construct the preference

matrix such that ρi,j = k, where k ∈ R, for all (i, j) pairs. The objective of the decision

problem K-tvp is to determine if a solution exists with cost K ≤ k · n. A ‘yes’ instance of

the Hamiltonian cycle problem on G corresponds to a ‘yes’ instance for the K-tvp

58

on Ḡ. Notice that the cost of the K-tvp tour is simply the sum of the preference costs,

i.e. k · n, as the distance component of the objective function is zero.

To prove the converse, observe that the cost of any K-tvp tour is at least k · n. Thus

a ‘yes’ instance of K-tvp would mean that all of the arcs in the tour have zero cost. This

implies all of the arcs in the K-tvp tour are present in the graph G and also form a valid

tour in G. This results in a ‘yes’ instance for the Hamiltonian cycle problem. Thus

the proof is complete.

As noted in [100], it might be the case that for a particular instance of the tvp, the

terms of one of the matrices in the objective function may dominate the other. However,

both distance and utility are important factors and should be given equal attention in a

solution. Therefore, we use a simple balancing heuristic first given by Grundel and Jeffcoat

in [100]. Let πr be a random permutation of the targets to be visited. Further, define

γ ∈ R such that R̃ := γR. In order to normalize the D and R matrices, we adjust the

particular value of γ so that

∑n−1
i=1

∑n
j=i+1 ρ̃πr(i),πr(j)

d0,πr(1) +
∑n−1

i=1 dπr(i),πr(i+1) + dπr(n),0

≈ 1. (3–40)

Then without the loss of generality, the parameter γ can be used to weight either matrix if

it is determined that the one of the distance or preference components is more important

than the other. Hence increasing the value of γ places more importance on the utility of

the visitation sequence relative to the total distance traveled [100].

The complexity of the tvp motivates the need for efficient heuristics since finding

optimal solutions for large instances is impractical. Therefore, in the next section we

propose the use of genetic algorithm for finding near optimal solutions for the tvp.

3.1.3 Genetic Algorithm

Genetic algorithms (GAs) get their name from the biological process which they

mimic. Motivated by Darwin’s Theory of Natural Selection [67], these algorithms evolve a

population of solutions, called individuals, over several generations until the best solution

59

is eventually reached. Each component of an individual is called a allele. Individuals in

the population mate through a process called crossover, and new solutions having traits,

i.e. alleles of both parents, are produced. In successive generations, only those solutions

having the best fitness are carried to the next generation in a process which mimics

the fundamental principle of natural selection, survival of the fittest [90]. Figure 3-2

provides pseudo-code for a standard genetic algorithm. Though the GA does converge

in probability to the optimal solution, it is common to stop the procedure after some

“terminating condition” (see line 3) is satisfied. This condition could be one of several

things including, a maximum running time, a target objective value, or a limit on the

number of generations. For our implementation, we use the latter option and the best

solution after MaxGen generations is returned.

procedure GeneticAlgorithm

 Generate population Pk

 Evaluate population Pk

 while terminating condition not met do
 Select individuals from Pk and copy to Pk+1

 Crossover individuals from Pk and put in Pk+1

 Mutate individuals from Pk and put in Pk+1

 Evaluate population Pk+1

 Pk ← Pk+1

 Pk+1 ← ∅
 end while
 return best individual in Pk

end procedure GeneticAlgorithm

Figure 3-2. Pseudo-code for generic genetic algorithm.

When designing a genetic algorithm for an optimization problem, one must provide

a means to encode the population, define the crossover operator, and define the mutation

operator which allows for random changes in offspring to help prevent the algorithm from

converging prematurely. The encoding scheme we propose for our GA is based on random

keys and follows exactly as described by Bean [23]. As mentioned in [23], GAs often have

a difficult time maintaining feasibility of solutions in successive generations. This problem

60

is overcome by the use of random keys as an encoding mechanism for the population.

Random keys work by encoding the solution vector using random numbers. The feasibility

issue is then moved into the objective function, and subsequently all offspring produced

are guaranteed to be feasible solutions.

For the GA implementation for the tvp, we have the following definitions. As

mentioned above, solutions are represented by a random vector. To determine the

visitation sequence, a random deviate from a distribution which is uniform onto (0, 1) ∈ R

is generated for each target. The tour is determined by sorting the random numbers and

sequencing the targets in descending order of the sort. For example, suppose there are

n = 3 targets to visit. Then a chromosome such as

(.34, .71, .28)

would correspond to the visitation sequence

2→ 1→ 3.

The objective value of the sequence can be evaluated, thus determining the fitness of the

chromosome.

3.1.3.1 Evolutionary Mechanisms

In order to evolve the population over successive generations, we use a reproduction

method which copies the best individuals in the current generation to the next. We

aptly refer to this set the BEST set. This technique ensures that the best solution is

monotonically improving in every generation [23]. To breed new solutions, we implement a

strategy known as parameterized uniform crossover [186]. This method works by selecting

two solutions to serve as parents. In our implementation, one parent is chosen at random

from the BEST set, and the other is chosen from the entire population (including BEST).

Then, for each target to be visited, a biased coin is tossed. If the result is heads, then the

allele of the BEST parent is chosen, otherwise the allele is taken from the other parent.

61

The probability that the coin lands on heads is known as CrossProb, and is determined

empirically. Figure 3-3 provides an example of a potential crossover when the number of

targets is 5 and CrossProb = 0.65.

Coin Toss T H H T H
Parent 1 0.56 0.81 0.22 0.7 0.86
Parent 2 0.29 0.49 0.98 0.12 0.32

Offspring 0.29 0.81 0.22 0.12 0.86

Figure 3-3. An example of the crossover operation. In this case, CrossProb = 0.65.

Finally, the mutation operator is defined as follows. Instead of introducing random

perturbations to selected offspring, we instead replace a set of individuals having the worst

fitness with new solutions generated at random from the same distribution as the original

population. This replacement set is referred to as the WORST set. Using this method, we

are able to ensure that the GA does not converge prematurely. This is a common method,

sometimes referred to as immigration and appears throughout the literature [23, 94]. An

overall pictorial view of the generational evolution of the proposed GA is provided in

Figure 3-4.

Figure 3-4. Graphical representation of generational evolution.

62

3.1.3.2 Local Search

In addition to the standard GA, we propose a hybridization technique to produce

better solutions. In particular we implement a 2-exchange local search on each of the

offspring produced by crossover operator. Pseudo-code for this heuristic is provided

in Figure 3-5. A 2-exchange local search is a hill-climbing procedure which examines

pairs of alleles and performs a swap. If the resulting swap increases the fitness of the

individual, the swap is kept. Otherwise, it is undone an another pair is examined. Such

local improvement methods abound in the literature and are used to enhance methods

such as greedy randomized adaptive search procedures (GRASP) [173], tabu search [85],

and other combinatorial optimization heuristics [1].

procedure LocalSearch(X)
 X∗ ← X
 f(X∗)← f(X)
 temp← 0
 while X is not locally optimal do

 for i = 1 to |X| do

 for j = 1 to |X| do

 temp← X(i)
 X(i)← X(j)
 X(j)← temp

 if f(X) > f(X∗) then

 X∗ ← X
 else

 temp← X(i) /∗ undo swap ∗/
 X(i)← X(j)
 X(j)← temp

 end if

 end for

 end for

 end while

 return (X∗)
end procedure LocalSearch

Figure 3-5. 2-exchange local search.

63

3.1.4 Computational Results

The proposed heuristic was implemented in the C++ programming language and

complied using GNU g++ version 3.4.4, using optimization flags -O2. It was tested on a

PC equipped with a 1700MHz IntelR© PentiumR© M processor and 1.0 gigabytes of RAM

operating under the MicrosoftR© WindowsR© XP Professional environment.

As a basis for comparison, we examine the results for the hybrid genetic algorithm

(HGA) with the standard genetic algorithm (GA). In addition, we have implemented the

integer programming model for the target visitation problem using the CPLEXTM

version 10 optimization suite from ILOG [63]. CPLEX contains an implementation of

the simplex method [110], and uses a branch and bound algorithm [199] together with

advanced cutting-plane techniques [118, 154]. The instances were tested using the CPLEX

default settings. The algorithms were tested on a set of randomly generated instances

varying in size from 8-16 targets∗ . Due to the complexity of the problem, CPLEX was

unable to obtain optimal solutions for instances with |N | > 16. For each instance, the

number of “experts” used to derive the utility matrix is 10. Also, the matrices were

balanced using the heuristic described in Equation (3–40) above. For each instance, the

maximum distance between the targets varied from 20 to 150 units. The distance matrix

for each instance was generated uniformly at random with some user defined upper and

lower bounds. The instances were created using a simple problem generator written in

C++. The instances used in this chapter are non-symmetric and non-metric; however, this

option is built in to the generator. It is a reasonable assumption to have non-symmetric

instances, since in a real-world scenario the matrix D might represent other factors than

simply the distance between two targets such as an extra cost or risk associated with

visiting a particular target. In this case dij 6= dji necessarily. Furthermore, it is assumed

that the UAV is capable of traveling all cycles in the graph. Depending on the individual

∗ The test problems may be downloaded from http://plaza.ufl.edu/clayton8/tvp.tar.gz.

64

http://plaza.ufl.edu/clayton8/tvp.tar.gz

application and factors such as the number of targets and the size of the battlespace, it

may be reasonable to impose a hard constraint on the total distance traveled in the tvp

tour. This would model problem scenarios when battery consumption and fuel capacity

are critical. In the instances tested we do not impose such constraints; however doing so

would most likely reduce the overall CPLEX running time.

We mention here that in the instances considered, the priority functions have been

normalized by the distance function in order to avoid the domination of one cost function

by the other. This justifies the cost of objective function. For a better realization of

this fact, we made test runs on the instances solving both the tsp and lop problems

separately. These results are included in Table 3-1. To further illustrate this, Table 3-2

provides the objective function value of the lop, tvp, and tsp when one objective

is considered and solved to optimality. The lop solution (non-optimal component)

corresponding to the tsp optimal route (optimal component) and the tsp solution

(non-optimal component) corresponding to the optimal lop route (optimal component)

have been presented. The non-optimal components are weaker when compared to each

component in the optimal tvp solution. This numerical evidence supports the claim that

in order to find high quality tvp routes, it is not advisable to decouple the problem into

simply a traveling salesman problem or linear ordering problem, but rather to

consider both objectives in concert.

The alternative way of solving a biobjective optimization problem is by determining

a set of efficient solutions. An solution is efficient if both the cost functions are dominated

by any other solution [161]. This is achieved by treating the problem with a single

objective function and recursively solving the problem by recomputing the new costs based

on the cost obtained from the previous iteration. This however assumes that the both

the cost functions involves with the same problem. In our case, we have one cost function

to be employed for a tsp problem and another cost function for a lop problem and an

65

efficient algorithm for solving both the problems has to be designed for this purpose, which

is beyond the scope of this chapter.

Table 3-1. Comparative results of the optimal solutions to the corresponding tsp, lop,
and tvp for each instance. The absolute value of the tsp solutions are
reported.

Instance lop tvp tsp
Name Targets Optimal Optimal Optimal

Solution Solution Solution
rand8-1 8 110.085 60.2766 31
rand8-2 8 197.139 115.944 55
rand8-3 8 335.74 195.333 76
rand8-4 8 59.2222 29.0074 20
rand8-5 8 646.16 314 221
rand10-1 10 259.926 157.404 74
rand10-2 10 247 208 21
rand10-3 10 734.569 520.679 149
rand10-4 10 720.167 532.5 97
rand10-5 10 565.781 365.125 105
rand12-1 12 208.29 124.179 56
rand12-2 12 491.677 318.38 104
rand12-3 12 646.772 420.959 142
rand12-4 12 944.093 594.546 169
rand12-5 12 640.055 472.354 89
rand14-1 14 204.414 137.609 39
rand14-2 14 549.708 405.774 72
rand14-3 14 897.804 631.711 153
rand14-4 14 292.389 176.631 65
rand14-5 14 976.921 679.625 131
rand16-1 16 518.62 381.934 63
rand16-2 16 706.98 431.531 164
rand16-3 16 571.735 415.339 99
rand16-4 16 707.22 421.658 162
rand16-5 16 364.152 249.939 68

3.1.4.1 Numerical Results

We begin by presenting some comparative results of the heuristics. As Gonçalves et

al. correctly indicate, despite the massive amounts of literature on genetic algorithms,

there is little knowledge of how best to tune the parameters for a given application [95].

For all of the instances tested, the parameters used for the genetic algorithm (GA) and

66

Table 3-2. The corresponding objective function values of each of the lop, tsp, and tvp
are given for each instance. For each column, one of the objectives is considered
and the problem solved to optimality. The solution of the remaining two
problems is given when evaluated with the optimal function value.

Instance lop opt tvp opt tsp opt
Name Targets tsp lop tsp lop tsp lop
rand8-1 8 -100 110.085 -31 91.2766 -31 91.2766
rand8-2 8 -174 197.139 -77 192.944 -55 161.486
rand8-3 8 -242 335.74 -115 310.333 -76 219.592
rand8-4 8 -39 59.222 -29 58.0075 -20 44.6444
rand8-5 8 -502 646.16 -221 574 -221 501.84
rand10-1 10 -139 259.926 -94 251.404 -74 203.68
rand10-2 10 -55 247 -37 245 -21 195
rand10-3 10 -648 734.569 -199 719.679 -149 575.743
rand10-4 10 -401 720.167 -120 652.5 -97 580
rand10-5 10 -344 565.781 -123 488.125 -105 391.979
rand12-1 12 -184 208.29 -64 188.179 -56 170.941
rand12-2 12 -328 491.677 -110 428.38 -104 392.211
rand12-3 12 -379 646.772 -149 569.959 -142 514.653
rand12-4 12 -721 944.093 -279 873.546 -169 674.352
rand12-5 12 -513 640.055 -138 610.354 -89 512.341
rand14-1 14 -150 204.414 -48 185.609 -39 170.287
rand14-2 14 -336 549.708 -84 489.774 -72 427.967
rand14-3 14 -707 897.804 -157 788.711 -153 670.773
rand14-4 14 -280 292.389 -93 269.631 -65 195.421
rand14-5 14 -774 976.921 -176 855.625 -131 708.104
rand16-1 16 -399 518.62 -92 473.934 -63 421.125
rand16-2 16 -671 706.98 -185 616.934 -164 564.846
rand16-3 16 -392 571.735 -110 525.338 -99 457.987
rand16-4 16 -693 707.22 -178 599.658 -162 565.597
rand16-5 16 -290 364.152 -83 332.939 -68 288.484

the hybrid genetic algorithm (HGA) are given in Table 3.1.4.1. It has been shown in

the literature that parameters similar to those we implemented have been effective when

implementing a hybrid GA [32, 93–95]. Table 3-4 presents the comparative results of

the HGA and standard GA applied to 25 randomly generated instances. The number

of targets ranges from 8 to 16. Five instances were tested for each value of |N |. The

table provides the instance name and the corresponding number of targets. Next the

optimal solutions are provided along with the corresponding computation time required by

67

Table 3-3. Parameters used for the GA and HGA heuristics.

CrossProb = 0.7 Population Size (PopSize) = 2 ∗ |N |
MaxGen = 10000 |BEST| = .1 ∗ PopSize

|WORST| = .2 ∗ PopSize

CPLEX. We tested each of the heuristics 250 times on each instance, and we provide the

maximum, minimum, and average solutions computed for each. Finally for both heuristics,

we provide the average computation time for the 250 runs as well as the average deviation

from the optimum.

Notice that for all 6250 experiments, the hybrid GA computed optimal solutions

99.93% of the time requiring 2.687 seconds of computation time on average. The compares

favorably with the average time required by CPLEX to compute the optimal solutions

which was 601.428 seconds. We note here that a heuristic solution was used as a starting

point for the computation of the optimal solutions for the instances containing 16 targets.

Without this, the running time for CPLEX for these problems was on the order of 75000

seconds. We see also that the standard genetic algorithm performed reasonably well, with

an average optimality gap of 4.429%. In addition, the standard GA scaled well averaging

less than one half second of computation time for all instances. However, we see that

ultimately the hybridized algorithm was the most robust of the two methods. For the

HGA, the increase is the average solution time for the large instances is arguably offset

by its stellar performance. To the contrary, one might argue that given more time the

performance of the standard GA would match that of the hybrid method. However, in the

next subsection we perform a probabilistic analysis on the time required for each heuristic

to compute a target value, and we shall see that this argument is ultimately untrue.

3.1.4.2 Time-to-Target Plots

In this subsection, we investigate the empirical distributions of the heuristic running

times. It has been observed [6, 21, 72] that solution times for stochastic heuristics such

68

Table 3-4. This table provides the numerical results for a set of randomly generated instances. The first columns provide
information about the instance. Next, the optimal solution and required computation time is listed. Both the
HGA and the standard GA were ran 250 times on each instance, and we provide the maximum, minimum, and
average solutions computed by each for all 250 tests. The average computation time required by each heuristic to
compute the best solution is also listed.
Instance IP Model Hybrid GA Standard GA

Name Targets Optimal Execution Max Min Avg. Avg. Avg. Max Min Avg. Avg. Avg.
Solution Time (s) Soln Soln Soln Time (s) Dev (%) Soln Soln Soln Time (s) Dev (%)

rand8-1 8 60.2766 0.01 60.2766 60.2766 60.2766 0.005 - 60.2766 56.3404 59.8895 0.054 0.642
rand8-2 8 115.944 0.02 115.944 115.944 115.944 0.047 - 115.944 112.653 115.681 0.044 0.27
rand8-3 8 195.333 0.01 195.333 195.333 195.333 0.011 - 195.333 194.96 188.555 0.032 5.006
rand8-4 8 29.0074 0.02 29.0074 29.0074 29.0074 0.027 - 29.0074 25.8592 28.888 0.052 0.412
rand8-5 8 314 0.03 314 314 314 0.001 - 314 314 314 0.008 -
rand10-1 10 157.404 3.01 157.404 157.404 157.404 0.111 - 157.404 140.133 140.133 0.123 10.972
rand10-2 10 208 2.87 208 204 207.984 0.307 0.008 208 200 207.36 0.044 0.308
rand10-3 10 520.679 0.01 520.679 520.679 520.679 0.092 - 520.679 437.12 518.698 0.049 0.380
rand10-4 10 532.5 2.45 532.5 532.5 532.5 0.059 - 532.5 489.667 529.891 0.107 0.49
rand10-5 10 365.125 4.87 365.125 365.125 365.125 0.034 - 365.125 303.615 349.457 0.068 4.291
rand12-1 12 124.179 45.37 124.179 124.179 124.179 0.129 - 124.179 106.645 121.022 0.148 2.54
rand12-2 12 318.38 61.17 318.38 318.38 318.38 0.039 - 318.38 266.641 308.668 0.128 3.050
rand12-3 12 420.959 51.89 420.959 420.959 420.959 0.191 - 420.959 341.866 403.31 0.0951 4.193
rand12-4 12 594.546 16.44 594.546 594.546 594.546 0.427 - 594.546 487.099 580.956 0.137 2.286
rand12-5 12 472.354 14.68 472.354 472.354 472.354 0.305 - 472.354 409.102 456.735 0.131 3.307
rand14-1 14 137.609 303.55 137.609 137.609 137.609 0.792 - 137.609 110.948 128.208 0.225 6.832
rand14-2 14 405.774 370.01 405.774 397.503 405.741 2.128 0.008 405.774 334.807 383.21 0.29 5.561
rand14-3 14 631.711 184.82 631.711 614.917 631.644 2.795 0.011 631.711 508.412 594.765 0.267 5.849
rand14-4 14 176.631 301.71 176.631 172.789 176.603 3.148 0.016 176.631 146.979 164.377 0.250 6.938
rand14-5 14 679.625 2700.78 679.625 679.625 679.625 1.546 - 679.625 530.617 638.161 0.225 6.101
rand16-1 16 381.934 1353.77 381.934 376.039 381.62 8.954 0.082 381.934 298.207 351.275 0.351 8.027
rand16-2 16 431.531 2556.77 431.531 414.606 428.75 10.082 0.645 431.531 333 387.659 0.322 10.167
rand16-3 16 415.338 462.5 415.338 408.324 415.074 13.358 0.064 415.338 332.868 380.319 0.329 8.431
rand16-4 16 421.658 2810.45 421.658 409.171 419.305 12.903 0.558 417.109 314.109 386.355 0.397 8.372
rand16-5 16 249.939 3788.49 249.939 243.534 249.099 9.676 0.336 249.939 187.592 234.192 0.326 6.3

69

as genetic algorithms, tabu search, and GRASP fit a two-parameter shifted exponential

distribution [7]. More specifically, let P : R 7→ [0, 1] be a probability measure on a

Borel set. Then the probability of not finding a target solution in t time units is given by

P (t) := e−(t−µ)/λ, where λ ∈ R
+ and µ ∈ R.

For each instance, we make 100 runs of both the hybrid GA and the standard GA.

The runs are assumed to be independent since each was done using a different seed for the

random number generator. For each instance/heuristic pair, the algorithms ran until they

calculated a target solution and the required computation time was recorded. Then for

each instance, the running times for each heuristic was sorted in descending order. The ith

sorted running time, ti is associated with the probability pi := (i − 1
2
)/100 and the point

zi = (pi, ti), for all i = 1, . . . , 100 [72]. The zi points were then plotted in what is known as

a Time-to-Target Plot (TTTplot) using the publicly available perl software tttplots† by

Aiex, Resende, and Ribeiro [7].

Since it is unreasonable to provide a TTTplot for each instance tested, instead

we provide a representative subset all the instances in Figures 3-6 - 3-8. Notice that

for all cases the hybrid GA converges faster than the standard GA which is visualized

by the fact that the HGA curves are completely to the left of the standard GA curves

in all the TTTplots. The TTTplots imply that for a fixed amount of time, the hybrid

method has a higher probability of reaching the target solution. For example, consider

the plot for instance rand12-1 shown in Figure 3-6. We see that given one second of

computing time, the probability that the hybrid GA will compute the optimal solution

is 0.926, compared with a probability of 0.443 for the standard GA. Likewise, for a fixed

probability, the plot indicates that the hybrid method will find the target solution quicker

† Available at http://www.research.att.com/~mgcr/tttplots/.

70

http://www.research.att.com/~mgcr/tttplots/

than the simple genetic algorithm. Consider the TTTplot for instance rand14-2 in

Figure 3-7. In order for the GA to compute the target solution for a fixed probability of

0.6, approximately 10.6 seconds of computation time are required. The hybrid GA requires

2.32 seconds to find the target solution with 60% success. The TTTplots particularly

highlight the scalability and robustness of the hybrid genetic algorithm when tested

on larger instances as indicated by the near vertical plots of the HGA probabilities in

Figure 3-8. The main point to be made here is not to argue that the hybrid genetic

algorithm outperforms the standard metaheuristic in terms of objection function value.

Of course, it has been shown that the standard genetic algorithm will converge to the

optimal solution with probability 1. What we have demonstrated is that by enhancing the

metaheuristic with the application of a local search, we are able to dramatically decrease

the computation time required to converge to the optimal solution. We can conclude that

for very large-scale instances of combinatorial problems such as the tvp, the advantage of

using the hybrid GA enables us to find high quality solutions much faster than the basic

genetic algorithm. For problems involving military applications such as the tvp time is

usually critical. Time spent searching for a good solution can lead to the loss of equipment

or the death of personnel in the battlefield. In these cases, the advantage of the hybrid

method is clear. The quicker a solution can be computed, the faster the system can be

deployed and the competitive advantage is retained on the battlefield.

71

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12 14 16 18 20

cu
m

ul
at

iv
e

pr
ob

ab
ili

ty

time to target solution

rand12-1: target value = 124.179

GA
HGA

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25

cu
m

ul
at

iv
e

pr
ob

ab
ili

ty

time to target solution

rand12-2: target solution = 318.38

GA
HGA

Figure 3-6. Time-to-Target plot comparing the Hybrid GA and standard GA for instance
rand12-1. The target value is the optimal solution for the problem.

72

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120 140 160

cu
m

ul
at

iv
e

pr
ob

ab
ili

ty

time to target solution

rand14-1: target value = 137.609

GA
HGA

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70 80

cu
m

ul
at

iv
e

pr
ob

ab
ili

ty

time to target solution

rand14-2: target solution = 405.774

GA
HGA

Figure 3-7. Time-to-Target plot for instance rand14-2. As above, the target values is the
optimal solution.

73

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120 140 160

cu
m

ul
at

iv
e

pr
ob

ab
ili

ty

time to target solution

rand16-1: target solution = 362.8373

GA
HGA

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120 140

cu
m

ul
at

iv
e

pr
ob

ab
ili

ty

time to target solution

rand16-4: target solution = 527.1199

GA
HGA

Figure 3-8. Time-to-Target plot for instances rand16-1. The target value is .95 times the
optimal solution.

74

3.2 Communication Models for a Cooperative Network of Autonomous
Agents

Most cooperative networks require coordination among the group of users in

order to accomplish the objective. The coordination of the system usually depends

on communication being guaranteed amongst the agents. In typical ad hoc networks,

bandwidth and communication time are very limited resources. Therefore, we see that

the lack of a central command center for MANETs, while appealing from a distributed

perspective, does lead to several problems in terms of routing, communication, and

path-planning [36, 56]. Perhaps the most important among these, and the focus of this

chapter, is the study of communication models in the network. In particular, we study

the problem of coordinating a set of wireless agents involved in a task that requires

them to travel from a source location to a destination. The objective is to determine

the paths, or trajectories for the agents which maximizes the connectivity between them

subject to constraints on the initial and final configurations, and several limitations on the

movements of the agents [152]. This problem is known as the cooperative communi-

cation problem in mobile ad hoc networks (ccpm), and is known to be NP-hard

[83]. In the next section, we review the current work on the ccpm, which is primarily

focused on heuristics for the problem posed as a discrete optimization problem.

3.2.1 Problem Formulation

Consider an undirected graph G = (V,E), where V = {v1, v2, . . . , vn} represents

the set of available positions for the wireless agents. Each node in V is assumed to be

connected only to nodes that can be reached in one time step. Also, define N(v) ⊆ 2V ,

for v ∈ V , to represent the set of neighbors, or nodes, which are adjacent to node v. Let

U represent the set of agents, S = {s1, s2, . . . , s|U |} ⊆ V the set of initial positions, and

D = {d1, d2, . . . , d|U |} ⊆ V the set of destination positions for the agents. Given a time

75

horizon T , the objective of the problem is to determine a set of routes for the agents, such

that each agent ui ∈ U starts at source node si and finishes at its respective destination

node di after at most T units of time [58].

For each agent u ∈ U , the function pt : U → V returns the position of the agent at

time t ∈ {1, 2, . . . , T}. Then at each time instant t, an agent u ∈ U can either remain in

its current location, i.e. pt−1(u), or move to a node in N(pt−1(u)).

We can represent a route for an agent u ∈ U as a path P = {v1, v2, . . . , vk} ⊆ V where

v1 = su, vk = du, and, for i ∈ {2, . . . , k}, vi ∈ N(vi−1) ∪ {vi}. Finally, if {Pi}|U |
i=1 is the

set of trajectories for the agents, we are given a corresponding vector L such that Li is a

threshold on the size of path Pi. This value is typically determined by fuel or battery life

constraints on the wireless agents.

We assume that the agents have omnidirectional antennas and that two agents in

the network are connected if the distance between them is less than some radius r ∈ R.

The particular value of r is determined by the capabilities of the wireless equipment,

such as the antenna strength and power amplifier. More specifically, let δ : V × V → R

represent the Euclidean distance between a pair of nodes in the graph. Then, we can

define a function c : V × V → {0, 1} such that

c(pt(ui), pt(uj)) =





1, if δ(pt(ui), pt(uj)) ≤ r

0, otherwise.

(3–41)

76

With this, we can define the ccpm as the following optimization problem as given by

Commander et al. [58]:

max

T∑

t=1

∑

u,v∈U

c(pt(u), pt(v)) (3–42)

s.t.

ni∑

j=2

δ(vj−1, vj) ≤ Li, ∀ Pi = {v1, v2, . . . , vni
} (3–43)

p1(u) = su ∀ u ∈ U (3–44)

pT (u) = du ∀ u ∈ U, (3–45)

where constraint (3–43) ensures that the length of each path Pi is less than or equal to its

maximum allowed length Li.

It has been determined [152] that the problem described above is NP-hard. This can

be shown by a reduction from the well known 3sat problem. Moreover, it is NP-hard even

to find an optimal solution for one stage of the problem at a given time t. To see this,

consider an algorithm that maximizes the number of connections at time t, by defining the

positions for members of the network; clearly the algorithm just described computes the

value of the maximum clique on the underlying unit graph [57]. Running this algorithm

for different sets U i, with |U i| = i and i varying from 1 to T , the algorithm stops when the

number of connections is less then
(

i
2

)
, and the value returned is i− 1. Computing optimal

solutions for the maximum clique problem on a unit graph is known to be NP-hard

[53].

Due to the computational complexity of the problem, real-world instances cannot

be solved exactly. Therefore, we turn our attention to the design and implementation of

efficient heuristics to solve large-scale instances within reasonable computing times. In the

following section, we review the recent work in this area and describe the implementation

77

of the first advanced metaheuristic for the ccpm based on the Greedy Randomized

Adaptive Search Procedure [173].

3.2.2 Previous Work

Since the introduction of the ccpm by Oliveira and Pardalos [152], heuristic design

has been a major focus [57, 58]. In [58], the authors introduced a construction heuristic for

the ccpm based on shortest paths [5]. The goal was to provide a way to quickly calculate

sets of feasible trajectories for the agents. Pseudo-code for this algorithm is provided in

Figure 3-9. The procedure takes as input an instance of the ccpm consisting of the graph

G, the set of agents U , source nodes S, destination nodes D, and a maximum travel time

T . The total number of connections (c) represents the value of the objective function from

equation (3–42) and is initialized to zero. The set of trajectories for the agents (solution)

is initialized to the empty set. In line 3, we compute the shortest source-destination path

for each agent using the Floyd-Warshal algorithm [75, 195]. For each agent i ∈ U , the

corresponding shortest path is assigned as the trajectory Pi for the agent. The trajectory

is feasible if agent i is able to reach its destination di in at most T time units. Any agent

which reaches its target location in less than T time steps will remain there until all

other agents reach their respective destinations. If any path is infeasible, the algorithm

terminates. Otherwise, the number of connections is updated and the process repeats until

all agents have been considered.

The aforementioned algorithm provides feasible solutions for instances of the ccpm

in O(|V |3) time. However, the trajectories calculated are not guaranteed to be locally

optimal, let alone globally optimal. Therefore, a local neighborhood search enhancement

was applied. In general, a local search method receives a feasible solution as input

and returns a solution that is no worse than the one input, with respect to the given

neighborhood structure. Finding a locally optimal solution in the local search phase

78

procedure ShortestPath(G,U, S,D, T)
 c ← 0
 solution ← ∅
 Compute all shortest paths SP(si, di) for each pair (si, di) ∈ S ×D
 for i = 1 to |U | do

 Pi ← SP(si, di)

 if length of Pi > T then

 return ∅
 else

 solution ← solution ∪ Pi

 c ← c + new connections generated by Pi

 end

 end

 return (c, solution)
end procedure ShortestPath

Figure 3-9. Pseudo-code for the shortest-path construction heuristic.

depends, among other things, on the actual structure and density of the neighborhood.

Let S be the set of feasible solutions for an instance Π of the ccpm. Then for some s ∈ S

the neighborhood of s, denoted N (s), can be defined as the set of all solutions s̄ ∈ S that

differ from s in exactly one route. Notice that the number of feasible paths between any

source-destination pair is exponential, and could lead to unreasonable computation times.

Therefore instead of exhaustively searching the entire neighborhood the authors probe

only |U | neighbors at each iteration (one for each source-destination pair). Also, because

of the exponential size of the neighborhood, the maximum number of iterations performed

was limited to a constant MaxIter.

Pseudo-code for the local improvement heuristic can be seen in Figure 3-10. Let

f represent the objective function for the ccpm as given in equation (3–42) above.

New routes are computed using a randomized version of the standard depth-first

search (DFS) [5]. As mentioned in [58], at each step of the randomized DFS, the node

selected to explore is uniformly chosen among the available children of the current node.

Randomization helps to find a route that may improve the solution, while avoiding being

79

trapped at a local optimum after only a few iterations. The local search is a standard

hill-climbing method [118]. Beginning with the feasible solution from the shortest path

constructor, the local search begins computing new trajectories for the agents by using the

randomized DFS to explore the neighborhood as described above. The method iterates

over all the agents and repeats a total of MaxIter iterations after which the current best

solution is deemed locally optimal and returned.

procedure HillClimb(solution)
 c ← f(solution)
 while solution not locally optimal and iter < MaxIter do

 for i = 1 to |U | do

 solution ← solution \ {Pi}
 P̄i ← DFS(si, di)
 c’ ← f(solution ∪ P̄i)
 if length of P̄i < T and c’ > c then

 c ← c’

 iter ← 0
 else

 Restore path Pi

 end

 end for

 iter ← iter+1
 end while

 return (solution)
end procedure HillClimb

Figure 3-10. Pseudo-code for the Hill Climbing intensification procedure.

We now describe the implementation of a more advanced randomized multi-start

heuristic for the ccpm based on the Greedy Randomized Adaptive Search Procedure

(GRASP) [173] framework. GRASP is a two-phase metaheuristic for combinatorial

optimization that aims to find very good solutions though the controlled use of random

sampling, greedy selection, and local search. GRASP has been used extensively in the last

decade on numerous optimization problems and produces excellent results in practice [73].

Let F be the set of feasible solutions for the a problem Π, where each solution S ∈ F

80

procedure OnePass(G,U, S,D, T)
 solution ← ShortestPath(G,U, S,D, T)
 solution ← HillClimb(solution)
 return (solution)
end procedure OnePass

Figure 3-11. Pseudo-code for the one-pass heuristic.

is composed of k discrete components a1, . . . , ak. GRASP constructs a sequence {S}i of

solutions for Π, such that each Si is feasible for Π. At the end, the algorithm returns the

best solution found.

procedure GRASP(MaxIter)
 X∗ ← ∅
 for i = 1 to MaxIter do

 X ← ConstructionSolution(G, g,X)
 X ← LocalSearch(X, MaxIterLS)
 if f(X) ≥ f(X∗) then

 X∗ ← X
 end

 end

 return X∗

end procedure GRASP

Figure 3-12. GRASP for maximization.

Pseudo-code for the GRASP is provided in Figure 3-12. Notice that each GRASP

solution is built in two stages, called greedy randomized construction and intensification

phases. The construction phase receives as parameters an instance of the problem, a

ranking function g : A(S) → R (where A(S) is the domain of feasible components

a1, . . . , ak for a partial solution S), and a constant 0 < α < 1. It starts with an empty

partial solution S. Assuming that |A(S)| = l, the algorithm creates a list of the best

ranked αl components in A(S), and returns a uniformly chosen element x from this list.

The current partial solution is augmented to include x, and the procedure is repeated until

the solution is feasible, i.e. until S ∈ F .

81

The intensification phase consists of the implementation of a hill-climbing procedure.

Given a solution S ∈ F , let N(S) be the set of solutions that can found from S by

changing one of the components a ∈ S. Then, N(S) is called a neighborhood of S. The

improvement algorithm consists of finding, at each step, the element S∗ such that

S∗ = argmaxs̄∈N(S)f(s̄),

where f : F → R is the objective function of the problem. At the end of each step, we

assign S ← S∗ if f(S) > f(S∗). The algorithm will converge to a local optimum, in which

case the procedure above will generate a solution S∗ such that f(S∗) ≥ f(S) for each

S ∈ N(S∗).

To apply GRASP to the ccpm, we need to specify the set A, the greedy function

g, the parameter α, and the neighborhood N(S), for S ∈ F . The components of each

solution S are feasible moves of a member of the ad hoc network from a node v to a

node w ∈ N(v) ∪ {v}. The complete solution is constructed according to the following

procedure. Start with a random u ∈ U and find the shortest path P from su to du. If

the total distance of P is greater than Du, then the instance is clearly infeasible, and the

algorithm ends. Otherwise, the algorithm considers each feasible move. A feasible move

connects the final node of a sub-path Pv, for v ∈ U \ {u}, to another node w, such that the

shortest path from w to dv has distance at most Dv −
∑

e∈Pv
dist(e). The set of all feasible

moves in a solution is defined as A(S).

The greedy function g returns for each move in A(S) the number of additional

connections created by that move. As described above, the construction procedure will

rank the elements of A(S) according to g, and return one of the best α · |A(S)| elements.

This is repeated until a complete solution for the problem is obtained.

82

The improvement phase is defined by the perturbation function, which consists of

selecting a wireless agent u ∈ U and rerouting it, i.e. finding a complete path using the

procedure described above for each time step 1 to T . The set of all perturbations of a

solution S is its neighborhood N(S). At each step, all elements u ∈ U are tested, and the

procedure stops when no such element u that improves the current solution can be found

[57].

3.2.3 Continuous Formulations

In this section, we present continuous formulations of the ccpm [12]. These

formulations will provide a more realistic scenario than the discrete formulation provided

above, in that movement is not restricted to a discrete set of positions. We will assume

that the agents are operating in a battlespace Q ⊆ R
d, where Q is a compact, convex

set with unit volume and the Euclidean norm || · ||2 in R
d. For our purposes, we are

going to consider the planar case, i.e. d = 2, with the understanding that extensions

to higher dimensions are easily achieved. Suppose there are M wireless agents in the ad

hoc network. The M agents are assumed to be omnidirectional and are modeled as point

masses. We allow the agents to move freely within Q at some bounded velocity.

3.2.3.1 Formulation 1: A Continuous Analog of CCPM-D

In order to derive a continuous formulation, we need to to define an objective function

that is consistent with that of the discrete formulation. Let Rij be the communication

constant for agents i and j. That is, Rij is the radius of communication for the two agents.

One possible objective is to maximize the Heaviside function, defined as

H1

[
Rij − ||~x(t)i − ~x(t)j ||2

]
=





1, if ||~x(t)i − ~x(t)j ||2 ≤ Rij

0, if ||~x(t)i − ~x(t)j ||2 > Rij .

(3–46)

83

Figure 3-13. The Heaviside function, H1.

A graphical representation of H1 is displayed in Figure 3-13. While this function will work

as an objective, it is very extreme in the sense that there is a large jump from perfect

communication at distances less than or equal to Rij to no communication as soon as the

distance becomes larger than Rij . A more desirable function is one that approximates H1

but degrades in a continuous fashion from perfect to no communication.

We consider two alternatives to H1. The first is a piecewise continuous, linear

function defined by

H2

[
Rij − ||~xi

t − ~xj
t ||2

]
=






1, if ||~xi
t − ~xj

t ||2 ≤ Rij

2− ||~xi
t−~xj

t ||2
Rij

, if Rij < ||~xi
t − ~xj

t ||2 ≤ 2Rij

0, if ||~xi
t − ~xj

t ||2 ≥ 2Rij .

(3–47)

This function, whose graph is provided in Figure 3-14, has a value equal to one if agents

i and j are within the communication radius Rij of one another. The function then

decreases constantly until the agents have distance 2Rij , at which time they are unable to

communicate.

84

Figure 3-14. H2, continuous approximation to H1.

The third and final objective function we will consider is a continuously differentiable

decreasing function of the distance between agents i and j. This function, displayed in

Figure 3-15, is defined by

H3

[
||~xi

t − ~xj
t ||2, Rij

]
= e

−
(

||~xi
t−~x

j
t
||2

Rij

)2

. (3–48)

This is perhaps the best approximation of H1 in that it can be interpreted as the

probability of agents i and j directly communicating as a function of the distance between

them.

Now that we have found a suitable objective function we can define the remaining

parameters and constraints of the problem. Let ~xi(t) be the position of agent i at time t.

Similarly, let ~vi(t) be the velocity of agent i at time t. The relationship between velocity

and position is the standard one, given by ~vi(t) = dxi(t)
dt

. In order to formulate the

continuous time analog of the ccpm, we must constrain the maximum speed of each

agent. This is the continuous time analog of the constraints on the maximum distance

traveled in the discrete formulation, between any two time steps. If si ∈ R
2 is the starting

85

Figure 3-15. H3, continuously differentiable approximation of H1.

position of agent i, and di ∈ R
2 is the destination point of agent i, then we can formulate

the continuous cooperative communication problem on mobile ad hoc

networks (ccpm-c) as follows.

max

∫ T

0

∑

i<j

H3

[
||~xi(t)− ~xj(t)||2, Rij

]
(3–49)

s.t.

~xi(0) = si, ∀ i = 1, . . . ,M (3–50)

~xi(T) = di, ∀ i = 1, . . . ,M (3–51)

||~vi(t)|| ≤ Vi, ∀ i = 1, . . . ,M, t ∈ [0, T] (3–52)

~xi(t) ∈ R
2, ∀ i = 1, . . . ,M, t ∈ [0, T] (3–53)

The above formulation provides a set of trajectories along which the agents can be

routed in order to ensure that the communication between them is maximized. Clearly, if

the agents remain in a tightly coupled formation then communication will be maximized;

however, unlike the discrete version of the problem in which the vertices of a graph had

to be traversed, in a continuous setting this problem is relatively easy and worse yet, not

86

very interesting. Alternatively, consider a set of UAVs involved in a search-and-rescue or

reconnaissance mission. For obvious reasons, missions of this sort generally require the

UAVs to traverse a large portion of the battlespace before arriving at their destinations. In

this case, the above formulation is not helpful. With this in mind, we move on to develop

a second continuous formulation which not only maximizes the communication between

the agents, but also maximizes the coverage of predefined regions of the battlespace.

3.2.3.2 Formulation 2: A Continuous Formulation Ensuring Location Visita-
tions

In the following paragraphs, we derive a second continuous formulation which

guarantees that certain locations will be visited by the UAVs as they traverse the

battlespace from their sources to their respective destinations. Previous work on target

visitation problems appear in [14]. Once again, we are considering a set of M UAVs. We

keep the assumption that the ith UAV starts at a position si = (six, siy), at time 0, and

ends at position di = (dix, diy), at time T . The ith UAV, at time t ∈ [0, T], has position

~xi(t) = (xi(t), yi(t)). Assume that the following holds:

~xi(t) ∈ [xlow, xhigh]× [ylow, yhigh] ∀ i = 1, . . . ,M, t ∈ [0, T].

Furthermore, assume that there exists J positions in the domain, each of which must

be visited by at least one UAV in the time interval [0, T]. These positions are given by

Qj = (x̄j , ȳj), for each j = 1, . . . , J . Lastly, the ith UAV has a maximum speed given by

ǫmax
i for each i = 1, . . . ,M and we assume the minimum speed to be zero.

In order to implement a solution technique in a digital computer, we make use of the

L1-norm as a measure of the distance between two points and discretize the time domain

into ρ equal time steps, ∆t = T/(ρ − 1). Let tk = k∆t, for each k = 0, . . . , ρ − 1. Thus

87

the position of the ith UAV at time step k is given by ~xi(tk) = (xi(tk), yi(tk)), for each

i = 1, . . . ,M , and for each k = 0, . . . , ρ− 1.

Then the problem, which is denoted as CCPM-C, can be written as:

min
∑

i1<i2

ρ−1∑

k=0

[
|xi1(tk)− xi2(tk)|+ |yi1(tk)− yi2(tk)|

]
(3–54)

s.t.

xi(0) = six, yi(0) = siy, ∀ i = 1, . . . ,M (3–55)

xi(T) = dix, yi(T) = diy, ∀ i = 1, . . . ,M (3–56)

ǫmax
i ≥ 1

∆t

[
|xi(tk)− xi(tk−1)|+ |yi(tk)− yi(tk−1)|

]
∀ i,

∀ k = 1, . . . , ρ− 1 (3–57)

βijk

[
|xi(tk)− x̄j |+ |yi(tk)− ȳj|

]
= 0 ∀ i, ∀ j ∈ J, ∀ k (3–58)

M∑

i=1

ρ−1∑

k=0

βijk ≥ 1 ∀ j (3–59)

xlow ≤ xi(tk) ≤ xhigh ylow ≤ yi(tk) ≤ yhigh ∀ i, ∀ k (3–60)

βijk ∈ {0, 1} ∀ i, ∀ j, ∀ k. (3–61)

Theorem 3.1. The above formulation for CCPM-C is correct.

Proof. Clearly, the objective function minimizes the pairwise distances between the

agents. Thus as the distance between the agents decreases, the communication increases.

Constraints (3–55) and (3–56) respectively specify the starting points and the destination

points for the agents. The constraint set(3–57) bounds the speed of the agents. Next

(3–58) and (3–59) ensure that at least one agent co-locates with the set of points in

the domain which must be visited. More specifically, (3–58) implies that for all points

j ∈ J , there must be a time when an agent occupies position j. In the constraint, this

is accomplished by ensuring the distance between the visiting agent and point j is 0.

88

Constraint (3–59) implies that at least one agent must visits each point j ∈ J . Finally,

constraints (3–60) and (3–61) define the domain of the decision variables.

We can linearize the mixed integer programming formulation in (3–54)-(3–61) as

follows. To begin with, replace the objective function (3–54) with

∑

i1<i2

ρ−1∑

k=0

x̂i1i2k + ŷi1i2k (3–62)

with the additional constraints

x̂i1i2k ≥ xi1(tk)− xi2(tk) ∀ i1, i2 = 1, . . . ,M, i1 < i2,

∀ k = 0, . . . , ρ− 1 (3–63)

x̂i1i2k ≥ −
[
xi1(tk)− xi2(tk)

]
∀ i1, i2 = 1, . . . ,M, i1 < i2,

∀ k = 0, . . . , ρ− 1 (3–64)

ŷi1i2k ≥ yi1(tk)− yi2(tk) ∀ i1, i2 = 1, . . . ,M, i1 < i2,

∀ k = 0, . . . , ρ− 1 (3–65)

ŷi1i2k ≥ −
[
yi1(tk)− yi2(tk)

]
∀ i1, i2 = 1, . . . ,M, i1 < i2,

∀ k = 0, . . . , ρ− 1 (3–66)

Next, we replace (3–57) with

αik + ᾱik ≤ ∆tǫmax
i (3–67)

89

adding the constraints

αik ≥ xi(tk)− xi(tk−1) ∀ i = 1, . . . ,M, ∀ k = 0, . . . , ρ− 1 (3–68)

αik ≥ −
[
xi(tk)− xi(tk−1)

]
∀ i = 1, . . . ,M, ∀ k = 0, . . . , ρ− 1 (3–69)

ᾱik ≥ yi(tk)− yi(tk−1) ∀ i = 1, . . . ,M, ∀ k = 0, . . . , ρ− 1 (3–70)

ᾱik ≥ −
[
yi(tk)− yi(tk−1)

]
∀ i = 1, . . . ,M, ∀ k = 0, . . . , ρ− 1 (3–71)

Finally, we replace (3–58) with

φijk + φ̄ijk = 0 (3–72)

and add the constraints

θijk ≥ xi(tk)− x̄j , ∀ i, ∀ j, ∀k (3–73)

θijk ≥ −
[
xi(tk)− x̄j

]
, ∀ i, ∀ j, ∀ k (3–74)

θ̄ijk ≥ yi(tk)− ȳj, ∀ i ∀ j ∀k (3–75)

θ̄ijk ≥ −
[
yi(tk)− ȳj

]
, ∀ i, ∀ j, ∀ k (3–76)

φijk ≤ βijk(xhigh − xlow), ∀ i, ∀ j, ∀ k (3–77)

φijk ≥ 0, ∀ i, ∀ j, ∀ k (3–78)

φijk ≤ θijk, ∀ i, ∀ j, ∀ k (3–79)

φijk ≥ θijk −
[
1− βijk

][
xhigh − xlow

]
, ∀ i, ∀ j, ∀ k (3–80)

φ̄ijk ≤ βijk(yhigh − ylow), ∀ i, ∀ j, ∀ k (3–81)

φ̄ijk ≥ 0, ∀ i, ∀ j, ∀ k (3–82)

φ̄ijk ≤ θ̄ijk, ∀ i, ∀ j, ∀ k (3–83)

φ̄ijk ≥ θ̄ijk −
[
1− βijk

][
yhigh − ylow

]
, ∀ i, ∀ j, ∀ k. (3–84)

90

0 2 4 6 8 10
0

1

2

3

4

5

6

7

8

9

UAV1
UAV2
UAV3
UAV4
UAV5
J

Figure 3-16. Example with 5 agents.

Thus the problem becomes one of minimizing (3–62) subject to the constraints (3–55),

(3–56), (3–59)-(3–61), (3–63)-(3–84). The resulting formulation is a mixed integer linear

program (MILP) and can be solved using a number of commercial software packages. In

the following section, we present some preliminary results from one such package, as well

as providing a discussion of the experiments.

3.2.4 Case Studies

We have implemented the MILP formulation of the ccpm using the CPLEXTM

optimization suite from ILOG [63]. CPLEX contains an implementation of the simplex

method [110], and uses a branch and bound algorithm [199] together with advanced

cutting-plane techniques [118, 154].

The instances were tested on grids of size 10. The set of coordinates, J , to be visited

were generated uniformly at random. Three sets of coordinates were generated and each

visited by three different sets of UAVs, numbering 5, 7, and 10. The y-coordinates of the

starting and ending positions were also randomly generated using a uniform distribution

91

0 2 4 6 8 10
0

1

2

3

4

5

6

7

8

9

10

UAV1
UAV2
UAV3
UAV4
UAV5
UAV6
UAV7
J

Figure 3-17. Example with 7 agents.

and the x -coordinates were assumed to be 0 and 10 respectively. The scenarios were

solved making use of the MILP formulation derived above. The optimal solutions were

obtained for the instances with 5 UAVs. The instances with 7 UAVs and 10 UAVs were

stopped at optimality tolerances of 10% and 25% respectively. A time-frame of 10 units

was provided as an input and the minimum and maximum speed of the UAVs were 0 and

2 units respectively.

We have provided three graphical representations of the trajectories of the agents

from each problem set. Figure 3-16 shows the paths traversed in one of the scenarios

containing 5 agents. The movements of the agents are from left to right in the figure. The

points which must be visited are denoted as stars. We see that from their starting points,

the agents tend to converge into a tight formation. Notice that UAV2 separates from

the group around point (7, 6) in order to visit three “must visit” points and arrive at its

destination. The remaining agents travel together until they must diverge to reach their

destinations.

92

0 2 4 6 8 10
0

1

2

3

4

5

6

7

8

9

10

UAV1
UAV2
UAV3
UAV4
UAV5
UAV6
UAV7
UAV8
UAV9
UAV10
J

Figure 3-18. Example with 10 agents.

In Figure 3-17 we have an example scenario containing 7 agents. As before, the agents

quickly converge to a tightly coupled formation with agents leaving the group only to

visit the points in J or arrive at their destinations. A 10 agent scenario is depicted in

Figure 3-18 and similar behaviors of the agents can be observed. Figures 3-19-3-24 show

how the paths of the agents change (from the 10 agent scenario in Figure 3-18) as agents

are randomly removed from the scenario. As expected, the remaining agents are forced to

spread out in order to ensure visiting the J target points.

The results presented are very promising. Indeed, the agents exhibit the exact

behavior we would expect to see given the nature of the ccpm. As communication

strength is inversely proportional to distance, the convergence to a common path clearly

indicates that the UAVs are attempting to maximize the communication amongst the

group. Consider the scenario in Figure 3-16. Notice that midway through the mission a

very clear clustering effect can be seen as two distinct groups of agents make their way

towards the “must visit” points and ultimately, their destinations.

93

0 2 4 6 8 10
0

1

2

3

4

5

6

7

8

9

10

UAV1
UAV2
UAV3
UAV4
UAV6
UAV7
UAV8
UAV9
UAV10
J

Figure 3-19. Example derived from 10 agent example, with one agent removed.

0 2 4 6 8 10
0

1

2

3

4

5

6

7

8

9

10

UAV1
UAV2
UAV3
UAV4
UAV6
UAV7
UAV8
UAV10
J

Figure 3-20. Example derived from 10 agent example, with two agents removed.

94

0 2 4 6 8 10
0

1

2

3

4

5

6

7

8

9

10

UAV1
UAV3
UAV4
UAV6
UAV7
UAV8
UAV10
J

Figure 3-21. Example derived from 10 agent example, with three agents removed.

0 2 4 6 8 10
0

1

2

3

4

5

6

7

8

9

10

UAV1
UAV3
UAV4
UAV7
UAV8
UAV10
J

Figure 3-22. Example derived from 10 agent example, with four agents removed.

95

0 2 4 6 8 10
0

1

2

3

4

5

6

7

8

9

10

UAV3
UAV4
UAV7
UAV8
UAV10
J

Figure 3-23. Example derived from 10 agent example, with five agents removed.

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

UAV3
UAV4
UAV7
UAV8
J

Figure 3-24. Example derived from 10 agent example, with six agents removed.

96

3.2.5 Conclusion

In this chapter, we studied the so-called target visitation problem whose

objective is to plan the sequence for an unmanned aerial vehicle to visit a set of targets

which minimizes the total distance traveled and maximizes the utility of the sequence.

Until now, the literature on this problem has been slight [100]. This chapter presents the

first extensive computational analysis for the problem. First we provided a mathematical

model for the tvp based on integer linear programming and proved that finding an

optimal solution is NP-complete. To overcome the computational complexity, we described

the implementation of a random keys based genetic algorithm for finding near optimal

solutions [23]. The heuristic was then hybridized by the implementation of a local search

procedure. The numerical results presented demonstrated the effectiveness of the proposed

procedure. Out of 6250 experiments, the hybrid heuristic calculated optimal solutions

for over 99.9% of the trials in a fraction of the time required by the commercial integer

programming solver CPLEX.

Since the tvp is a relatively new problem in the literature, there are several directions

for future research. Clearly other metaheuristics can be implemented and compared with

GA approach. However, due to the computational complexity, decomposition techniques

should most likely to be the focus in order to determine optimal solutions for large-scale

instances of the problem. Extensions to the model proposed are also possible such as

imposing a constraint on the total distance traveled and generalizing the model to include

multiple vehicles. Visiting mobile targets would present other interesting challenges

beyond the model presented in this chapter.

We also provided a review of recent work in the area of cooperative communication in

mobile ad hoc networks. While inherently a problem of path planning, our formulations

incorporated communication as a measure of the fitness of a given solution. We presented

97

some discrete versions of the problem and derived two continuous formulations, the first

time this has been considered. The advantage of the new models is that they ensure that a

specified amount of the battlespace is explored by the agents. This addition is important

in real-world applications particularly in the areas of surveillance, reconnaissance, and

rescue operations. The preliminary numerical results demonstrate the effectiveness of the

proposed models.

Due to the inherent complexity of the problem, future research will focus on

continuous heuristic techniques for the newly proposed models, similar to those found

in [111, 112]. Percentile risk constraints will be incorporated into the formulation.

Commonly applied in financial applications, risk measures such as Value-at-Risk (VaR)

and Conditional Value-at-Risk have proven to be effective tools for military applications as

well [56, 59, 60]. We also plan to provide some theoretical results regarding feasibility of

problem instances.

98

CHAPTER 4
REVIEW OF EVACUATION PROBLEMS

4.1 Introduction

Hurricanes, earthquakes, industrial accidents, nuclear accidents, terrorist attacks

and other such emergency situations pose a great danger to the lives of the populace.

Evacuation during these situations is one way to increase safety and avoid escalation of

damages. Evacuation problems are being given increased attention over the last five years.

The techniques that are currently employed could be broadly categorized into optimization

or simulation methods. In either case, the evacuation problem is dealt over a network

where arcs or edges are the roads linking two places or the nodes of the network. The

typical factors usually taken into consideration by these models are origin-destination

assignment, response time of the evacuees, modes of transportation, contra flows etc.

Factors such as origin-destination assignment and arc capacities could be set as static

or dynamic and these decisions heavily influence the evacuation efficiency. Most of the

recent surveys and reviews in the field of evacuation were made for specific instances [104,

178]. The surveys cater to a specific technique and discuss in detail on their impact on

emergency evacuation. This chapter is more across the board. The objective is to present

a comprehensive report on the techniques that are available in the literature and broadly

classify them. An initial classification was made depending on the approaches used in the

evacuation models, namely optimization-based or simulation-based approaches. Further,

a subclassification was made based on some vital features considered by the model. These

are features that are expected to have a significant impact on evacuation efficiency. The

solution methodologies, for every model under these classifications, were discussed in detail

and were also assessed based on their computational performance, scalability, extensibility,

realizability and the major components considered. Computational efficiency of the model

is important in case of unforeseen events. The models needs to be executed quickly to

generate alternative plans and prepare for the dynamic scenarios. The complexity of

99

the evacuation problems makes the researchers resort to for heuristic procedures and

simulation based approaches. Thus the solutions tested and provided needs to be scalable,

or in other words, realizable on larger instances. Most of the models are customized

to specific situations but when needed to accommodate additional features and handle

more parameters they need to be extensible. The realizability of the model is achieved

when they are tested on real time networks and most of the theoretical guarantees are

accomplished. The chapter finally concludes with few words on the shortcomings of the

available models that may require attention and lays down vital features that a new

designer has to seek in a model.

4.2 Optimization Techniques

A large number of optimization models, sometimes referred to as analytical models

in the literature, have been developed for evacuation studies.While some of these models

are discrete, the rest are extensions from these base models. However, these models are

essentially a simple network flow problem trying obtain a minimum cost flow from source

to destination. A detailed discussion of the flow problems is carried out in the following

section.

4.2.1 Maximum Dynamic Flow

An elementary evacuation flow problems could be formulated as a linear integer

program using a variant of the maximum dynamic flow problem [76, 77]. The maximum

dynamic flow problem is to determine the maximum amount flow from origin to

destination within a specific time T. Ford and Fulkerson formulated this problem on

a time expanded static network, where each node and edge is replaced by T copies

corresponding to each time instance [76]. Given a digraph G(V,E) and time interval T,

let c(u, v) and t(u, v) be the capacity and traversal time of arc (uv) ∈ E. Let x(u, v, τ) be

the amount of flow leaving node u along arc (u, v) at time τ . Let the origin node be s and

destination node be t. Assuming holding over of flow over any node is allowed, we have

the following integer linear programming problem that solves the maximum dynamic flow

100

problem:

Maximize

T∑

τ=0

∑

(su)∈E

x(s, u, τ)−
T∑

τ=0

∑

(us)∈E

x(u, s, τ − t(u, s)) (4–1)

s.t.

∑

(uv)∈E

x(u, v, τ)−
∑

(vu)∈E

x(v, u, τ − t(v, u)) = 0

, ∀ u 6= s, t, u ∈ V, τ = 0, 1, . . . , T (4–2)

[

T∑

τ=0

∑

(su)∈E

x(s, u, τ)−
T∑

τ=0

∑

(us)∈E

x(u, s, τ − t(u, s))]

+[

T∑

τ=0

∑

(tu)∈E

x(t, u, τ)−
T∑

τ=0

∑

(ut)∈E

x(u, t, τ − t(u, t))] = 0 (4–3)

0 ≤ x(u, v, τ) ≤ c(u, v), ∀(uv) ∈ E, τ = 1 . . . T (4–4)

The objective function that has to be maximized gives the net amount of flow leaving the

origin node s by time period T. The constraint set (4–2) ensures conservation of flow at

every node, where the amount of flow that enters a node is exactly equal to the amount of

flow that leaves the node at any time period. The constraint set (4–3) ensures that at the

end of T time periods the amount of flow that leaves the origin s is equal to the amount of

flow that enters the destination t. The above formulation solves a maximum flow problem

over a time expanded graph. The problem becomes extremely difficult to solve for larger

graphs with a bigger time frame. However, [76] suggested a strictly polynomial algorithm

for the maximum dynamic flow. They solved the minimum cost flow problem on the

original graph, without time expansion, and decomposed the flow into a set of paths. Then

they obtained the maximum dynamic flow by temporally repeating the flow along the

paths.

Most of the evacuation problems ramify from the maximum dynamic flow problem.

The quickest flow problem, sometimes referred to as evacuation problem, is to determine

the minimum time required to send a given amount of flow from the origin to the

destination. This problem is a simple variation of the maximum dynamic flow problem

101

and could be solved through a binary search. [34] proved this reduction from the

maximum dynamic flow problem to the quickest flow problem and provided a strongly

polynomial time algorithm through a parametric search on the quickest time by repeatedly

solving the maximum dynamic flow problem. Many other work have been done in this

line generalizing this concept. [74] worked on multicommodity shipment of flows. A

multicommodity flow problem on a static graph without a time bound is: Given a graph

with a arc travel time and capacity on each arc and a set of commodities K = 1, . . . , k

with each commodity having specific origin si and destination ti, it is required to send

a specific amount of flow from si to ti of the corresponding commodity in the minimum

amount of time. The problem is formulated in the following manner.

Minimize

k∑

i=1

∑

(uv)∈E

c(u, v, i)x(u, v, i) (4–5)

s.t.

∑

(uv)∈E

x(u, v, i)−
∑

(vw)∈E

x(v, w, i) = 0, ∀v ∈ V, i = 1, . . . , k (4–6)

∑

(uti)∈E

x(u, ti, i)−
∑

(tiv)∈E

x(ti, v, i) ≥ di, ∀i = 1, . . . , k (4–7)

0 ≤ x(u, v, i)∀uv ∈ E, i = 1, . . . , k (4–8)
k∑

i=1

x(u, v, i),≤ c(u, v)∀(uv) ∈ E, i = 1, . . . , k (4–9)

x(u, v, i) is the amount of flow on arc (uv) of commodity i and c(u, v, i) is the cost of unit

flow on arc (uv) of commodity i. The constraint set (4–6) implies the flow conservation

at a node for a particular commodity and the constraint set (4–7) ensures that the

sinks node ti receives di amount of flow. Finally, (4–8) and (4–9) restraints the flow

capacity on each arc. The above is a multicommodity flow problem for a static graph. In

order to solve the quickest multicommodity problem we have to extend the formulation

to a time expanded graph similar to the previous problem formulation. However, this

results in numerous constraints and variables if the time horizon, T, considered in large.

Each node and arc of the graph is replaced by T copies, each corresponding to the

102

specific time instant. The multicommodity flow problem is known to be mathsfNP-hard

even for a static graph [84]. To overcome the time expansion difficulty, [74] suggested a

scaling algorithm where in each node and arc is replaced by T/δ copies instead T, thus

reducing the problem size considerably and striking a balance between the precision

of the result and the running time of the algorithm. [116] provided solutions for three

variations of maximum dynamic flow problem. They provided a polynomial time

approximation for the earliest arrival flow problem, which was studied by [196] and

[143]. The earliest arrival flow problem requires the flow to be maximized at each time

step of the given horizon, unlike the maximum dynamic flow problem. The proposed

algorithm is based on successive shortest path algorithm, where the flow is augmented

along the shortest path, quickest path in our case, and the chain decomposition is given

by augmentations performed in a sequence of static graphs. However, successive shortest

path is a pseudo-polynomial algorithm. This difficulty is usually handled by scaling.

Unlike traditional scaling, the proposed algorithm performs an upward capacity scaling.

A dynamic flow quickest path with a small capacity could be repeated temporally to

obtain a maximum flow. We refer to [116] for a detailed account of the algorithm and

proof of approximation. The second problem studied was lexicographic maximum dynamic

flow. Given a set of sources and their priority of evacuation the lexicographic maximum

dynamic flow maximizes the flows leaving the sources in the specified order. Finally,

they studied the quickest flow problem with fixed number of sources and destinations

with equal priorities having specific supply demands. [122]pointed out that the problem

of determining quickest flow from any subset of nodes to any other subset of nodes is

equivalent to a single source shortest path problem. Thus for a fixed number of sources

and destinations this problem is polynomially solvable, if we consider all possible subsets

of the sources and destinations. In the same fashion, for a fixed number of source and

destination, the lexicographic maximum dynamic flow could be solved for all possible

ordering of the sources to solve the above problem. A detailed and more efficient

103

algorithm was given by [115] for this quickest transshipment problem with more than

one origin and destination. These models based on maximum dynamic flow problem have

their practical limitations as they are oblivious to factors such as congestion control,

dynamic origin and destination demand and multimodal transportation, which are quite

conceivable in a real time situation. The flow problems are rather a simplified versions of

real time model. The models are computationally efficient with polynomial time solutions

for exact or approximate solutions. The problems thus could help in providing quick

solutions to large problem sizes under a simplified setting. The realizability of the model

is limited but their computational efficiency could be taken advantage of in preprocessing

stages of analytical techniques and heuristic developments.

4.2.2 Dynamic Traffic Assignment

[140] introduced the dynamic traffic assignment (DTA) problem and formulated it as

a non-linear program with a non-convex mathematical program. The problem is to find

an assignment of flows on the links optimally. Like before, let us assume the planning

horizon to be T. And G(V,E) be the digraph under consideration. Let x(u, v, τ) be the

amount of flow on arc (u, v) at time τ . Let F (u, τ) be the external input in node u at time

τ and huv,τ (x(u, v, τ)) be the cost function. Also, let guv(x(u, v, τ)) be the exit function

denoting the amount of flow that exits from arc u,v during period τ . Finally, d(u, v, τ)

be the amount of flow entering arc (uv) at node u. The DTA problem is formulated as

follows:

104

Minimize
T∑

τ=0

∑

(uv)∈E

huv,τ (x(u, v, τ)) (4–10)

s.t.

x(u, v, τ + 1)− x(u, v, τ) + guv(x(u, v, τ))

−d(u, v, τ) = 0, ∀(uv) ∈ E, τ = 1, 2, . . . , T (4–11)

∑

∀uv∈E

d(u, v, τ)− F (u, τ)

−
∑

∀pu∈E

gpu(x(p, u, τ)) = 0, ∀u ∈ V \t, τ = 1, 2, . . . , T (4–12)

0 ≤ x(u, v, τ), ∀(uv) ∈ E, τ = 0 . . . T (4–13)

0 ≤ d(u, v, τ)∀(uv) ∈ E, τ = 0 . . . T (4–14)

This work by Merchant and Nemhauser was the opening to dynamic traffic

assignment. They formulated discrete piecewise linearized version of the traffic assignment

problem. The problem assumes that the demands are available and it has a single

destination. In most of the emergency situations these assumptions are not preserved. For

instance, of a multicommodity flow where the it is required to maintain the origin-destination

pair a single destination model may not be suitable. Also, dynamic demand in place of

a static demand estimate is more efficient and more precise in a real-time situation. [39]

validated the model by proving that the constraints satisfy linear independence constraint

qualification as the exit function is continuously differentiable. [113] linearized the exit and

cost function and obtained the global optimum for the nonlinear, non-convex optimization

problem by solving a series of T+1 optimization problems. [40] provided a link flow

non-linear mixed integer programming formulation and a convergent dynamic algorithm

to solve the dynamic user equilibrium problem. It explicitly seeks equilibrium in terms of

path travel times unlike Merchant and Nemhauser’s model. The model depends on static

use equilibrium functions with additional constraints to ensure temporally continuous flow.

The technique itself is not pertinent to evacuation studies and hence we refer to the work

105

by [164] who made a detailed study on dynamic traffic assignment in their survey. We are

more interested in its applicability in emergency situation, however the little background

provided is required.

[65] introduced the cell based dynamic traffic assignment that segmented the highway

links into equal sized cells, such that each cell could be traversed in an unit time. Each

cell has a specific capacity and the congestion is explicitly handled by restraining the

amount of flow from one cell to another. [206] relaxed Daganzo’s formulation by holding

of flow at nodes in the flow conservation equations. [50] implemented a dynamic traffic

modeling technique based on the cell transmission model [65] for an optimal no-notice

mass evacuation. They also proposed a network transformation to a single destination

network and then a cell network, for the above implementation. Their objective in

no-notice evacuation also includes identification of destinations. The modeling is done

through a graph transformation. The model employs aggregation of zones and hence could

be scaled appropriately to handle large graphs. The model assumes prior knowledge of

originating demands and zonal information, which in most cases are available. Also, the

optimization formulation was provided for a cell-based transmission for a time expanded

graph. The model optimization model as such might be time consuming while applied over

real time graphs. The authors pointed out that without user equilibrium constraints the

model may not be of practical interest. The model might be useful during no-notice mass

evacuation, assuming that there is an efficient technique to solve it, but the assumptions

make it rigid to extend it to other emergency situations. Another work employing cell

transmission model is by [133]. They discuss the staged evacuation procedure, where in

a zonal classification of the nodes is done based on the severity of impacts they suffer

and starting time for each evacuation zone is determined, taking the response time of

evacuees into consideration. These models based on cell based transmission involves in a

formulation for a time expanded static graph with each link replaced by a group of cells.

This methodology may not yield quicker results for an evacuation problem considered

106

over a larger space and time and this may be a necessity in an emergency situation. The

complexity of the models will further increase when they consider more complex features

such as user equilibrium constraints, congestions management, dynamic demand etc. This

computational difficulty could be overcome the aggregating the nodes of the network

under consideration and solving the problem in a smaller graph. The efficiency could

also be improved by increasing the coarseness of the discretization of time depending on

the accuracy of the results desired. The models suggested an evacuation procedure with

single destination or sink, which cannot handle multicommodity flows to identify optimal

destinations. [88] suggested a heuristic to the cell-based transmission model with multiple

destinations to overcome this implementation difficulty. However, the accuracy of the

heuristic and its convergence when the problem size grows is a question of consideration.

[42] detailed about the concerns in a time expanded evacuation problem. Time expanded

networks, while having computational limitations in a large scale evacuations, might

benefit the small scale networks such as the building evacuation as the network under

consideration is quite small compared to large scale evacuation networks. [142] provided

a pseudopolynomial algorithm for solving the maximum dynamic flow and quickest flow

problems with a time-varying travel time, node and arc capacity. We refer to [126] for

more details on small-scale evacuation, where they made a comprehensive review on the

building evacuation models.

The variational inequality approach is another way of formulating the the DTA

problem [25, 170, 164, 19]. Variational Inequality provides a convenient formulation

technique for network equilibrium problems arising in economics, finance and transportation.

It was put forth by [108] to study partial differential equations problems. [64] studied the

equilibrium problems in transportation networks applying variational inequality for a

static travel demand. A finite dimensional variational inequality problem could be stated

as: Given a subset k ⊂ Rn find a vector x∗ ∈ k such that

〈F (x∗), x− x∗〉 ≥ 0, ∀x ∈ k (4–15)

107

where F : k → Rn is a continuous function. In case of the transportation problem the F is

the cost function and x is the flow on a arc and n being the number of arcs in the network.

The equilibrium conditions could be viewed as Kuhn-Tucker conditions for a convex

nonlinear problem. [150] gave a detailed account on variational inequalities and their

applications to several equilibrium problems. A much wider range of problems including

multimodal transportation and elastic demands were discussed along with a discussion

of algorithms to network equilibrium problems formulated with variational inequalities.

[79] provided a variational inequality formulation for a continuous time problem with

dynamic route choices and departure time decisions, a dynamic version of the static

Wardropian user equilibrium. It considers the path costs realized through travel time and

penalty for early or late arrival time and the optimal flow pattern is simultaneous route

departure equilibrium. As the model is dealt in a continuous time domain it might lack

a good algorithm to efficiently solve complex integrals on the path costs presented in the

model. Another continuous time model for transportation networks was provided by [167].

They considered a single commodity problem with elastic demand and a time-dependent

equilibrium and expressed the corresponding equilibrium problem as quasi-variational

inequality. The subset k ⊂ Rn in equation (4–15) is replaced by a point-to-set map

K : E → Rn. [30] presented another variational inequality based equilibrium problem

for a multicommodity flow problem where the user’s desired origin-destination pair and

departure and arrival time window is provided. [170] have a detailed section of variational

inequality models in the transportation framework.

4.2.3 Non-deterministic methods

Significant work has been done on evacuation problems from non-deterministic

perspective. Smith et. al have done substantial work on stochastic evacuation network

[184, 185, 183]. They provide non-inferior solutions to bi-objective routing problem

in queueing networks. The two objectives modeled were the distance traveled and the

clearance time. The problem also considered the multicommodity flow problem. They

108

provided a path based bi-objective formulation with flow conservation and capacity

constraints for all the routing alternatives. The routes are generated and fed to the

above formulation by an algorithm that iteratively generates candidate paths to assess

congestion. [189] gave an overview of deterministic, stochastic and hybrid methods for

evacuation problems and compared a analytical queueing network with a simulation model

for a hospital evacuation considering evacuation time, congestion and optimal routes.

[155] provided two solutions, one with optimal evacuation route and another with set of

strategies from which the evacuee can choose the best arc at each step. They dealt the

evacuation problem on network with stochastic, time-varying travel time. [194] considered

a stochastic dynamic network in which the origin destination demand are random variables

with known probability distributions. A linear programming formulation based on the

system optimal dynamic traffic assignment propagating traffic by cell transmission was

provided. The results are robust as they build a confidence level which requires the

solutions to meet the expected demands. [157] incorporated capacity constraints in

cell transmission model for system optimal dynamic traffic assignment. The capacity

constraints are probabilistic in nature due to the impacts of the disaster. They also

compared the model to one with a deterministic capacity. [18] studied the resource

allocation problem in the emergency evacuation network. They employed queueing theory

to model the varying capacities circulation spaces, such as finite sized corridors, staircases

etc. and study their effects on throughput. The evacuees in this model experience a

service at the evacuation nodes and this service rate decays with the increasing amount of

traffic.

4.3 Significant Features in Optimization techniques

This section will discuss the factors that are widely regarded to influence the

evacuation efficiency. While some of them are only germane to optimization techniques,

the rest will be revisited when we discuss the simulation techniques.

109

4.3.1 Contra Flows

A contra flow or reversible flow is a strategy to improve the efficiency of evacuation

by allowing traffic in the opposite direction of the roads during an emergency. Most of the

recent evacuation plans proposed incorporates contra flow in them. The contraflows while

being efficient in evacuation they come with a few pitfalls like increase in accidents and

operation cost, which might be a consideration for their implementation in the evacuation

plans [29].

Consider the following lane reversal problem: Given a directed graph G(V,E) with

non-negative arc capacities and travel times, a subset of nodes S as sources and planning

period or horizon T, determine the quickest time to evacuate all the occupants from

source to destination by allowing lane reversals. A single source single sink contraflow

problem is polynomially solvable, but a multiple source and sink problem becomes

strongly mathsfNP-hard [171]. Thus, even simple cases of the problem is hard to solve and

researchers have to resort to heuristic. Simulation procedures could be performed for a

given configurations of networks and hence may not be a suitable tool to identify optimal

lane identification, but the analytical procedures are not computationally efficient even for

simple models without complex features [200]. f

[121] proposed two heuristics to solve the evacuation problem with contra flow more

than one source and destination. The first heuristic was proposed for a time expanded

static graph GT (VT , ET). The heuristic runs on a time expanded graph, making it less

attractive for large scale evacuation with large number of nodes and with evacuation

planned over a bigger time frame. The second heuristic proposed was a simulated

annealing procedure. The algorithm begins with solution and perturbs it a little to

obtain a better solution and this iterative procedure is carried out until a stopping

condition is satisfied. This is a standard technique employed to escape local minimum

and obtain values close global minimum. A similar tabu-based heuristic algorithm to solve

lane reversible evacuation problem was proposed by [193]. It is a local search procedure

110

attempting to get the best solution in a given neighborhood. The system optimal dynamic

traffic assignment model for the cell based transmission which was described in section

2.2 is considered for the implementation of contraflows and it permits partial capacity

reversal, unlike the former approach. In another work [192], they formulated the dynamic

traffic assignment model with lane reversible capabilities. This information could be used

as an efficient initial solution for the tabu based search. The models discussed are simple

flow problems with lane reversal capability and is far from being practically realizable.

The models could however serve as a good preprocessing technique to identify the lanes to

be reversed and then a more complex model could be employed on a reconfigured network.

The heuristics developed to solve them, though computationally efficient, does not have

any theoretical guarantee in the quality of the solutions. Thus the issue of scalability is

a concern, as the quality of the solution could be compromised with the problem size.

Approximate solutions to the contraflow problems for such guarantees is still an open area

of study.

4.3.2 Evacuee Behavior

Like contra flows, another factor that is incorporated in the evacuation models

in the recent years is the the response time of the evacuees. The response time is the

time taken for a decision by the evacuee to evacuate. This latency could be due to the

inefficiency in the information dissemination, panic in evacuees or the emergency situation

itself. Conventional models disregard this, assuming zero loading and unloading time.

[179] formulated a Nuclear power plant evacuation through bilinear programming and

incorporated the response time of the evacuees. They used the formulation by [170] for

dynamic traffic assignment. They proposed a departure model with the objective of

quickest evacuation time with one model departure time from origin and another model

arrival time at the destination. [109] simulated the escape panic situation in which the

clogging, jamming at widening, panic initiation and impatience are captured. This would

help in validating an evacuation model developed without considering human factors.

111

However, the study was aimed to model the pedestrian behavior, injuries caused due to

congestion, uncoordinated passing of bottlenecks, physical interactions among people.

Thus careful scaling of parameters is required if we need to realize this in larger network

with vehicular motions. The model would more serve as a tool for calibration than for

establishing optimal routes of evacuation. The survey about human behavior in fire [31]

gives a gist of the influence of evacuee behavior on models. The study caters specifically to

the situation caused by fire and certain concerns raised, such as smoke effects, fire alarms,

cannot be extended to a generic situation. This would help in a similar fashion as the

previous model in setting standards for an evacuation model and features to be identified

in a model. A model was developed by [81] to predict the response behavior of hurricane

Andrew in Louisiana and they were found to be similar to hurricane Floyd in South

Carolina. The response curve could be used to model response behavior in evacuation

models. Since the study was performed and tested for behavior during hurricane, response

behaviors during situations such as event management, nuclear accidents, fire hazards,

and no-notice evacuations needs to be analyzed in order to assure its generic applicability.

[47] provided the measures for efficiency of an evacuation plan. Among the various factors

they considered the loading curve of the time taken for evacuees to decide to evacuate

was considered as a major factor as this is crucial in determining the travel time of the

individual evacuees. [148] suggested that the panic situation as result of a danger results

in the evacuees to move at random before restoring order, especially when they want

to find the family members before trying to reach safety. They proposed a two stage

formulation establish household trip chain sequence. In the first phase the optimization

model determines a meeting location for the family and in the second phase comprises

of the trip assignment to evacuate people to safety. The strategies are later supplied to

a simulator to study the effects of reassignment. It provides a different perspective to

behavior modeling but not the only feature to be captured.

112

In case of a large scale evacuation system, where the travel time is much larger

compared to the response time of the evacuees the error in the case of excluding the

response time would be very minimal. However incorporating it might increase the

complexity of the optimization model and hence decrease the computational efficiency.

The implementation in two different phases, like that of contraflows, in order to overcome

this problem could also be difficult as the behavior modeling dynamically changes the

traffic flow. This is should be a another factor taken into consideration while developing

a model. Sometimes behaviorial response is related closely to the situation and may be

different at different times.

4.3.3 Dynamic origin-destination demands

[164] made a note that the most difficult obstacle before deploying DTA is estimating

the time dependent demand. The demand between origin-and destination in an evacuation

problem is typically subject to the environmental changes. For instance, an evacuation

scenario which just requires the evacuees to reach safety might not route passengers to

the initially designated destination, as this would compromise the evacuation time. This

could be because of any unforeseen circumstances such as congestion, road blockage, lane

reversals or unavailability of shelter etc. Most researchers have assumed to have origin

destination data available a priori and they don’t change over time. Later, the analysis

was carried out on a static demand. [202] formulated an evacuation problem where the

origin destination pairs are not fixed. Given a set of origin or destination, the objective is

to ship all the commodities from the origin set to any subset of destination nodes. This

is more intuitive in an evacuation process, where the safety of individuals is the priority.

This could be achieved through a simple transformation in which a dummy super-sink

node is added with zero cost and infinite capacity arcs from all other destinations. Given

an directed graph G(V,A) and set of origins I and destinations J with arc capacities

c(a), ∀a ∈ A and cost function h(x(a)). Let Dij be the demand matrix between OD pair.

113

Now we have the following static demand evacuation problem.

Minimize
∑

∀a∈A

h(x(a)) (4–16)

s.t.

x(a) =
∑

∀r∈R

δarpr, ∀a ∈ A (4–17)

∑

∀r∈Rij

pr = Dij , ∀i ∈ I, j ∈ J (4–18)

0 ≤ x(a) ≤ c(a), ∀a ∈ A (4–19)

R is the set of all paths between all origins and destinations, pr is the flow along the

rth path and δar is indicator variable with value 1 is arc a is in path r and 0 otherwise.

Constraint set (4–18) will be replaced by

∑

∀r∈Ri

pr = Di, ∀i ∈ I (4–20)

for the single destination.

This is another formulation for a time expanded static graph, having all the

drawbacks, with regards to computational efficiency, mentioned earlier. The model

when assuming independent evacuees as flow variables, assume that the different family

members could reach different destinations. As a path based model has been presented

the scalability of the model needs more examination as the analytical techniques using

path or route based modeling needs to consider exponentially many paths available.

[80] applied the sequential logit model to the model the dynamic traffic demand for

evacuation problems with the underlying assumption that the demand varies with the

evacuee behavior. The time horizon is discretized and the decision to evacuate at each

time interval is modeled as a sequence of binary decisions. Later the probability that

a household will evacuate at a specific time is calculated using random utility theory,

which in turn is used to estimate time varying demand. The problem of updating

origin-destination matrix based on the traffic link count has also been studied by

114

[187, 205]. A bi-level programming, where the OD matrix is updated at the upper

level and the updated matrix is later used for DTA at the lower level. The formulation

allows traffic flow according to the traffic conditions and they are brought under an

entropy maximization framework. Another useful study in this line was by [203], where

they compared two models of compliance and non-compliance to predetermine the route

and destination assignments for evacuation using simulation software. [190] proposed a

genetic algorithm to estimate the dynamic demand between the origin destination pair.

The method is based on the fact that dynamic demand OD matrix depends on spatial

and temporal variations of congestion or in other words the variation in demand based

on the traffic count on a link. The congestion of link and hence a specific path from an

origin to destination would cause the optimal solution to seek an alternate path causing an

alteration in demand. The genetic algorithms tries to find the optimal OD demand matrix

from the seed OD matrix provided as input.

4.3.4 Multimodal Transportation

Multimodal transportation are realistic in an emergency situation and it also

considerably affects the evacuation efficiency. It is therefore essential to incorporate

mode choices in the models in order to develop precise models. A formulation based on

cell transmission was provided by [44] permits intermodal transportation with cars and

buses for a single destination network. The formulation was a system optimal integer

linear programming. Thus the corresponding flow problem is a bimodal transportation

for a single commodity. The model assumes no pedestrian movements, but transit cells

are considered where evacuees can move to another vehicle. The model is a very basic

model and have several assumptions that makes it practically infeasible. For instance,

the model assumes that there is an unlimited supply of buses and cars. Also, the models

contains enormous amount integer variables and constraints. Addition of multicommodity

flow constraints would make the model even more complex. [26] studied the influence

of multimodal transportation on the evacuation efficiency in building complexes. They

115

extended the cellular automata model, where space is divided into cells and time is

discretized such that vehicles can move from one cell to another in one time step, to

capture the interaction between in pedestrians and vehicle behavior. To overcome

the computational complexity posed by the formulations in the optimization models

investigators explored heuristic algorithms to solve the evacuation problem. [132] proposed

a heuristic algorithm, HASTE, which provided a close approximation to the optimal

solution that could be achieved through a linear program for the cell based dynamic traffic

assignment problem. This overcomes the difficulty of the computational time spent on

the overwhelming size of the problem at a price of approximating the optimal solution.

The accommodation of multimodal transportation usually increases the precision of the

model as it is more realistic and also the evacuation efficiency. However, it increases the

complexity of the model as a whole and decreases the computational efficiency.

4.3.5 Miscellaneous factors

The key logistical issues during the aftermath of a disaster have been carefully

analyzed by [114]. The response and recovery operations such as supply of food and

medicine on reduced capacity network are discussed. The research was based on public

accounts and interviews made during the field visits to Katrina impacted area. Another

interesting study in the context of evacuation is to examine the vulnerability of the

network and identify the insecure links in the network. It is important because it accounts

for the connectivity between the origin and destination during evacuation. This may

allow us to estimate the arc or link capacities of the network for evacuation. [191]

measured the vulnerability of a network using a vulnerability index and aggregated

them over all origin destination pairs. [177] provided a topological index to determine the

depressiveness/concentration, which helps in identifying isolated districts and estimate

the robustness of the road network in an emergency situation. The travel choice is tied

to the vulnerability of the network. The change in the demands and flows owning to

disruptions in the network was also studied by [45]. They formulated a travel demand

116

model to derive a measure to assess the vulnerability of a transportation network. The

measures are capable of valuating the changes in both demand and supply. [47] used

agent based simulation technique, PARAMICS, to compare the staged and simultaneous

evacuation. They concluded that for a general network topology there is no specific

stratgey that results in better evacuation efficiency. However a high density population

could be evacuated quicker over a grid structured network by staged evacuation.

4.4 Simulation Techniques

The large size and time over which the optimization models have to be implemented

make them less suitable for immediate realizability. Simulation based approaches for

evacuation strategies are widely adopted to overcome this practical difficulty. Also,

simulation based models could be a tool to study the current plans without actually

executing it. The evacuation plans generated by the analytical models discussed above

could be simulated to identify inconsistencies in the model, thus serving as a good

instrument for validation. The simulation models permits the designers and researchers to

visualize the evacuation and hence it is more incisive compared to analytical models.

One level of breakdown of the simulation-based technique will be as macro, micro or

meso traffic simulations. A microscopic traffic model captures the lineaments of individual

vehicles, whereas a macroscopic traffic model provides a collective vehicle dynamics.

Macroscopic simulations are similar to fluid flow study, where the estimates are based on a

group of vehicles as a whole. Macroscopic simulations are not computationally expensive,

but fails to adapt to random and rapid changes in the environment. Micro simulations

is a diametric simulation technique, where the characteristics of individual vehicles are

captured and thus able to predict and adapt to the changes in the model more efficiently

than macroscopic simulations. The disadvantage of this technique is the computational

expense encountered as the system size grows and more vehicles are added to the system.

However, the micro-simulators are getting popular in the recent years with the increase in

117

the computational capacity. A detailed note about macro and micro simulations and their

relative advantages and disadvantages is discussed by [166].

4.4.1 Microscopic Simulation Techniques

Agent based simulations are also called as micro-simulators, as the agents or drivers

involved in the system could be studied individually. In most traffic simulation studies

there is a need for the simulation to be performed with more precision. For instance,

vehicular interactions during congestion lane change or traffic signals at intersections

could be dealt only in a microscopic model. [62] performed an agent based neighborhood

evacuation study. The model has a nice property to study the disaggregate outputs such

as the vehicle safety and travel times within zones rather than average travel time of entire

system. However some of the assumptions are rigid such as departure times were assumed

to be available and the destinations were preassigned. These assumptions may not be

preserved in real time situation. The topology of the tested network was relatively simple

compared to real time networks. It will be interesting to compare the computational

efficiency when tested real time with features such queues, spill overs and congestion.

The PARAMICS is a micro-traffic simulation software widely used in simulation. Many

simulation based evacuation studies deployed PARAMICS for traffic simulation studies.

[52] developed a simulation model using PARAMICS to simulate the evacuation of a high

risk area in Santa Barbara called Mission Canyon Neighborhood. The model is used to

analyze the possible evacuation scenarios changing traffic control, number of vehicles per

household, opening of alternate exit and critical links in the network. Although these

may not be the optimal ones, they are validated strongly based on empirical observations.

The simulation provides the lower bound on the actual evacuation time as evacuee

behavior is not considered and demand and arrival time estimates are not accurate.

But the simulation results providing the best scenario in terms of the evacuation time

might be indicative of the necessary factors to keep in mind in an emergency situation.

In another study, [46] employed PARAMICS to compare the efficiencies of staged and

118

simultaneous evacuation studied under free-flow and congestion situation. The study

was performed for different network topologies. They made some simplistic assumptions

like availability of route choices, destination information that prevents it from immediate

realization. The findings, which include staged evacuation during congestion, would guide

the design of new models. The aggregation of areas into zones is a technique employed to

gain computational efficiency, but with a compromise in the precision. The default rules

of PARAMICS for trip generation and destination and route choices were used for the

simulation. They also provided a review of agent based simulation models and explained

its advantage. They performed the simulation over three types of network namely ring,

grid and an actual road network. The study indicated that staged evacuations based on

zones are efficient than simultaneous evacuation. The models assume that the drivers

are assumed to take the shortest path which leads to frequent congestion and hence

the results may not reflect the best simultaneous evacuation time. CORSIM is another

micro-simulation software used for traffic simulation. CORSIM is a combination of two

other microsimulation models namely NETSIM and FRESIM, which are used for traffic

simulation in surface streets and freeways respectively. [182] used CORSIM to create a

transportation model for Birmingham. The generated model was then used test several

emergency scenarios. They also made a brief review of micro-simulated evacuation

models and discussed the vital features of CORSIM. Several response actions such as

traffic diversions, altering signal timings, roadway clearance and access restriction were

incorporated in the testing. The simulation model was then tested on different scenarios

namely, a discrete traffic event, evacuation situation, and simulation of available response

plans. The performance measures, which includes speed, queueing length and queueing

time, were not justified to be the best set and they do not guarantee that the simulated

results correspond to the most efficient solution corresponding to the assumptions made.

The extensibility of the model is a concern for networks besides the networks examined

under the same settings. The model will not have immediate realizability, but is useful

119

in validating and calibrating models and the recommendations with respect the measures

that were focussed in the study. CORSIM was also used to test the efficiency of contra

flows or lane reversal under various evacuation scenarios [197]. The study was carried

out in very plain settings, just to test the effectiveness of lane reversal of the link in a

network. The study could serve only as a guide to evaluate the lane reversal efficiency

rather than stand alone model to establish evacuation routes. The simplicity of the model

makes it computationally efficient to obtain quick results. We discuss the demerits of

establishing lane reversal strategies using simulation techniques in section 4.5.2. Another

popular micro-traffic simulation software, VISSIM, is also used in evacuation studies.

[201] used VISSIM for nuclear power plant accidents with dynamic traffic assignment and

most desirable destinations. [188] provided a comparison of VISSIM and CORSIM with

the demand estimates provided by Federal Emergency Management Agency (FEMA) to

study the efficiency of lane reversals. Both these models indicated increased throughput

and decreased queue with lane reversal implementation. Throughput at key nodes,

queue lengths and average speeds were considered to be the efficiency measures of the

evacuation plan. These efficiency measures were compared between a lane reversal plan

and a do-nothing plan. The evacuation scenarios were considered essentially for a reversing

only two vital links of the network. The lane reversals were considered for only the critical

links of the network, but the rest of the model is heavily dependent on the simulators used

by the model. As microscopic simulations keeps track of individual entities in the system

it is computationally expensive and it was often used in small scale evacuation systems.

Also, the details kept by these models makes them more complex. Their function logic

gets complicated for operation and they often result in befuddling number of parameters

that are tough to keep track. However, this limitation is being slowly subdued with the

advent of faster computers.

120

4.4.2 Macroscopic Simulation Techniques

As mentioned earlier macroscopic models captures the vehicles and their activities

more coarsely compared to its counterpart. Traffic is aggregated and the aggregated flow

will be studied through model variables such as speed, density and flow rate. NETVAC

[181] and MASSVAC [168] are two popular macro-traffic simulation software. NETVAC

models radial evacuation from risk area, similar to evacuation during a nuclear accident.

The travel demand is incidental in the model, since all the households within the risk area

require evacuation. MASSVAC is a macroscopic simulation model developed for rural

networks and was tested on a small rural network in Virginia for several loading curves.

It comprises of a community module to define the boundary of the hazard, a population

characteristics module to determine the population allocation spatially and an evacuation

module that performs the actual traffic assignment. It has a simple input structure

and trip distribution. Later versions of MASSVAC have been developed to incorporate

complex features such as user equilibrium assignments. Oak Ridge Evacuation Modeling

System (OREMS) is a popular macro-simulation evacuation simulator. Identifying

bottlenecks and feasibility of evacuation, establishing evacuation routes and identifying

alternate conrod strategies are some of the important features of OREMS. GIS interface,

which is a useful add-on in the recent years is also available in OREMS. Moriarty et al.,

compared major macro-simulation softwares including OREMS, DYNEV and ETIS where

the factors influencing the evacuation response were identified and several enhancements

were suggested to improve the evacuation efficiency [146]. Most of these models were

provided with the evacuation demand as an input to the model and the models are a

coarse approximation of reality. The increase in computational capacity in the recent

years are making microsimulators more attractive as they could also provide precision in

performing localized studies and networks of reasonable sizes. However macrosimulators

could be integrated with microsimulators or analytical models. They could serve as quick

validators in a evaluating a developed model. Also, the very large scale network are still

121

a little far fetched for analytical models and microsimulators and are mostly handled by

macrosimulators. Macroscopic models are much simpler compared to the microscopic

models, when it comes to to calibration and computation. This is only achieved through

some shortcomings. They cannot be applied to instances which requires individual

vehicular dynamics to be tracked. As the vehicle positions are not known in these models,

the modern traffic control systems such as ramp metering, lane change maneuvers and

a few other features of intelligent transportation systems cannot be captured by these

models. Also, evacuation that requires modeling of human behavior cannot employ

macroscopic simulation studies for the same reason. The accuracy is compromised by the

aggregation of the traffic and network. They are more applicable in large scale evacuation

with respect to time and space, whenever these shortcomings are less realized.

4.4.3 Meso-Simulation Techniques

A new generation of simulators called meso-simulators are popular in the recent days.

They combine the pros and cons of the micro and macro simulators. The meso-simulators

clubs the vehicles into packets or platoons which are then simulated as separate entities.

[68] employed CEMPS, a meso-simulator, to develop a spacial decision support system.

This is very practical model in the sense that the decision support system integrates

the real time data obtained from geographical information system (GIS) to make

traffic decisions and a object oriented simulation comprises of decision modeling and

dynamic analysis components. CEMPS provides a convenient framework that permits

this communication. The model does not sufficiently clarify the computational and

economic concerns that may arise due to the increase in the size of evacuation network.

[91] provided a meso-micro scale simulation study using SmartCAP that allows monitoring

and studying of aggregate traffic flow behavior such as density, flow, and velocity and

integrated it with a micro-simulator, SmartAHS, which is used record the individual

details. The integrated simulator consists of “window” of the micro-simulator that

communicates with the meso-simulator. Essentially the vehicles are micro-simulated and

122

the meso-traffic flow characteristics such as velocity, flow rate, etc. are preserved. The

claimed boost in the computational speed is pertinent to specific situations by the use of

meso-simulators. More precisely, the gain will be linear in terms of the level of aggregation

of vehicles into packets. This still cannot justify the phasing out of macrosimulators or

microsimulators. However, the level of aggregation will help in achieving the capability of

a microsimulator to the desired accuracy. DYNEMO [163] proposed another mesoscopic

traffic flow model that was developed, where unit of a traffic flow is an individual vehicle

unlike packets. The motion of the vehicles is determined by their link’s traffic density. The

function that gives the relation between traffic density and speed is provided as an input

to the model.

4.4.4 Integrated Techniques

Simulation techniques could be used in conjunction with analytical models in order

to gain the best out of the optimization and simulation techniques. The evacuation plans

that are generated through the optimization techniques could be a good lower bound

on actual evacuation time, thus these plans could serve as a candidate for simulators

to identify the discrepancies in the model, foresee the requirements and capture the

features that were not incorporated in the optimization technique. [180] provided

a bi-level simulation based approach to solve the evacuation problem. At one level

the time dependent route assignments are determined and at another level a dynamic

loading problem is solved and the output is later aggregated. The time dependent route

assignment is solved using the method of successive averages and the traffic demand

simulation is done using DYNASMART-P to estimate the vehicle trip times and link

travel times, thus achieving a system optimal schedule. The dynamic traffic assignment

is implicity handled by DYNASMART-P, relieving the optimization model. The model

is computationally efficient but the gain in speed could be softened by the degree of

accuracy of the heuristic with the increase in problem size and the complexity due to

new features when extended to other situations. [207] presented an evacuation system

123

for ocean city integrating optimization and simulation techniques. An evacuation plan is

generated by the optimization module and the plan is revised by the results of simulation

evaluation. The pros and cons of the plans established were discussed. The model provides

route choice options that permits users to deviate from the available or pretested plans,

but the model assumes the availability of preestimated or forecasted demands. The

formulation is based on cell transmission model proposed by [65] with necessary flow

conservation and demand constraints. The result of this technique is a set of candidate

plans, which could later be finalized using calibrated simulators. The results were then

evaluated with a microscopic simulation program. This cell-based formulation makes the

model more complicated in terms of the size and complexity when dealt over a larger

system and so as the number of plans that have to be stored and tested in the next

phase. The method is comprehensive compared to an integrated technique that produces

one single solution, but makes it computationally unattractive. The candidate set could

be a limited set to overcome this undesired effect. A similar two level optimization

method for evacuation of the ocean city was proposed by [134]. At a broad level, they

maximize the throughput at the higher level in terms of the number of vehicles being

evacuated and minimize the travel time at the lower level. The cell-based formulation

was made by accommodating cells of varying sizes in order to decrease the complexity

of the optimization model. [135] proposed another integrated technique in which the cell

based optimization model was used to formulate the demand constraints and the flow

and storage capacity constraints. The result of the optimization module is then fed as

the input to the microscopic simulator, CORSIM, which models real time operational

constraints and driver behavior that were not captured in the optimization model. The

evacuation systems proposed were modeled with static demands. These integration

techniques are very useful for a number of reasons. The evacuation plan could be validated

through simulation and hence can be reliable. The computationally expensive task could

124

be simulated and other operations could be optimized and thus they attempt to seek an

optimal balance between precision and speed.

4.5 Significant Features in Simulation techniques

4.5.1 Reviewed Features

[104] identified 22 evacuation models and assessed them by grouping them based on

four different perspectives, namely enclosure i.e the fineness or coarseness of a network,

population perspective where actions are taken based on individuals or by groups,

behavioral perspective based on how the occupants react to the environment and the

nature of model applications. [178] provided a survey of simulation models for emergency

evacuation. They made a classification based on modeling approach, namely flow based,

agent-based and cellular automata and discussed their relative advantages from the

perspective of evacuee behavior. A flow based modeling comprises of nodes representing

the structures or places to and from the evacuees have to be moved and arcs mapping to

the hallways, roads, etc., that links these nodes. Since the individual characteristics are

not emphasized in this modeling the practical realization of these models are impeded.

However, if these models were used in conjunction with analytical models could be very

powerful tool in terms of both speed and precision. In cellular automata the evacuation

space is discretized into cells or grids with specific capacity and the entities flow from one

cell to another. The models based on cell based transmission could be very accurate. [8]

analyzed the 32 different micro-simulation models and compared the features available

in the models. Scale of application, i.e the size of the network that the model can handle

was one of the features that was discussed in the papers. A detailed statistics of the

objects and phenomenon that the models included was provided. Queue spill backs,

weaving, incidents and commercial vehicles were by and large modeled. Indicators of

objectives showed that the speed, travel time, congestion and queue length were widely

adopted by the models and indicators such as comfort and performance were rarely used.

Analysis of telematic functions and interface were also discussed. A comprehensive survey

125

on simulation studies was provided [169] analyzed various simulation software that are

available and presented all the components considered for evacuation by these software.

The categories of evaluation of the models were modeling, behavior, operations and

hazards. Most of these features have already been discussed. This analysis provided a

generalized framework for simulation studies of emergency evacuation.

4.5.2 Lane reversals and Traffic Control

Contra flows or lane reversals are being considered in the simulation models just

like in optimization models. The recent trend and studies have indicated that there

is a significant decrease in evacuation time with the implementation of lane reversals.

A more efficient way of controlling the traffic is by employing traffic personnel. [197]

studied traffic control by capturing these scenarios and simulating them. The travel time

was significantly less for the instances with lane reversal. [190] undertook a research

to study the effect of contraflow implementations in evacuation in New Orleans. They

employed CORSIM to simulate the freeway configuration and two other scenarios with

contraflow implementation. The study carried out various loading configurations of major

highway permitting contraflows. The experiments were used to demonstrate the benefits

of contraflow. A significant improvement in the measures of effectiveness, namely travel

time and average speed was achieved for the configurations permitting contraflow. In most

cases the contra flows are assume complete lane reversals, that is, the entire capacity of

the road is switched towards the destinations. There are a couple of reasons for holding

a capacity in either directions. In case of a large network, a link of the network in either

direction could be used in a route to reach the destination. In case of a link failure, where

alternate paths are required, the reversed links can no longer be part of an alternate

path to the destination. If this was not the case and even if a link cannot be a part of

route from origin to destination, these arc capacities could be used in a routing problem

where empty buses have to be routed back to pick up points. Most of the papers currently

assume that there will be enough number of buses to support the evacuation by making

126

just one trip. Thus studies that identify the amount of capacities that has to be reversed

within highway rather than complete reversals are limited. Simulation studies are not

the best way to study the effects of contraflow as they need a input plan which could

be calibrated or validated, but cannot be a tool to identify the links or the amount of

capacities that has to be reversed. Analytical tools could be employed for this purpose and

the plans could later be tested and verified in simulations.

4.5.3 Dynamic Demand Estimation

In a large scale evacuation the evacuation distance is large and assuming static

traffic conditions is not precise. DTA allows different traffic conditions to be included

in the simulation. It captures the complex dynamic demand pattern that arises due to

congestion, queues, spill back and delays. There will be a significant difference in the

evacuation efficiency between static and dynamic demand. The factors that results in

the difference has been discussed before. The dynamic demand estimation through a

simulator may not be as difficult as the contraflows. [10] provided a simulation model with

a demand predictive capabilities implemented as a part of DynaMIT simulator. The model

generates a pre-trip demand based on the historical demand and two systematic deviations

based on daily demand fluctuations and driver response behavior. The pre-trip demand is

used to establish a disaggregate pre-trip travel decisions for the drivers. Then a behavioral

model is employed to exploit the available real time data and alter route decisions. Then

a disaggregate origin destination matrix is generated based on the traffic count on the

links of the network, which is then aggregated to estimate the new demand. The model

takes into account various factors including behavior pattern, daily demand fluctuations

and a random error component, thus giving more reliability to the model. The model

employs a time discretization for determining intervals between which the distance updates

are made. This makes the model computationally expensive based on the length of the

interval. The question of consideration will be the capability of the model to handle other

features in addition to the dynamic demand estimation. This model was just an extension

127

of the work by [17]. The demand estimation through update of historical demand based on

driver behavior and was further enhanced by systematic deviations in the newer models.

A similar method, QUEENSOD, [3] involves a seed matrix similar to the pre-trip demand

matrix based on historical demand. The seed matrix establishes traffic counts and a

micro-simulator is used to establish the traffic routes based on the estimate and then

the seed matrix is altered to reduce the error between the estimated and observed traffic

counts.

4.5.4 Miscellaneous Factors

The number vehicles per household in micro-traffic simulation may be important as

this increases the demand. The use of critical links is a major factor in evacuation as it is

important to ensure that the critical links are not congested, which would result in heavy

traffic disruption. Incident management is a minor feature that models focuses on the need

for alternate routes in case of accidents and estimation of traffic personnel for diversion

and lane control. [145] studied the impact of staged evacuation efficiency, where they

considered six different scenarios and and they carried out simulation on a representative

traffic network that resulted in successful staged evacuations. The scenarios comprised

of combinations of shifting the departure times of evacuations. This resulted in increase

in the total number of trips, but prevented congestion and queues. They concluded that

the departure time shifting and total number of trips made had a positive impact on the

clearance time.

4.6 Conclusions

The models currently available in the literature are usually customized for the

evacuation of specific regions in geography tailored to its needs. The models have their

relative advantages and disadvantages, but precise to their needs. It is rather tedious to

generate a unified model that could be used in all situations. Inclusion of several features

impacts the complexity of the model and hence the computational speed. On the other

hand, simplifying a model would compromise the precision of the model. However, the

128

models have some common overlapping features that we highlighted in this report. We

saw that the hybrid models could be reasonably accurate and precise by exploiting the

relative advantages of simulation and optimization techniques. This chapter provided

broad classification of evacuation model based on simulation or optimization methods.

Further, it identified the factors considered by these optimization models and commented

on the approaches. We highlighted the features that will have a significant effect on the

travel time namely intermodal transportation, dynamic traffic demand estimation and

contra flows or lane reversals in case of a wide area evacuation. Models incorporating

intermodal transportation and contra flows demonstrated the improvement in evacuation

efficiency compared to the traditional models. Also, static demand model have become

obsolete and dynamic demand is necessary for practical realization of the models. Some

areas that needs attention are optimization problems to establish alternate evacuation

paths for incident managements. Critical node detection and traffic management on

critical links are studies that might improve the efficiency of the evacuation and also might

give an indication of the necessary links that we could focus on contraflows. Also heuristic

exploration of optimization techniques could significantly reduce the computational speed.

Research in the field of clustering of nodes and zonal division of network is very limited.

This might shed light in performing evacuation over a smaller aggregated network helping

in computational efficiency.

129

CHAPTER 5
NETWORK FLOW PROBLEMS WITH LANE REVERSALS

5.1 Introduction

We study contraflow network problems, wherein we try to maximize flow in a graph

while permitting direction reversals of an arc, resulting in a capacity increase in the

direction of switch. The applications are realized in an emergency situation, where people

have to be ‘evacuated’ from a specific area; i.e. a football stadium after a game, a city

expecting a flood or hurricane, a zone where an unexploded ordnance device has been

found, or a region which has been attacked by terrorists. In most of these cases, the

evacuees are expected to leave the area of risk, the source(s), towards a safer place, the

sink(s). A flow towards the source is undesired during most of these scenarios and we do

not expect the evacuees to go in this direction. As a direct consequence, all the arcs that

are not a part of any path from the source node(s) to the sink(s) might be left unused.

One can even encounter idle arcs during certain scenarios, such as managing a football

event, wherein we do have some amount flow towards the source. These idle arcs could be

used to increase the efficiency of evacuation by reversing their directions. The scenarios

involving in partial lane reversal capability could be captured with appropriate graph

transformation. We discuss several scenarios that may arise during the reconfiguration,

which includes permitting only a subset of arcs to be reversed, imposing a switching cost

to the arcs involved in the reversals.

There are very few optimization techniques in the literature handling arc reversals.

Kim and Shekar [121] proposed a simulated annealing procedure for this problem and

provided empirical results. They also provide a sketch of the proof that the problem is

NP-complete. A tabu-based heuristic was proposed by Tuydes and Ziliaskopolos [193]

for the problem. They focus their study on a specialized version, where they permit lane

reversals with partial capacities. Hamza-Lup et al. [106] proposed a heuristic for this

contraflow problem. These techniques and their pitfalls were discussed in [121]. A few

130

other studies in the literature that are not analytical in nature were also proposed. They

rely on simulation-based methods and decision support tools [190, 197].

In this chapter, we provide a detailed study of the arc reversal (or contraflow)

problems with respect to their computational complexity. The motivation is to introduce

the problems formally to provide a basis for further research in this area. As the

applications are mainly realized during emergency situations, the dynamic flow problems

are of principal interest, but we study static cases as presuppositions and also for the

sake of completeness of the study. In section 5.2, we provide a brief background of the

network flow problems and explain the terminology used in the rest of the chapter. We

then provide a discussion of static flow problems in Sec. 5.3. A polynomial time algorithm

through a graph transformation is introduced for the static maximum flow problem with

arc reversal capability. The result is evident and it is useful in Sec. 5.4.1 in showing

that the dynamic maximum contraflow problem, with single source and single sink, is

polynomially solvable. We show in Sec. 5.4.2 that the the decision version of the multiple

sources and multiple sinks version of the problem is NP-complete through a reduction

from 3-SATISFIABILITY (3SAT). In Sec. 5.4.2.2, we show that the problem becomes

NP-complete by having just two sources or sinks. In addition, we discuss the inability

of the graph transformation that was employed earlier to provide feasible solutions. We

finally show in Sec. 5.5 that the problem of finding the minimum total cost, incurred due

to an arc switching cost, to identify the arcs to be reversed is NP-hard, even in the static

case.

5.2 Background

The basic terminologies and definitions that are predominantly used in the network

flows literature and that are essential for the rest of the chapter are explained in this

section.

Definition 5.1 (Static feasible flow).

131

Given is a graph G = (V,A) with capacities ce ∈ Z
+ for all arcs e ∈ A. A static flow,

characterized by the function f : A→ R
+, with value v, from s ∈ V to t ∈ V is feasible, if

fe ≤ ce, ∀e ∈ A (5–1)

∑
(i,j)∈A

fi,j −
∑

(j,k)∈A

fj,k =





v, j = s

0, ∀j ∈ V \{s ∪ t}

−v, j = t

(5–2)

We call node s as the ‘source’, node t as the ‘sink’ and rest of the nodes as ‘intermediate’

or ‘transhipment’ nodes.

Equation 5–1 ensures that the flow fe along each arc e ∈ A meets the capacity

constraints; as we assume all lower bounds on the flow to be 0. In equation 5–2, the net

flow out of s is v and t is −v. For all intermediate nodes it is 0 and is also referred to as

flow conservation. The definition of a feasible flow generalizes in a natural way for the case

of multiple sources and multiple sinks.

A sequence of distinct nodes x1, x2, . . . , xn of a graph G = (V,A) is called a chain if

(xi, xi+1) ∈ A, ∀i = 1, . . . , n. A chain is also referred to as a directed path. Let P be the

set of all chains from s to t. We define another flow function, h : P → R
+, in terms of the

flow along the chains from s to t. A feasible flow f with value v could be decomposed into

a set of chains, P , from s to t, such that

v =

|P |∑

i=1

hi .

The process of obtaining flow along the chains this way is called as ‘chain decomposition’.

A more detailed account of these terminologies could be found in [4, 76].

In a dynamic graph or network G = (V,A) each arc is associated with a travel time,

t : A → R
+, besides the capacity function. The graph expanded over T time periods,

GT = (V T , AT), is obtained by replacing each node by T copies and having nodes vl
i and

v
l+ti,j
j connected in GT = (V T , AT) if vi and vj are connected in G, for all l = 0, . . . , T−ti,j .

132

This concept of a feasible flow can be directly adopted to the dynamic case by ensuring

that both equations 5–1 and 5–2 are satisfied for all discrete time steps. Hence, a feasible

dynamic flow is a feasible flow in the time expanded graph with the value equal to the

sum of the net flows out of all the T copies of s. For more details about time expanded

graphs refer, for instance, to [4, Chapter 19.6].

5.3 Maximum Static Contraflow Problems

In this section, we provide a polynomial time algorithm solving the maximum

contraflow problem in a static graph. The results presented in this section are very basic

and straight forward. Nevertheless, we discuss them in detail as this helps us in developing

the main results in Section 5.4.

Now, let us define define the maximum flow problem with arc reversal capability.

Definition 5.2 (Maximum Contraflow (MCF)).

Instance: Given a directed graph G = (V,A) with source s+ ∈ V , sink s− ∈ V and

capacity ce ∈ Z+ on each arc e ∈ A.

Question: What is the maximum flow from node s+ to node s− if the direction of the

arcs can be reversed?

This problem is also called maximum flow problem with arc reversal. Consider now

procedure P-MCF. In the first step, an auxiliary graph G̃ = (V, Ã) is constructed. The

transformation from the original graph G is obtained by summing the capacities of arcs

(i, j) and (j, i). This allows us to reduce the MCF problem to the maximum flow problem

on the transformed graph in step 2. Step 3 removes cycle flows in the transformed graph.

This ensures that the constructed solution of the MCF problem in step 4 is well defined.

We have the prior knowledge that there exists an optimal flow to the maximum flow

problem that does not have cycles. Thus, arcs on either direction will never be used in

this flow for the maximum flow problem. This is the basic idea of procedure P-MCF that

motivates the graph transformation given. This result is straightforward but we can realize

its impact in Sec. 5.4.1.

133

Procedure Maximum Contraflow (P-MCF)

1. Construct the transformed graph G̃ = (V, Ã) where the arc set is defined as

(i, j) ∈ Ã, if (i, j) ∈ A or (j, i) ∈ A ,

The arc capacity function c̃ is given by

c̃i,j := ci,j + cj,i ,

for all arcs (i, j) ∈ Ã.

2. Solve the maximum flow problem on graph G̃ with capacity c̃.

3. Perform flow decomposition into path and cycle flows of the maximum flow resulting
from step 2. Remove the cycle flows.

4. Arc (j, i) ∈ A is reversed, if and only if the flow along arc (i, j) is greater than ci,j,
or if there is a non-negative flow along arc (i, j) /∈ A and the resulting flow is the
maximum flow with arc reversal for graph G = (V,A).

End procedure

Theorem 5.1 (Proof of correctness). Procedure P-MCF solves the maximum flow problem

with arc reversal for graph G = (V,A) optimally.

Proof. The proof consists out of two steps. First, we show that any solution of the

procedure P-MCF is feasible for G = (V,A). Second, we show its optimality.

For feasibility, we only have to show that step 4 in the algorithm is well defined; i.e.

not both arcs (i, j) and (j, i) have to be switched. However, this is ensured by step 3.

The optimal solution after the flow decomposition results in a set of paths from source to

sink and a set of cycles with positive flows. After the flow decomposition we could cancel

the positive flows along all cycles and ensure that there is no flow along any cycle. This

ensures that there is either a flow along arc (i, j) or (j, i), but never on both arcs. Hence,

the resulting flow from step 4 is a feasible flow with arc reversal for graph G = (V,A).

Now, we prove that the resulting flow is also optimal. Note that any optimal solution

to the maximum flow problem with arc reversal on graph G = (V,A) is also a feasible

solution to the maximum flow problem on the transformed graph G̃ = (V, Ã). As the

134

amount of flow send from s to t is not changed in steps 3 and 4, the resulting flow is an

optimal solution to the maximum flow problem with arc reversal on graph G = (V,A).

The running time of procedure P-MCF is dominated by solving a maximum flow

problem in step 2 and by the flow decomposition in step 3; as steps 1 and 4 can be done

in O(|A|). Let us denote the running time for solving the maximum flow problem by

S1(|V |, |A|) and for the flow decomposition problem by S2(|V |, |A|). Then, the running

time of procedure P-MCF is given by O(S1(|V |, |A|)+S2(|V |, |A|)). Using the highest-label

preflow-push algorithm leads to S1(|V |, |A|) = O(|V |2 ·
√
E), [48]. The flow decomposition

can be done, for instance, in O(|V | · |E|), [4]. This proves the following theorem.

Theorem 5.2 (Running time). Procedure P-MCF solves the maximum contraflow problem

in strongly polynomial time.

We are now able to extend the result above to the case of multiple sources and

multiple sinks. This problem is also called maximum transshipment contraflow (MTCF)

problem.

Corollary 5.1. The static version of the maximum contraflow problem with multiple

sources and multiple sinks is polynomially solvable.

Corollary 5.1 can be realized through a simple reduction. Let S+ and S− be the set of

sources and the set of sinks, respectively. Then, add a ‘super-source’ u+ and a ‘super-sink’

v− together with the arcs (u+, s+), for all s+ ∈ S, with arc capacities equal their respective

surplus and (s−, v−) for all s− ∈ S− with their arc capacities equal their respective deficits.

For more details, refer to [76].

Recognize that we basically show in this section that the maximum contraflow

problem is equivalent to a maximum flow problem on an undirected (modified) graph.

This could be seen in the graph transformation provided in step 1 of procedure P-MCF

with arcs having same capacities in either directions.

135

5.4 Maximum Dynamic Contraflow Problems

In this section, we discuss the maximum dynamic contraflow (MDCF) problem. The

maximum dynamic flow problem was studied by Ford and Fulkerson [76], where they

try to maximize the flow sent from source to sink, within a given time horizon T . Unlike

the static case, in the dynamic network flow problem the flow over an arc can be repeated

over time. Ford and Fulkerson proved that this problem is equivalent to solving a

minimum cost flow problem with the arc costs as travel times on the arcs. Then the

optimal flow on the arcs from source to sink is decomposed into a set of paths or chains.

These chains are then temporally repeated over time to obtain the required dynamic flow.

In other words, there is always a temporally repeated chain flow that is equivalent to

the maximum dynamic flow. Let us assume there are P paths obtained from the chain

decomposition of the optimal minimum cost flow. Then the maximum dynamic flow is

given by
∑

i∈P

(T + 1− ti)hi ,

where hi is the flow along the ith path and ti is the time taken to travel the ith path.

In this section, we first study the single source and single sink dynamic flow problem

having arc reversal capability. We provide an algorithm employing a similar kind of graph

transformation as procedure P-MCF and discuss its proof of correctness together with its

worst case running time analysis. This implies that the quickest contraflow (QCF) problem

is also polynomially solvable. In the quickest flow problem, the time to send a given flow

from source to sink is minimized. Burkard et al. [33] gave a strongly polynomial time

algorithm for this problem.

Hoppe [117] studied the multiple sources and multiple sinks version of this problem,

also called the quickest transshipment problem, where they minimize the time taken to

send the supply at the sources to the sinks satisfying their demands. In static network

flows, the multiple sources and multiple sinks are handled by adding a ‘super-source’

and a ‘super-sink’. Then they are connected to the sources and sinks respectively, see

136

Corollary 5.1. However, this solution procedure is not applicable in a dynamic case

anymore. For the same reason, the dynamic contraflow problem with multiple sources and

multiple sinks is NP-complete. We provide an example illustrating this together with a

proof of its NP-completeness.

5.4.1 Single Source and Single Sink

Let us extend the MCF problem of Sec. 5.3 to the dynamic case.

Definition 5.3 (Maximum Dynamic Contraflow (MDCF)).

INSTANCE: Given a directed graph G = (V,A) with source node s+ ∈ V , sink node

s− ∈ V , capacity ce ∈ Z+ and transmission time te ∈ Z+ on each arc e ∈ A with ti,j = tj,i

if (i, j), (j, i) ∈ A, and an overall time horizon T ∈ Z+.

QUESTION: Determine the maximum amount of flow that can be send in T units

of time from source s+ to sink s−, if the direction of the arcs can be reversed at time 0.

Note: In this case, if we choose to switch an arc, it remains switched from time 0 to

T . The case where we allow switching of arcs back and forth in time is trivial as the

quickest transhipment contraflow problem, with this assumption, reduces to the quickest

transhipment problem through the graph transformation suggested in procedure P-MDCF

and hence is polynomially solvable.

Definition 5.3 states that in a MDCF problem, the graph is allowed to be asymmetric

with respect to the arc capacities. However, whenever both directions of an arc are

included in the graph, then the traveling time of these two arcs must be the same. This

assumption implies that the switching of an arc only changes the capacities of the arcs but

does not alter their traveling time.

The concept of temporally repeated flows is very fundamental for the maximum flow

problem with single source and single sink. Our algorithm for solving the MDCF problem

is mainly based on this concept. Hence, let us repeat the definition given by Ford and

Fulkerson, [76, page 147].

Definition 5.4 (temporally repeated).

137

A dynamic flow which can be generated by repeating chain flows of a static flow in

graph G is called temporally repeated flow.

The following theorem reveals the usefulness of temporally repeated flows in the

context of single source and single sink network flow problems, [76, Theorem 9.1].

Theorem 5.3. There is a temporally repeated dynamic flow that is maximal over all

dynamic flows for T periods.

The flow to be temporally repeated could then be determined by just solving a

minimum cost flow problem. Let us denote its running time by S3(|V |, |A|). Using, for

instance, the minimum mean cycle-canceling algorithm leads to a strongly polynomial

running time of O(|V |2 · |E|3 · log(|V |)), [89].

Before we proceed to the next lemma, we need to know that utilizing the concept of

time expanded graphs in a solution algorithm leads to a pseudo-polynomial running time.

In this case, the running time depends on |T |, rather than log(|T |) which would then lead

to a weakly polynomial running time. Nevertheless, we use the concept of time expanded

graphs in Theorem 5.4.

Consider now procedure P-MDCF. We show in Theorem 5.4 that it solves the MDCF

problem correctly. The main differences of procedure P-MCF and P-MDCF is given in

step 2. For the dynamic problem, we need temporally repeated flows. This ensures that

only one of the arcs (i, j) or (j, i) is used in the flow. This enables us to use the same

flipping rule for the arcs as in procedure P-MCF.

In order to show the correctness of procedure P-MDCF, we need the following lemma.

Lemma 5.1. The maximum amount of flow in the single source and single sink maximum

dynamic contraflow problem for graph G = (V,A) is less than the optimal flow in the

maximum contraflow problem for the corresponding time expanded graph GT = (V T , AT).

Proof. The result follows directly from the observation that every feasible flow to the

maximum dynamic contraflow problem has an equivalent feasible flow to the maximum

contraflow problem of the time expanded graph.

138

Procedure Maximum Dynamic Contraflow (P-MDCF)

1. Construct the transformed graph G̃ = (V, Ã) where the arc set is defined as

(i, j) ∈ Ã, if (i, j) ∈ A or (j, i) ∈ A .

The arc capacity function c̃ is given by

c̃i,j := ci,j + cj,i

and the traveling time is

t̃i,j
(
= t̃j,i

)
:=

{
ti,j , if (i, j) ∈ A
tj,i, otherwise

,

for all arcs (i, j) ∈ Ã.

2. Generate a dynamic, temporally repeated flow on graph G̃ with capacity c̃ and
traveling time t̃.

3. Perform flow decomposition into path and cycle flows of the flow resulting from step
2. Remove the cycle flows.

4. Arc (j, i) ∈ A is reversed, if and only if the flow along arc (i, j) is greater than ci,j,
or if there is a non-negative flow along arc (i, j) /∈ A and the resulting flow is the
maximum flow with arc reversal for graph G = (V,A).

End procedure

Please note that Lemma 5.1 holds good for more than one source and one sink.

However, in general, equality holds only for the case of a single source and a single sink,

as we will see in the following theorem. We are now ready to prove the correctness of

procedure P-MDCF.

Theorem 5.4 (Proof of correctness). Procedure P-MDCF solves the maximum dynamic

contraflow problem for graph G = (V,A) optimally.

Proof. The concept of this proof is similar to the proof of Theorem 5.1. First, we prove

that all the steps in procedure P-MDCF are well defined and result in a feasible solution.

Second, we show optimality.

For feasibility, the proof follows directly from the fact that the constructed flows

are temporally repeated and hence, there is only a flow in one direction of two nodes,

and never in both directions at the same time as well as at different time periods. After

139

canceling the flows along the cycles, we have flows either on arc (i, j) or on (j, i) but not

on both. This ensures that the flow is less than the reversed capacities on all the arcs at

all time units. This also ensures the feasibility. In other words, we now have established

the fact

[G = (V,A)]MDCFopt ≥ [G̃ = (V, Ã)]MDFopt ,

by the argument that every feasible flow of the dynamic flow problem in the transformed

graph G̃ = (V, Ã) is feasible to the maximum dynamic contraflow problem in the graph

G = (V,A). Our proof is complete if we show that

[G = (V,A)]MDCFopt ≤ [G̃ = (V, Ã)]MDFopt .

To see this, first note that the maximum contraflow in graph GT = (V T , AT) ≥

maximum dynamic contraflow in graph G = (V,A), from Lemma 5.1. Hence we have,

[G = (V,A)]MDCFopt ≤ [GT = (V T , AT)]MCFopt .

By Theorem 5.1 we have that the maximum contraflow problem in graph GT =

(V T , AT) is equivalent to the maximum flow problem in the graph G̃T = (V T , ÃT), where

the arc set ÃT is defined as

(i, j) ∈ ÃT , if (i, j) ∈ AT or (j, i) ∈ AT ,

and the arc capacity function c̃ is given by

c̃ti,j := cti,j + ctj,i .

Thus,

[GT = (V T , AT)]MCFopt = [G̃T = (V T , ÃT)]MFopt .

By Theorem 5.3, the maximum flow in the time expanded graph G̃T = (V T , ÃT) can

be obtained by a temporally repeating a chain flow of a static graph G̃ = (V, Ã). Hence we

140

have the fact,

[G̃T = (V T , ÃT)]MFopt = [G̃ = (V, Ã)]MDFopt .

Just like procedure P-MCF, running time dominating are steps are 2 and 3 for

procedure P-MDCF. This results in a worst case running time of O(S2(|V |, |A|) +

S3(|V |, |A|)); which is strongly polynomial.

Theorem 5.5 (Running time). Procedure P-MDCF solves the maximum flow problem in

strongly polynomial time.

For given excess b, the quickest contraflow problem determines the minimum time

horizon T needed by any feasible flow.

Corollary 5.2. The quickest contraflow problem can be solved in a strongly polynomial

time.

One way to realize Corollary 5.2 is through the work by Burkard et al. for the

quickest flow problem, [33]. First, obtain an upper bound on the quickest time and second,

perform a binary search by repeatedly solving the minimum dynamic contraflow problem.

Such a bound can be obtained in polynomial time, for instance, by computing a path

from source to sink and temporally repeating flow along the path until all supply at

the source is sent to the sink. However, this leads to a weakly polynomial algorithm. A

strongly polynomial algorithm could be obtained through a parametric search suggested

by Megiddo [138, 33].

5.4.2 Multiple Sources and Multiple Sinks

Let us start with the definition of the multiple sources and multiple sinks version of

the MDCF problem.

Definition 5.5 (Dynamic Transshipment Contraflow (DTCF)).

INSTANCE: A directed graph G = (V,A), a set of sources S+ ⊂ V , a set of sinks

S− ⊂ V , arc capacities ce ∈ Z+ and transmission time te ∈ Z+ for each arc e ∈ A with

ti,j = tj,i if (i, j), (j, i) ∈ A, and an overall positive integer time bound T .

141

QUESTION: Is there a feasible dynamic flow within time horizon T , allowing each

arc to be revered once at time 0?

Note that the DTCF problem is a decision problem corresponding to the maximum

dynamic contraflow problem with multiple sources and multiple sinks.

5.4.2.1 DTCF is NP-complete in the strong sense

In this section, we proof that the DTCF problem is NP-complete. A sketch of the

proof outline was given in [121]. However, we provide a rigorous proof. Also, the proof has

some differences though we provide the reduction from the same problem, 3SAT, [82, page

46]:

Definition 5.6 (3SAT).

INSTANCE: Collection C = {c1, c2, . . . , cm} of clauses on a finite set U of variables

such that |c1| = 3 for 1 ≤ i ≤ m.

QUESTION: Is there a truth assignment for U that satisfies all the clauses in C?

3SAT is known to be NP-complete in the strong sense, see [82, Theorem 3.1].

For an instance of 3SAT, construct a graph G3SAT = (V,A) for DTCF as follows.

For each clause ci we have one source node c+i with a surplus of 1. Each variable uj ∈ U ,

is presented by six nodes in the graph: two for each literal, named u1
j , u

2
j , u

1
j and u1

j

respectively, one source node with surplus 1, d+
j , and one sink node with deficit -1, d−j .

Finally, there is one node with deficit −|C|, named s−. This sums up to |V | = |C|+6|U |+1

nodes. Each clause node c+i is connected to the nodes with superscript 1 representing its

literals, taking 3 time units. For each j, the node u1
j is connected to its copy, u2

j , with

transshipment time of 1. Nodes d+
j are connected to u2

j and u2
j with transshipment time 1,

while nodes d−j are connected to u1
j and u1

j having a transshipment time of 1. Finally, each

second copy (superscript 2) of the literals is connected to the sink s− taking a time of 1.

All arcs have a capacity of |C|. This leads to |A| = 3|C| + 8|U | arcs in graph G3SAT . One

such graph transformation is shown in Fig. 5-1.

142

c+
2

+1

c+
1

+1

u1
3 u2

3

u1
3

u2
3

u1
2

u2
2

u1
2

u2
2

u1
1

u2
1

u1
1

u2
1

d−
3

−1

d+

3

+1

d−
2

−1

d+

2

+1

d−
1

−1

d+

1

+1

s−

−2

(2, 3)

(2, 1)

Figure 5-1. Transformed graph G3SAT corresponding to 3SAT instance
C = {{u1, u2, u3}, {u1, u2, u3}}

The proof of the validity of the transformation is based on the following key

observation.

Lemma 5.2. In any feasible flow f in the graph G3SAT within time T = 5, there is a flow

of value 1 from node d+
j to node d−j , for all j.

Proof. Let us fix index j and assume that the flow to node d+
j is integral. If the flow

to node d−j does not come from node d+
j , then it can only come from exactly one of the

nodes ci or d+
k with k 6= j. However, in both cases, the flow arrives at node d−j earliest at

time 6, or 7 respectively. This proofs the lemma for the case of integer flows. The case of

fractional flow is similar: If some fraction of the flow to node d−j comes from a different

node then d+
j , then the flow arrives after time T = 5.

Lemma 5.2 implies that for a feasible flow, at least one of the arcs (u1
j , u

2
j) or (u1

j , u
2
j)

has been switched for all j – with other words, at most one of the two arcs (u1
j , u

2
j) and

143

(u1
j , u

2
j) keep their direction in any feasible flow with time bound T = 5. Now, we are able

to proof the following lemma.

Lemma 5.3. An instance of 3SAT is a ‘YES’ instance, if only if the transformed graph

G3SAT is a ‘YES’ instance for DTCF with overall time bound T = 5.

Proof. “⇒” Let 3SAT have the feasible assignment uj = aj for all variables, with

aj ∈ {0, 1}. Then, reverse the arcs (u1
j , u

2
j) if aj = 0, and reverse arc (u1

j , u
2
j) otherwise.

Now, for all j, send one unit of flow from d+
j to d−j along the reversed arc. As only one of

the arcs (u1
j , u

2
j) or (u1

j , u
2
j) has been switched, we can send flow from any of the nodes c+i

through any non-switched arc, dependent on the assignment of the literals. This leads to a

feasible flow for DTCF within time T = 5.

“⇐” We have to show, that any feasible flow f for DTCF needing (at most) 5 units of

time leads to a ‘YES’ instance of the 3SAT. We assign the following value to each variable

uj ∈ U as

uj :=





0, if arc (u1
j , u

2
j) is reversed in flow f

1, otherwise
. (5–3)

We have to show that this is a satisfying truth assignment for the 3SAT instance. Now,

assume that clause ci is not a truth assignment. One unit of flow is send from node c+i to

node s− through one of the nodes u1
j or u1

j with uj ∈ ci or uj ∈ ci. Notice that this flow

cannot go through any other node c+k with 1 ≤ k ≤ m and k 6= i. Lemma 5.2 implies that

the corresponding value of variable uj has been set; i.e. uj = 1 if the flow passes node u1
j ,

or uj = 1 if it passes through node uj = 1. This leads to a contradiction.

The second part of the proof of Lemma 5.3 together with Lemma 5.2 give the idea

of the transformation from 3SAT. First, we have to send one unit of flow from each of

the nodes d+
j to d−j . This ensures that (at least) one of the arcs between the copies of the

literals has to be reversed. The arc which has not been switched can then be used for the

144

flow of the nodes c+j , allowing the clauses to have a truth assignment. Hence, the value of

the literals is reflected by the switching of the arcs.

Theorem 5.6. DTCF is NP-complete in the strong sense.

Proof. DTCF ∈ NP, as a non-deterministic algorithm needs only guess the set of arcs to

be reversed together with a flow f and check if the flow is feasible with time bound T = 5;

which can all be done in polynomial time. Lemma 5.3 states that the given transformation

G3SAT from 3SAT to DTCF is valid. As the cardinality of the node set and the arc set

of the constructed graph is O(|C|), the transformation is polynomial in the input size of

3SAT.

We want to mention that the transformation from 3SAT can easily be changed to

the general SAT by only changing the appropriate arcs from the clause nodes to the nodes

representing the literals.

5.4.2.2 What Makes DTCF so Tough to Solve?

Ford and Fulkerson introduced the idea of temporally repeated chain flows of

a static flow. This enabled them to solve the maximum dynamic flow problem with one

source and one sink. The fundamental principle is that there is always an optimal dynamic

flow which uses only one direction of an arc, but never both. They call this a standard

chain decomposition. This property allows us to solve the maximum dynamic flow problem

in strongly polynomial time. We exploit this property in Section 5.4.1 to solve the MDCF

problem.

The concept of standard chain decomposition is not sufficient for some well known

dynamic flow problems [117, 105, 156]. An example is given in Fig. 5-2. Graph G = (V,A)

shown in Fig. 5-2 (a) has a feasible flow with time T = 6 as illustrated in Fig. 5-2 (b). The

dashed and gray lines show the two flows from nodes s+
1 and s+

2 to node s−, respectively.

Analyzing the graph reveals that there is no feasible flow within time horizon T = 6 using

only one of the arcs (n1, n2) or (n2, n1); this can be seen, for instance, by considering the

flow trough the cut separating s− from the rest of the graph.

145

However, it was still possible to solve the maximum dynamic flow problem with

multiple sources and multiple sinks in the time-expanded graph; resulting in a pseudo-polynomial

running time algorithm. However, Hoppe was able to provide a polynomial time

algorithm for the dynamic transshipment problem [117]. He introduced the concept of

non-standard chain decomposition, allowing flow in either directions of an arc at different

time steps – if both directions of an arc are present in the graph.

Loosely speaking, the procedures P-MCF and P-MDCF reverse the arcs on the fly

and they are blind whether they reverse an arc or not. This does not cause any problems

in the context of static flows or single source and single sink dynamic flows, as in a

standard chain decomposition, one can always derive an optimal solution using only one

the arcs during the whole time horizon. However, in the case of multiple sources and

multiple sinks, the potential of using both arcs leads to the problem that we have to know

if an arc has been reversed or not. But exactly this memory and the tradeoff of reversing

the arc now or at a later time, makes the problem NP-complete. Consider Fig. 5-2 again.

Applying the idea of procedures P-MDCF to this problem leads to the following result: At

time 1, we would switch arc (n2, n1) in order to increase the capacity and at time point 3,

we would switch it back again; resulting in a flow needing only T = 5 time steps.

s+

2

s+

1

n2

n1

s−

(7,3)

(10,1)

(1,1) (1,1)

(2,1)

(2,1)

7

10

-17

A Graph G = (V, A)

s+

2

s+

1

n2

n1

s−

7

10

1 1
1
6

9
1

B Feasible flow with T = 6 using both
arcs (n1, n2) and (n2, n1)

Figure 5-2. A tough instance of DTCF

In Sec. 5.4.2.1, we showed that DTCF is NP-complete. The reduction from 3SAT

involves |C|+ |U | source nodes and |U |+1 sink nodes. In the following, we show that there

146

is no polynomial time algorithm for the DTCF problem having only two sources and one

sink (or one source and two sinks), unless P = NP. In other words, allowing only one more

source or sink to DTCF makes the problem NP-complete.

We do not go into full detail here, but rather provide the idea of a reduction

from PARTITION, which is motivated by the key observation of Lemma 5.2 and the

NP-completeness proof by Melkonian, [139]. Given is a finite set A and a size ai ∈ Z+

for each i ∈ A. The PARTITION problem decides whether there is a subset Ā ⊆ A such

that
∑

i∈Ā ai =
∑

j∈Ā\A aj , or not. PARTITION is known to be NP-complete (in the weak

sense), see [82, Theorem 3.5, Chapter 4.2]. Let
∑

i∈A ai = 2L with L ∈ Z+. We construct

an instance of the DTCF with two source nodes s+
1 , s+

2 and one sink node s−, as shown in

Fig. 5-3. The idea of this transformation is that the flow at node s+
2 has to pass through

node v1
0 to reach node s−, and one unit of flow from node s+

1 has to travel though node v1
n

to node s−. This is indeed true as otherwise the total time bound of T = 2L+ 2 would be

exceeded. The flow through the nodes v1
0 to v1

n and back gives the assignment to set Ā; i.e.

i ∈ Ā if and only if arc (v1
i1
, v1

i) is not reversed in the graph.

Figure 5-3. Instance for DTCF with time bound T = 2L+ 2 resulting from PARTITION

147

5.5 Contraflow Problems with Arc Switching Cost

To allow the switching of an arc in order to increase the capacity in one direction

results from the application in evacuation scenarios. However, in practice, you might

not be able to switch certain arcs. For instance, in evacuation scenarios, certain streets

are reserved for emergency vehicles but can also be used by (limited number of) other

travelers; i.e. this can be modeled by reducing the capacity of this arc and blocking it

from being reversed. In addition, the switching of an arc is highly costly; i.e. in order to

switch the direction of a highway, we have to set up police blocks on each entry to the

highway. Hence, it is natural to ask what are the minimum cost incurred in switching the

arcs allowing a certain (minimum) amount of flow. This leads to the following problem.

Definition 5.7 (Fixed Switching Cost Contraflow (FSCF)).

Instance: A directed graph G = (V,A) with a set of sources S+, a set of sinks S−,

excess b ∈ Z|V |, arc capacities ce and arc-switching cost bfe for each arc e ∈ A.

Question: Find a feasible flow f in G with minimal total cost, if the direction of the

arcs can be reversed with (fixed) cost bf .

Note that FSCF is a static problem with multiple sources and multiple sinks. The

fixed cost bfe occur, whenever arc e is reversed. This definition allows to model the

situation described above: Whenever an arc cannot be reversed, then its cost can be

assigned a high value; i.e. Big M . As the cost of switching can differ for each arc, we can

distinguish between the effort of reversing an arc; i.e. reversing a highway or an alleyway

involves different cost or resources.

The fixed switching-cost contraflow problem has the following interesting value.

One can solve the MTCF problem and determine the optimal flow in the graph, see

Corollary 5.1. Later, one can apply the FSCF problem to determine the minimal cost

implied by the switching of arcs, while still pushing the optimal amount of flow trough the

graph.

148

Notice that the FSCF problem has a similar structure as the minimum concave-cost

network flow problems. These problems ask to find a feasible flow while minimizing the

total cost which are in this case the sum of concave-costs induced by using of the arcs. For

an exact definition and an overview about this problem, please see the survey by Guise-

wite and Pardalos, [102]. We can basically assume the concave-cost per arc to consist

of fixed cost, occurring whenever this particular arc is used, and a variable cost, depending

on how much flow is send trough this arc, see [120]. Fixing the variable cost to zero leads

to a special problem called minimum cost fixed flow (MCFF) problem. Krukme et al.

prove that this problem is NP-hard in the strong sense even on series-parallel graphs,

[125, Theorem 14]. Series-parallel graphs have a very special structure and are defined

recursively, see [97, 24]. Furthermore, Krukme et al. show that the minimum cost fixed

flow problem is equivalent to the following problem, [125, Theorem 8]:

Definition 5.8 (0/1-Minimum Improvement Flow (MIF)).

Instance: A graph G = (V,A) with sink node s+, source node s−, excess b ∈ Z
|V |, arc

capacities ce ∈ Z+, maximum capacities Ce ∈ Z+, Ce ≥ ce and capacity improvement cost

b̄e ∈ Z.

Question: Determine an improvement strategy d : A → {0, Ce − ce} with minimum

cost
∑

e∈A deb̄e, such that the graph with the improved capacity ue + de, ∀e ∈ A, allows a

feasible flow f from s+ to s−.

The definition given here is slightly different then the one in the paper by Krukme

et al., [125, Definition 7]. Basically, we assume all data to be positive integral. The

improvement strategy function d is a 0-1 decision if additional capacity is used or not;

independent of how much additional capacity is used. The cost for this additional capacity

for arc e is fix at value (Ce − ce)b̄e. In order to prove that FSCF is strongly NP-hard, we

show that it is equivalent to MIF.

Theorem 5.7. Fixed switching-cost contraflow is equivalent to 0/1-minimum improvement

flow.

149

Proof. Without loss of generality, we can assume the FSCF problem to have single source

and single sink. Recognize that the graph transformation provided for Corollary 5.1 works

here.

“⇒” Given an instance of FSCF for graph G = (V,A) with arc capacity ce and

arc-switching cost bfe . Construct an instance of MIF for graph G = (V,A) as follows. If

there is an arc (i, j) ∈ A and (j, i) /∈ A, then (i, j), (j, i) ∈ A with i,j = Ci,j = Cj,i := ci,j ,

ī,j = j,i := 0, and j̄,i := bfi,j/ci,j respectively. For the case that (i, j), (j, i) ∈ A, we define

(i, j), (j, i) ∈ A with i,j := ci,j, Ci,j = Cj,i := ci,j + cj,i, ī,j := bfj,i/(ci,j + cj,i), j,i := cj,i,

and j̄,i := bfi,j/(ci,j + cj,i) respectively. By applying the cycle reduction principle used in

Sec. 5.3 and 5.4.1, we can see that this transformation is indeed valid.

“⇐” Given an instance of MIF for graph G = (V,A) with ce, Ce and b̄e, construct

an instance of FSCF for graph G = (V,A) as follows. For any arc (i, j) ∈ A, we have the

three arcs (i, j), (i, ī), (j, ī) ∈ A. Define i,j := ci,j,
f
i,j = f

i,̄i
:= M , i,̄i = j,̄i = Ci,j − ci,j and

f
j,̄i

:= b̄i,j(Ci,j − ci,j), where M is a big number preventing to switch the corresponding arc

in an optimal solution.

Recognize that having fixed cost for arc reversals makes the problem NP-hard, even

in the static case. One reason is, for instance, the previously mentioned observation, that

the procedure P-MCF is ‘blind’ for the arc reversal decisions. Adding a time component

to FSCF makes it practically even more difficult to solve. The time component reveals

also the differences between the (dynamic) fixed switching-cost contraflow problem and

the (dynamic) 0/1-minimum improvement flow problem: MIF affects only a particular arc

(i, j), while in FSCF also the reverse arc (j, i) is affected, if both arcs are contained in the

graph.

5.6 Conclusions

This chapter formally introduces the contraflow problem that has applications

in emergency transportation management. Several classic network flow problems are

studied, including static and dynamic networks. A polynomial time algorithm for the

150

dynamic contraflow problem with single source and single sink is given, together with an

NP-completeness proof for the dynamic transhipment contraflow problem. The hardness of

the contraflow problem with arc reversal cost is also indicated.

151

CHAPTER 6
MULTIMODAL SOLUTIONS FOR EVACUATION PROBLEMS

6.1 Introduction

The survey on evacuation problems [16] indicates that there is a shortage of analytical

techniques in multimodal evacuation studies. This chapter focuses on establishing efficient

evacuation routes with bimodal transportation. We consider emergency management or

event management situations such as football game, which assumes the absence of panic

situations but still captures the several aspects of an evacuation settings. These include

high demands during the event, need to satisfy demands quickly and congestion due to

high demands. We assume private cars and buses as the modes of transportation. The

cars are to take a path from source to destination, while the buses are routed. We assume

that the routes of the buses are known. We need to establish efficient paths for the cars

and determine the frequency of the buses along the routes. The problem is comparable

to the line planning problem [96, 2, 28], where multiple lines or modes of transportation

are available and demands of people are available at specific time windows. The lines are

predefined paths and the frequency of a line needs to be determined. Columns generation

procedures are quite popular for the line planning problem and much research have

been done in this area [28, 165]. We employ the branch and price approach to solve the

problem.

In the next section, we formally introduce the problem and discuss the integer linear

programming formulation. In section (6.3) we discuss the multimodal flow problem and

integer programming formulation. In section (6.4), we discuss the branch and price

procedure for the multimodal flow problem. Finally in section (6.5), we provide some

numerical results.

6.2 Multimodal Problem

Multimodal flow problems are known to be NP-hard [169]. Thus, the problem,

tailored to the needs of evacuation studies, requires efficient approaches to solve them

152

either approximately or exactly. We provided a path based formulation that would enable

us to employ a branch and price procedure to solve the problem. We formally define the

problem and state the assumptions.

6.2.1 Problem Definition

In this problem, we have two sets of people depending on their modes of transport.

We recognize the modes of transportation as private cars and buses. We know the

demands of cars and people traveling by bus for every pair of node. We also have a set of

bus tours that has already been established. The arcs of the network under consideration

is shared by both cars and buses. Each link have a capacity and a cost. We need to

determine the most efficient path for the cars between the origins and destination and

the optimal buses routes required without exceeding the capacity of the arcs. Networks

with travel times on their links could be expanded over time with each link having a cost

depending on the time instance of the originating node and its distance from its nearest

source node. The optimal bus routes then would provide us with the frequency with which

the buses have to be routed.

We formally define the problem as: Given a graph G(V,E) with cij , uij as the cost

and capacity on each arc ij ∈ E, a set of T bus tours, and two sets of origin destination

pairs (OD)1 and (OD)2 corresponding to demands of origin and destinations of cars and

people traveling by bus respectively, determine the minimum cost path of the cars and the

optimal subset of bus routes satisfying demands and capacity.

6.2.2 Assumptions and realization

We make some simplistic assumptions, which does not hinder the realization of the

model. We assume that the demands between the origin-destination pairs are known

and remain static. We assume that the bus routes are established and we only need to

determine their frequency. We also assume zero loading and unloading time for the buses.

The last assumption could however be overcome in the current model by appropriately

153

changing the bus routes to accommodate fixed loading times. We now provide a path and

route based formulation that will enable us to implement a branch and price mechanism.

6.3 Formulation and discussion

A bimodal evacuation problem is considered in which two modes of evacuation,

namely private cars and buses, are used for evacuating people from the origin nodes. The

people have their destination preferences from the respective origins. In an evacuation

setting, the buses are routed to pick up people from their origins and drop them at

their destinations. The private cars are taken by people directly from the origin to the

respective destinations. The demands are known in terms of number of cars and number of

people for the respective origin-destination pair. The buses and the cars have to share the

capacity of the arcs. We aim to reach the destinations with the least possible cost. The

objective function is a little loosely defined, but we will elaborate it shortly. We provide

a branch and price framework to solve the problem. We have two subproblems, one to

generate the paths of the private cars and the other to generate paths of people. For the

time expanded formulation, we need to determine an upper bound on the value of T . A

loose bound on this value could be obtained by individually bounding the times for buses

and cars separately and adding them together. The implication is we serially route them

one after the other and this is still a feasible solution to the problem. This will also help

us obtain an initial feasible solution to our branch and price procedure. We discuss the

procedure to obtain individual time bounds later.

fp (xp) is a binary variable indicating whether path p is used to satify the demand of

the corresponding origin destination pair. bt is binary variable with value 1 if a bus tour t

is used and 0 otherwise. α1(ij, p)(α2(ij, p)) is an indicator variable with value 1 if arc ij is

in bus path(car path) p and 0 otherwise. β(ij, t) is an indicator variable with value 1 if arc

ij is in tour t and 0 otherwise. γ1(st, p)(γ2(st, p)) is an indicator variable with value 1 if a

bus path(car path) p has origin and destination as s and t respectively and 0 otherwise.

Let P1 and P2 be the sets of all bus paths and car paths respectively and T be the set of

154

all bus tours. B is the capacity of a bus. OD1 and OD2 are the sets of origins-destination

pairs corresponding to buses and cars respectively. d1
st and d2

st is the demand of people

using buses and cars respectively from origin s to destination t. Finally, bt is a binary

variable with value 1 if a tour is picked and 0 otherwise.

Minimize
∑

p∈P1

cpxp +
∑

p∈P1

cpfp (6–1)

s.t.

∑

p∈P1

γ1(st, p)xp = 1, ∀st ∈ OD1 (6–2)

∑

p∈P2

γ2(st, p)fp = 1, ∀st ∈ OD2 (6–3)

∑

p∈P1

d1
stα1(ij, p)xp −

∑

t∈T

β(ij, t)Bbt ≤ 0, ∀ij ∈ E (6–4)

∑

p∈P2

d2
stα2(ij, p)fp +

∑

t∈T

β(ij, t)bt ≤ uij, ∀ij ∈ E (6–5)

xp ∈ {0, 1}, ∀p ∈ P1 (6–6)

fp ∈ {0, 1}, ∀p ∈ P2 (6–7)

bt ∈ {0, 1}, ∀t ∈ T (6–8)

6.4 Branch and Price Mechanism

We note that the problem has exponentially many paths in terms of the input size of

the graph and we will be generating these variables in the subproblem. This is a standard

approach in most of the routing and scheduling problems.

6.4.1 Restricted Master Problem (RMP)

The restricted master problem is obtained by relaxing constraints (6–6) - (6–7) as

continuous variables and replacing the sets P1 and P2 by the restricted sets P̄1 ⊆ P1 and

P̄2 ⊆ P2 respectively. This leads to the restricted master problem.

155

Minimize
∑

p∈P̄1

cpxp +
∑

p∈P̄1

cpfp (6–9)

s.t.

∑

p∈P̄1

γ1(st, p)xp = 1, ∀st ∈ OD1 (6–10)

∑

p∈P̄2

γ2(st, p)fp = 1, ∀st ∈ OD2 (6–11)

∑

p∈P̄1

d1
stα1(ij, p)xp −

∑

t∈T

β(ij, t)Bbt ≤ 0, ∀ij ∈ E (6–12)

∑

p∈P̄2

d2
stα2(ij, p)fp +

∑

t∈T

β(ij, t)bt ≤ uij, ∀ij ∈ E (6–13)

0 ≤ xp ≤ 1, ∀p ∈ P̄1 (6–14)

0 ≤ fp ≤ 1, ∀p ∈ P̄2 (6–15)

0 ≤ bt ≤ 1, ∀t ∈ T (6–16)

Let π ∈ ROD1 be the unrestricted dual variable corresponding to constraint set

(6–10), µ ∈ ROD2 be the unrestricted dual variable corresponding to constraint set (6–11),

η ∈ R
E
− be the non-positive dual variable corresponding to the constraint set (6–12)

and finally ψ ∈ RE
− be the non-positive dual variable corresponding to the constraint set

(6–13). In the pricing problem, we are interested in the reduced cost of the variable xp

and fp. We determine the minimum reduced cost of the path flow variables in the pricing

subproblems. If the minimum reduced cost corresponding to a origin destination pair

is negative we add it to the restricted set (corresponding to the cars or buses) and the

restricted master problem is solved again.

6.4.2 People-Path Subproblem

In the people-path subproblem, we determine the minimum negative reduced cost, x̄p,

of a path flow variable, xp, for people taking buses between a given origin-destination pair

st ∈ OD1. This is given by

156

x̄p = cp − (πst +
∑

∀(ij)∈E

α1(ij, p)ηij) = −πst +
∑

∀(ij)∈E

(α1(ij, p)cij − α1(ij, p)ηij) (6–17)

The cost of the path is given by the sum of the cost on arcs in the above equation.

Now, the shortest path problem for all pairs of st ∈ OD1 with the above arc costs cij − ηij

is solved. If πst is more than the length of a path, then it is added to the restricted path

set P1 and the RMP is solved again. We observed that the dual variable µ is negative and

hence the cost on each arc is positive. Thus the resulting shortest path problem is solvable

in polynomial time.

6.4.3 Car-Path Subproblem

In the car-path subproblem, we are concerned with the negative reduced cost, f̄p, of

car flow variables, fp, for the pairs of origin-destination st ∈ OD2. This given by

f̄p = cp − (µst +
∑

∀(ij)∈E

α2(ij, p)ψij) = −µst +
∑

∀(ij)∈E

(α2(ij, p)cij − α2(ij, p)ψij) (6–18)

We solve the shortest path, just as in people-path subproblem, but with arc cost

cij − ψij and if the cost of a path from s to t is less than µst, we add it to the restricted set

P2 and the RMP is solved again.

6.4.4 Branching Strategy

The branching rules is important as this determines the complexity of the pricing

problem. The branching also induces some practical difficulties that needs to be explicitly

handled. We address the two important problems encountered while branching.

The decision to branch occurs at a node of the branch and bound tree, when we

cannot enter any more columns to the restricted sets from either subproblems and the

relaxed LP solution at the current node is infeasible to the integer program. At this

juncture, if any of the bt variables are fractional, we decide to branch on them. It is easy

to see that this branching will not cause any difficulty to the subproblems as the arc

157

costs corresponding to the shortest path problems still remains positive. If none of the bt

variables are fractional and if a flow variable is fractional, a branching on the fractional

path flow variable would restrict the subproblems to generate paths other than the path

that was fractional. For instance, let fp be the fractional path with value f̄p. We branch

by adding

fp ≤ ⌊f̄p⌋

to one branch and

fp ≥ ⌈f̄p⌉

to the other branch. The difficulty now in the subproblem is that a candidate path

generated for that origin-destination pair should not be the branched variable. We cannot

guarantee that the shortest path problem could generate such a path. In fact after k

branchings, we might have to solve the kth shortest path subproblem. This is a common

difficulty that arises in branch and price approaches for multicommodity flow problems.

There are a few techniques in the literature that handles this issue [41, 9, 162, 176]. One

technique is to make an arc or a set of arcs of the path that was branched as forbidden

arcs in the branches. Thus the subproblem will not regenerate the path [41]. Another

technique in the literature [9] to solve the problem is to branch on arc flow variable

instead of path flow variable. For instance, the amount of cars on an arc ij is given by

∑
p∈P2

d2
stα2(ij, p)fp and let x̄ij be the fractional flow on the arc. So we can add the

constraint
∑

p∈P2

d2
stα2(ij, p)fp ≤ ⌊x̄ij⌋

to one branch and
∑

p∈P2

d2
stα2(ij, p)fp ≥ ⌈x̄ij⌉

to other branch. This however does not guarantee positive arc costs anymore in the

subproblems and they become NP-hard. This problem was overcome by adding separate

variables for flows along cycles in the RMP. Thus the subproblem has to return a shortest

158

path if available or a negative cost cycle. This could be solved in polynomial time. In this

problem, we revisit the technique employed by [162] for a bandwidth packing problem,

which is very similar to the multicommodity flow problem. A fractional path variable

is dealt by creating a number of branches. Each branch corresponds to an arc of the

fractional path, where it is forbidden and there is one additional branching node in which

the path is fixed to the solution.

The next problem to be addressed occurs when we arrive at a branch and bound

node with the LP relaxation resulting in an infeasible solution. In an elementary branch

and bound procedure we prune the search in this situation. However, this is not possible

in branch and price mechanism as we have not yet considered the entire set of columns

and hence there might exist a path that has not been entered but could provide a feasible

solution in the future. We take care of this issue, by adding dummy paths in the initial

solution with high cost that will provide us with the feasible solution.

6.5 Computational Results

We tested grid graphs of size 25 to 400 nodes. Table 6-1 enumerates the instances we

tested. The largest instance tested was grid graph with 400 nodes and 1520 edges with 100

cars and 40 buses.

Table 6-1. Results of the Branch & Price model tested on grid graphs

Nodes Arcs Cars Buses Tours CPU Time

1 25 80 6 6 3 0.013
2 25 80 10 10 4 0.064
3 25 80 20 10 4 0.174
4 25 80 15 15 4 0.089
5 100 360 5 5 4 0.138
6 100 360 10 10 5 1.161
7 100 360 20 10 5 1.063
8 100 360 20 20 7 0.8
9 225 840 10 10 7 5.637
10 225 840 20 20 10 1.205
11 400 1520 100 40 14 52.503

159

Additionally, in order to test the roubustness of the code we tested a few online

benchmark instances for multicommodity flow problems [128] for four planar graphs

and results are provided in table 6-2. We generated one dummy bus tour and one bus

commodity for each of the instances.

Table 6-2. Results of the Branch & Price model tested on planar graphs with one bus
commodity

Nodes Arcs Cars CPU Time

1 30 150 92 0.08
2 50 250 267 0.177
3 80 440 543 0.509
4 100 532 1085 1.605

6.6 Conclusion

This chapter provides a branch and price framework to solve a bimodal multicommodity

flow problem. We consider cars and buses as two modes of transportation and we obtained

optimal paths for cars and identified the bus routes needed for transportation. We tested

the model on grid graphs of sizes upto 400 nodes. As a future work, we need to employ

heuristic methods for the subproblems, develop procedures that would provide good lower

bound for the branch and bound. We are currently in the process of implementing a box

stabilization technique in order to accelerate the convergence of the branch and price

procedure that would enable us to test much larger instances.

160

CHAPTER 7
CONCLUSIONS

In this dissertation, we focused on network models having applications in disaster

management. We examined three kinds of applications, in which we studied different

problems. The first application dealt with the identification of critical nodes in a graph

that are crucial for its connectivity. We analysed and provided solution techniques to two

variations of the problem. We then studied two path planning problems that involves in

routing of agents or vehicles in a network in order to visit targets along their routes. We

finally studied evacuation problems in order to establish evacuation routes and contraflow

plans. In all these problems, we examined the complexity of the problem, provided integer

programming formulations and heuristic or exact solution techniques to solve them.

In chapter 2, we studied the variations of the critical node detection problem.

The problem identifies the nodes whose deletion results in a subgraph that has maximum

fragmentation. We provided complexity analysis for the problems, integer programming

formulation and heuristic solutions. We would like to study a weighted version of the

problem and explore approximation algorithms that would guarantee a theoretical bound

on the solution.

In chapter 3, we studied two path planning problems. In the first problem, thetarget

visitation problem, we formulated it as an integer program and provided a genetic

algorithm for the problem. We then compared the solutions of the heuristic with the

CPLEX solutions. We also studied communication models for cooperative net-

work, where we have to route multiple agents to visit targets in a cooperative network in

order to maximize their communication. We provided an integer programming formulation

and a GRASP based heuristic procedure to solve the problem. As a future work, we would

like to parallelize the heuristic and enhance it with more sophisticated search procedures.

In chapter 5, we studied various network flow problem with arc reversal capabilities.

We performed a detailed complexity analysis for these problems. Future research in these

161

problems involves in developing efficient solution techniques for the NP-hard problems. In

chapter 6, we studied the evacuation problem for which we provided a branch and price

approach to solve a bimodal multicommodity flow problem. We are currently working on

stabilization techniques to accelerate the convergence of the algorithm in order to test

large scale instances.

162

REFERENCES

[1] E. Aarts and J.K. Lenstra, editors. Local Search in Combinatorial Optimization.
Wiley, 1997.

[2] A. Abbas-Turki, R. Bouyekhf, O. Grunder, and A. El Moudni. On the line planning
problems of the hub public-transportation networks. International Journal of
Systems Science, 35(12):693–706, 2004.

[3] M. Van Aerde, H. Rakha, and H. Paramahamsan. Estimation of o-d matrices: The
relationship between practical and theoretical considerations. In In the proceedings of
82nd TRB Annual Meeting, pages 122–130, 2003.

[4] R. K. Ahuja, T. L. Magnati, and J. B Orlin. Network Flows: Theory, Algorithms,
and Applications. Prentice Hall, Englewood Cliffs, New Jersey, 1993.

[5] R.K. Ahuja, T.L. Magnanti, and J.B. Orlin. Network Flows: Theory, Algorithms,
and Applications. Prentice-Hall, 1993.

[6] R.M. Aiex, M.G.C. Resende, and C.C. Ribeiro. Probability distribution of soltuion
time in GRASP: An experimental investigation. Journal of Heuristics, 8:343–373,
2002.

[7] R.M. Aiex, M.G.C. Resende, and C.C. Ribeiro. TTTPLOTS: A perl program
to create time-to-target plots. Optimization Letters, published online(DOI:
10.1007/s11590-006-0031-4), 2006.

[8] S. Algers, E. Bernauer, M. Boero, L. Breheret, C. Di Taranto, M. Dougherty, and
K. Fox. Review of micro-simulation models. Technical report, SMARTEST Project
Deliverable D3, Institute for Transport Studies, University of Leeds, 1997.

[9] F. Alvelos. Branch-and-Price and Multicommod-
ity Flows. PhD thesis, Universidade do Minho, 2005.
http://repositorium.sdum.uminho.pt/dspace/bitstream/1822/2736/1/falvelos_phd.pdf.

[10] C. Antoniou, M. Ben-Akiva, M. Bierlaire, and R. Mishalani. Demand simulation
for dynamic traffic assignment. In Presented at the 8th IFAC Symposium on
Transportation Systems, pages 114–118, 1997.

[11] A. Arulselvan, C.W. Commander, L. Elefteriadou, and P.M. Pardalos. Detecting
critical nodes in social networks. Social Networks, submitted, 2007.

[12] A. Arulselvan, C.W. Commander, M.J. Hirsch, and P.M. Pardalos. Communication
models for a cooperative network of autonomous agents, page in press. Springer,
2007.

[13] A. Arulselvan, C.W. Commander, and P.M. Pardalos. A hybrid genetic algorithm for
the target visitation problem. Computers and Operations Research, submitted, 2007.

163

http://repositorium.sdum.uminho.pt/dspace/bitstream/1822/2736/1/falvelos_phd.pdf

[14] A. Arulselvan, C.W. Commander, and P.M. Pardalos. A random keys based genetic
algorithm for the target visitation problem. Lecture notes in control and information
sciences, 369:389–397, 2007.

[15] A. Arulselvan, C.W. Commander, P.M. Pardalos, and O. Shylo. Managing network
risk via critical node identification. In N. Gulpinar and B. Rustem, editors, Risk
Management in Telecommunication Networks, page submitted. Springer, 2007.

[16] A. Arulselvan, L. Elefteriadou, and P.M. Pardalos. A survey on evacuation problems.
Technical report, Center for Multimodal Transportation and Congestion MItigation,
University of Florida, 2004.

[17] K. Ashok and M. Ben-Akiva. Dynamic o-d matrix estimation and prediction for
real-time traffic management systems. In C.F. Daganzo, editor, International
Symposium on Transportation and Traffic Theory, volume 2337 of Transporation and
Traffic Theory, pages 36–53. Elsevier Science Publishing Company Inc., 1993.

[18] D.L. Bakuli and J.M. Smith. Resource allocation in state-dependent emergency
evacuation networks. European Journal of Operational Research, 89(3):543–555,
1996.

[19] J.X. Ban, H.X. Liu, and B. Ran. A link based quasi-variational inequality model
for dynamic user equilibria, towards real time traffic operations. In Proceedings of
the 8th International IEEE Conference on Intelligent Transportation Systems, pages
458– 463, September 2005.

[20] F. Barahona, M. Grötschel, M. Jünger, and G. Reinelt. An application of
combinatorial optimization to statisical physics and circuit layout design. Oper-
ations Research, 36:493–513, 1998.

[21] R. Battiti and G. Tecchiolli. Parallel biased search for combinatorial optimization:
Genetic algorithms and TABU. Microprocessors and Microsystems, 16:351–367,
1992.

[22] A. Bavelas. A mathematical model for group structure. Human Organizations,
7:16–30, 1948.

[23] J.C. Bean. Genetic algorithms and random keys for sequencing and optimization.
ORSA Journal on Computing, 6(2):154–160, 1994.

[24] M. W. Bern, E. L. Lawler, and A. L. Wong. Linear-time computation of optimal
subgraph of decomposable graphs. Journal on Algorithms, 8:216–235, 1987.

[25] M.C.J. Bliemer and P.H.L. Bovy. Quasi-variational inequality formulation of
the multiclass dynamic traffic assignment problem. Transportation Research B,
37:501–519, 2003.

164

[26] J.J. Blum and A. Eskandarian. The impact of multi-modal transportation on the
evacuation efficiency of building complexes. In Proceedings of the 7th International
IEEE Conference on Intelligent Transportation Systems, pages 702–707, Oct 2004.

[27] S.P. Borgatti. Identifying sets of key players in a network. Computational, Mathe-
matical and Organizational Theory, 12(1):21–34, 2006.

[28] R. Borndörfer, M. Grötschel, and M.E. Pfetsch. A column-generation approach to
line planning in public transport. Transportation Science, 41(1):123–132, 2007.

[29] W.M. Bretherton and M. Elhaj. Is a reversible lane system safe. In Compendium of
technical papers for 66th ITE Annual Meeting, pages 277–281, 1996.

[30] Luce Brotcorne, Daniel De Wolf, Michel Gendreau, and Martine Labb. A dynamic
user equilibrium model for traffic assignment in urban areas. In M. Gendreau and
P. Marcotte, editors, Transportation and Network Analysis: Current Trends, pages
49–70. Kluwer Academic Publishers, 2002.

[31] J.L. Bryan. Human behaviour in fire: the development and maturity of a scholarly
study area. Fire and Materials, 23(6):249–253, Mar 2000.

[32] L.S. Buriol, M.G.C. Resende, C.C. Ribeiro, and M. Thorup. A hybrid genetic
algorithm for the weight setting problem in OSPF/IS-IS routing. Networks,
46:36–56, 2005.

[33] R. Burkard, K. Dlaska, and B. Klinz. The quickest flow problem. Mathematical
Methods of Operations Research, 37(1):31–58, 1993.

[34] R.E. Burkard, K. Dlaska, and B. Klinz. The quickest flow problem. Mathematical
Methods of Operations Research, 37(1):31–58, February 1993.

[35] S.I. Butenko. Maximum Independent Set and Related Problems, with Applications.
PhD thesis, University of Florida, 2003.

[36] S.I. Butenko, X. Cheng, C.A.S. Oliveira, and P.M. Pardalos. A new algorithm for
connected dominating sets in ad hoc networks. In S. Butenko, R. Murphey, and
P. Pardalos, editors, Recent Developments in Cooperative Control and Optimization,
pages 61–73. Kluwer Academic Publishers, 2003.

[37] S.I. Butenko, R.A. Murphey, and P.M. Pardalos, editors. Cooperative Control:
Models, Applications, and Algorithms. Springer, 2003.

[38] S.I. Butenko, R.A. Murphey, and P.M. Pardalos, editors. Recent Developments in
Cooperative Control and Optimization. Springer, 2004.

[39] M. Carey. A constraint qualification for a dynamic traffic assignment. Transportation
Science, 20(1):55–58, 1986.

165

[40] M. Carey. Optimal time-varying flows on congested networks. Operations Research,
14(1):55–58, 1986.

[41] C.Barnhart, C.A. Hane, and P.H. Vance. Using branch-and-price-and-cut to solve
origin-destination integer multicommodity flow problems. Oper. Res., 48(2):318–326,
2000.

[42] L.G. Chalmet, R.L. Francis, and P.B. Saunders. Network models for building
evacuation. Management Science, 28:86–105, 1982.

[43] S. Chanas and P. Kobylanski. A new heuristic algorithm solving the linear ordering
problem. Computational Optimization and Applications, 6:191–206, 1996.

[44] E. Chang and A. Ziliaskopoulos. Formulation of analytical time varying intermodal
person trip assignment model. Transportation Research Record, 1882:1–9, 2004.

[45] A. Chen, S. Kongsomsaksakul, and Z. Zhou. Assessing network vulnerability using
combined travel demand model. In 86th Transportation Research Board Annual
Meeting, Washington, D.C., pages 07–2667, 2007.

[46] X. Chen. Agent based simulation of evacuation strategies under
different road network structures. Technical report, University
Consortium of Geographic Information Science, September 2006.
http://www.ucgis.org/summer03/studentpapers/xuweichen.pdf.

[47] X. Chen and B. Zhan. Agent-based modeling and simulation of urban evacuation
relative effectiveness of simultaneous and staged evacuation strategies. Journal of
Operations Research Society, 59(1):25–33, 2006.

[48] J. Cheriyan and S. N. Maheshwari. Analysis of preflow push algorithm for maximum
network flow. SIAM Journal on Computing, 18:1057–1086, 1989.

[49] B.H. Chiarini, W. Chaovalitwongse, and P.M. Pardalos. A new algorithm for the
triangulation of input-output tables in eEconomics. In P. Pardalos, A. Migdalas, and
G. Baourakis, editors, Supply Chain and Finance, pages 253–272. World Scientific,
2004.

[50] Y. Chiu, J. Villalobos, B. Gautam, and H. Zheng. Modeling no-notice mass
evacuation using a dynamic traffic flow optimization model. IIE Transactions,
39(1):83–94, January 2007.

[51] N. Christofides. Worst-case analysis of a new heuristic for the traveling salesman
problem. Technical report, Carnegie Mellon Univeristy, 1976.

[52] R.L. Church and R. Sexton. Modeling small area evacuation: Can existing
transportation infrastructure impede public safety? Technical report, Caltrans
Testbed Center for Interoperability Task Order 3021, April 2002.

166

http://www.ucgis.org/summer03/studentpapers/xuweichen.pdf

[53] B.N. Clark, C.J. Colbourn, and D.S. Johnson. Unit disk graphs. Discrete Mathemat-
ics, 86:165–177, 1990.

[54] R. Cohen, K. Erez, D. ben Avraham, and S. Havlin. Efficient immunization
strategies for computer networks and populations. Physical Review Letters, 85:4626,
2000.

[55] D.A. Coley. An introduction to genetic algorithms for scientists and engineers.
World Scientific, 1999.

[56] C.W. Commander. Optimization Problems in Telecommunications with Military
Applications. Ph.D. dissertation, University of Florida, August 2007.

[57] C.W. Commander, C.A.S. Oliveira, P.M. Pardalos, and M.G.C. Resende. A greedy
randomized algorithm for the cooperative communication problem on ad hoc
networks. In 8th INFORMS Telecommunications Conference, 2006.

[58] C.W. Commander, C.A.S. Oliveira, P.M. Pardalos, and M.G.C. Resende. A one-pass
heuristic for cooperative communication in mobile ad hoc networks. In D.A.
Grundel, R.A. Murphey, P.M. Pardalos, and O.A. Prokopyev, editors, Cooperative
Systems: Control and Optimization, pages 285–296. Springer, 2007.

[59] C.W. Commander, P.M. Pardalos, V. Ryabchenko, and S. Uryasev. The wireless
network jamming problem. Journal of Combinatorial Optimization, published online,
DOI 10.1007/s10878-007-9071-7, 2007.

[60] C.W. Commander, P.M. Pardalos, O. Shylo, and S. Uryasev. Recent advances
in eavesdropping and jamming communication networks. In D.A. Grundel, R.A.
Murphey, P.M. Pardalos, and O.A. Prokopyev, editors, 6th International Conference
on Cooperative Control and Optimization, pages 101–112. World Scientific, 2006.

[61] T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein. Introduction to Algorithms.
MIT Press, Cambridge, MA, 2001.

[62] T.J. Cova and J.P. Johnson. Microsimulation of neighborhood evacuation in urban
wildland interface. International Journal of Geographical information System,
11(8):763–784, 2002.

[63] ILOG CPLEX. http://www.ilog.com/products/cplex, Accessed October 2006.

[64] S. Dafermos. Traffic equilibria and variational inequalities. Transportation Science,
14:42–54, 1980.

[65] F.C. Daganzo. The cell transmission model: A dynamic representation of highway
traffic consistent with the hydrodynamic theory. Transportation Research Part B,
28B(4):269–287, 1994.

[66] G. Dantzig, R. Fulkerson, and S. Johnson. Solution of a large-scale
traveling-salesman problem. Operations Research, 2, 1954.

167

[67] C. Darwin. The Origin of Species. Murray, sixth edition, 1872.

[68] F.N. de Silva, R.W. Eglese, and M. Pidd. Evacuation planning and spatial decision
making: designing effective spatial decision support systems through integration of
technologies, pages 358–373. IGI Publishing, Hershey, PA, USA, 2003.

[69] M. Desrochers and G. Laporte. Improvements and extensions to the
miller-tucker-zemlin subtour elimination constraints. Operations Research Let-
ters, 10:27–36, 1991.

[70] D. Dreier. Barabasi graph generator v1.4. http://www.cs.ucr.edu/ ddreier, Accessed
November 2006.

[71] L. Elefteriadou. Highway capacity. In M. Kutz, editor, Handbook of Transportation
Engineering, chapter 8, pages 8–1 – 8–17. McGraw-Hill, 2004.

[72] P. Festa, P.M. Pardalos, L. Pitsoulis, and M.G.C. Resende. GRASP with
path-relinking for the weighted MAXSAT problem. ACM Journal of Experimental
Algorithmics, accepted, 2006.

[73] P. Festa and M.G.C. Resende. GRASP: An annotated bibliography. In C. Ribeiro
and P.Hansen, editors, Essays and surveys in metaheuristics, pages 325–367. Kluwer
Academic Publishers, 2002.

[74] L. Fleischer and M. Skutella. The quickest multicommodity flow problem, pages
36–53. Lecture Notes in Computer Science. Springer, 2002.

[75] R.W. Floyd. Algorithm 97 (shortest path). Communications of the ACM, 5(6):345,
1962.

[76] FL. R. Ford and D. R. Fulkerson. Flows in Networks. Princeton University Press,
Princeton, New Jersey, 1962.

[77] L.R. Ford and D.R. Fulkerson. Constructing maximal dynamic flows from static
slows. Operations Research, 6:419–433, 1958.

[78] L.C. Freeman. Centrality in social networks I: Conceptual Clarification. Social
Networks, 1:215–239, 1979.

[79] T.L. Friesz, D. Bernstein, T.E. Smith, R.L. Tobin, and B.W. Wie. A variational
inequality formulation of the dynamic network user equilibrium problem. Operations
Research, 41(1):179–191, 1993.

[80] H. Fu and C.G. Wilmot. A sequential logit dynamic travel demand model for
hurricane evacuation. Transportation Research Record, 1882:19–26, 2004.

[81] H. Fu and C.G. Wilmot. Modeling the hurricane evacuation response curve.
TRANSPORTATION RESEARCH RECORD, 2022:94–102, 2007.

168

[82] M. R. Garey and D. S. Johnson. Computers and Intractability - A Guide to the
Theory of NP-Completeness. W. H. Freeman and Company, New York, 1979.

[83] M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide to the Theory
of NP-Completeness. W.H. Freeman and Company, 1979.

[84] M.R. Gary and D.S. Johnson. A guide to Theory of NP-Completeness. W.H.
Freeman and Company, 1979.

[85] F. Glover. Future paths for integer programming and links to artificial intelligence.
Computers and Operations Research, 5:533–549, 1986.

[86] F. Glover, T. Klastorin, and D. Klingman. Optimal weighted ancestry relationships.
Management Science, 20:B1190–B1193, 1974.

[87] F. Glover, M. Laguna, and R. Mart́ı. Fundamentals of scatter search and
path-relinking. Control Cybernetics, 39:653–684, 2000.

[88] H. Golani and S.T. Waller. Combinatorial approach multiple destination user
optimal dynamic traffic assignment. Transportation Research Record, 1882:70–78,
2004.

[89] A. V. Goldberg and R. E. Tarjan. Finding minimum-cost circulations by cancelling
negative cycles. Journal of ACM, 36:873–886, 1989.

[90] D.E. Goldberg. Genetic Algorithms in Search, Optimization and Machine Learning.
Kluwer Academic Publishers, 1989.

[91] G. Gomes, L. Munoz, C.J. Yi, Toy, S. Cinnamon, R. Horowitz, and L. Alvarez.
Meso-microscale traffic simulation of an ahs control architecture. In Proceedings of
the American Control Conference, pages 1806–1811, 2001.

[92] R.E. Gomory and T.C. Hu. Multi-terminal network flows. Journal of SIAM,
9(4):551–570, 1961.

[93] J.F. Gonc̈alves and J.R. Almeida. A hybrid genetic algorithm for assemply line
balancing. Journal of Heuristics, 8:629–642, 2002.

[94] J.F. Gonçalves, J.J.M. Mendes, and M.G.C. Resende. A hybrid genetic algorithm
for the job shop scheduling problem. European Journal of Operations Research,
167:77–95, 2005.

[95] J.F. Gonçalves, J.J.M. Mendes, and M.G.C. Resende. A random keys based genetic
algorithm for the resource constrained project scheduling problem. Computers and
Operations Research, accepted, 2006.

[96] J.H.M. Goossens, C.P.M. Hoesel, and L.G. Kroon. On solving multi-type line
planning problems. METEOR Research Memorandum RM/02/009, University of
Maastricht, Maastricht, The Netherlands, 2002.

169

[97] J. L. Gross and J. Yellen. Handbook of Graph Theory (Discrete Mathematics and Its
Applications). CRC, New York, 2003.

[98] M. Grötschel, M. Jünger, and G. Reinelt. A cutting plane algorithm for the linear
ordering problem. Operations Research, 32:1195–1220, 1984.

[99] M. Grötschel, M. Jünger, and G. Reinelt. On the acyclic subgraph polytope.
Mathematical Programming, 33:28–42, 1985.

[100] D.A. Grundel and D.E. Jeffcoat. Formulation and solution of the target visitation
problem. In Proceedings of the AIAA 1st Intelligent Systems Technical Conference,
2004.

[101] D.A. Grundel, R.A. Murphey, and P.M. Pardalos, editors. Theory and Algorithms
for Cooperative Systems. World Scientific, 2004.

[102] G. M. Guisewite and P. M. Pardalos. Minimum Concave-Cost Network Flow
Problems: Applications, Complexity, and Algorithms. Annals of Operations
Research, 25:75–100, 1990.

[103] G. Gutin and A. Punnen. The Traveling Salesman Problem and Its Variations.
Kluwer Academic Publishers, Dordrecht, 2002.

[104] S. Gwynne, E. R. Galea, M. Owen, P.J. Lawrence, and L. Filippidis. A review of
the methodologies used in the computer simulation of evacuation from the built
environment. Building and Environment, 34(6):741–749, 1999.

[105] B. Hajek and R. G. Ogier. Optimal dynamic routing in communication networks
with continuous traffic. Networks, 14:457–487, 1984.

[106] G. L. Hamza-Lup, K.A. Hua, M. Lee, and R. Peng. Enhancing intelligent
transportation systems to improve and support homeland security. In Proceed-
ings of the 7th International IEEE Conference on Intelligent Transportation Systems,
pages 250–255, 2004.

[107] P.R. Harper, V. de Senna, I.T. Vieira, and A.K. Shahani. A genetic algorithm for
the project assignment problem. Computers and Operations Research, 32:1255–1265,
2005.

[108] P. Hartman and G. Stampacchia. On some nonlinear elliptic diferential functional
equations. Acta Mathematica, 115:271–310, 1966.

[109] D. Helbing, I. Farkas, and T. Vicsek. Simulating dynamical features of escape panic.
Nature, 407:487, 2000.

[110] F.S. Hillier and G.J. Lieberman. Introduction to Operations Research. McGraw Hill,
2001.

170

[111] M.J. Hirsch. GRASP-based heuristics for continuous global optimization problems.
Ph.D. dissertation, University of Florida, December 2006.

[112] M.J. Hirsch, C.N. Meneses, P.M. Pardalos, and M.G.C. Resende. Global
optimization by Continuous GRASP. Optimization Letters, 1(2):201–212, 2007.

[113] J.K. Ho. A successive linear optimization approach to dynamic traffic assignment.
Transportation Science, 14(4):295–305, 1980.

[114] E.J. Holguin-Veras, N. Perez, S.V. Ukkusuri, T. Wachtendorf, and B. Brown.
Emergency logistics issues affecting response to hurricane katrina: Synthesis and
preliminary suggestions for improvement. Transportation research record, 2022:76–82,
2007.

[115] B. Hoppe and E. Tardos. Polynomial time algorithms for some evacuation problems.
In SODA ’94: Proceedings of the fifth annual ACM-SIAM symposium on Discrete
algorithms, pages 433–441. Society for Industrial and Applied Mathematics, 1994.

[116] B. Hoppe and E. Tardos. The quickest transshipment problem. In SODA ’95:
Proceedings of the sixth annual ACM-SIAM symposium on Discrete algorithms,
pages 512–521. Society for Industrial and Applied Mathematics, 1995.

[117] B. E. Hoppe. Efficient Dynamic Network Flow Al-
gorithms. PhD thesis, Cornell University, 1995.
http://www.math.tu-berlin.de/~skutella/hoppe_thesis.ps.gz.

[118] R. Horst, P.M. Pardalos, and N.V. Thoai. Introduction to Global Optimization,
volume 3 of Nonconvex Optimization and its Applications. Kluwer Academic
Publishers, 1995.

[119] R.M. Karp. Reducability among combinatorial problems. In R. Miller and
J. Thatcher, editors, Complexity of Computer Computations, pages 85–103. Plenum
Press, 1972.

[120] D. Kim and P. M. Pardalos. Dynamic Slope Scaling and Trust Interval Techniques
for Solving Concave Piecewise Linear Network Flow Problems. Networks,
35(3):216–222, 2000.

[121] S. Kim and S. Shekhar. Contraflow Network Reconfiguration for Evaluation
Planning: A Summary of Results. In Proceedings of the 13th annual ACM interna-
tional workshop on Geographic information systems, pages 250–259, 2005.

[122] B. Klinz and G.J. Woeginger. Minimum-cost dynamic flows: The series-parallel case.
Networks, 43:153–162, 2004.

[123] V. Krebs. Uncloaking terrorist networks. First Monday, 7(4), April 2002.

[124] M.S. Krishnamoorthhy and N. Deo. Node-deletion NP-complete problems. SIAM
Journal of Computing, 8(4):619–625, 1979.

171

http://www.math.tu-berlin.de/~skutella/hoppe_thesis.ps.gz

[125] S. Krumke, H. Noltemeier, S. Schwarz, H. Wirth, and R. Ravi. Flow Improvement
and Network Flows with Fixed Costs. In In Proceedings of the International
Conference of Operations Research Ziirich (0R’98), pages 158–167, 1998.

[126] E.D. Kuligowski and R.D. Peacock. Review of building evacuation models. Technical
report, National Institute of Standards and Technology, July 2005.

[127] A. Langevin, F. Soumis, and J. Desrosiers. Classification of traveling salesman
problem formulations. Operations Research Letters, 9:127–132, 1990.

[128] T. Larsson and D. Yuan. An augmented lagrangean algorithm for large scale
multicommodity routing. Computational Optimization and Applications,
27(2):187–215, 2004.

[129] E.L. Lawler, J.K. Lenstra, A.H.G. Rinnooy Kan, and D.B. Shmoys, editors. The
Traveling Salesman Problem. Wiley, 1985.

[130] H.W. Lenstra. The acyclic subgraph problem. Technical Report Report BW26,
Mathematisch Centrum, Amsterdam, 1973.

[131] J. Lewis and M. Yannakakis. The node-deletion problem for hereditary properties is
np-complete. J. Comput. System Sci., 20(2):219–230, 1980.

[132] H.X. Liu, X. He, and X. Ban. Cell-based many-to-one dynamic system optimal
model and its heuristic solution method for emergency evacuation. In 86th Trans-
portation Research Board Annual Meeting, Washington, D.C., pages Paper 07–2261,
20 pages, 2007.

[133] Y. Liu, X. Lai, , and G-L. Chang. A cell-based network optimization model for
staged evacuation planning under emergencies. Transportation Research Record,
1964:127–135, 2006.

[134] Y. Liu, X. Lai, and G-L. Chang. Two-level integrated optimization system
for planning of emergency evacuation. Journal of transportation Engineering,
10(10):800–807, october 2006.

[135] Y. Liu, N. Zou, and G-L. Chang. An integrated emergency evacuation system for
real-time operations - a case study of ocean city, maryland under hurricane attacks.
In In the proceedings of Intelligent Transportation Systems, IEEE, pages 464– 469,
2005.

[136] C. Lund and M. Yannakakis. The approximation of maximum subgraph problems.
In ICALP ’93: Proceedings of the 20th International Colloquium on Automata,
Languages and Programming, pages 40–51, London, UK, 1993. Springer-Verlag.

[137] T.C. Matisziw and A.T. Murray. Modeling s-t path availability to support disaster
vulnerability assessment of network infrastructure. Computers and Operations
Research, in press 2008. doi:10.1016/j.cor.2007.09.004.

172

[138] N. Megiddo. Combinatorial optimization with rational objective functions. Mathe-
matics of Operations Research, 4:414–424, 1979.

[139] V. Melkonian. Flows in dynamic networks with aggregate arc capacities. Information
Processing Letters, 101(1):30–35, 2007.

[140] D.K. Merchant and G.L. Nemhauser. A model and an algorithm for the dynamic
traffic assignment problems. Transportation science, 12(3):183–199, August 1978.

[141] C. Miller, R. Tucker, and R. Zemlin. Integer programming formulations and
traveling salesman problems. Journal of the ACM, 7:326–329, 1960.

[142] E. Miller-Hooks and S.S. Patterson. On solving quickest time problems in
time-dependent, dynamic networks. Journal of Mathematical Modelling and Al-
gorithms, 3(1):39–71, 2004.

[143] E. Minieka. Maximal, lexicographic, and dynamic network flows. operations research.
Transportation Research Record, 21:517–527, 1973.

[144] M. Mitchell. An Introduction to Genetic Algorithms. MIT Press, Cambridge, MA,
1996.

[145] S.W. Mitchell and A.E. Radwan. Heuristic priority ranking of emergency evacuation
staging to reduce clearance time. Transportation Research Record, 1964:219–228,
2006.

[146] K.D. Moriarty, D. Ni, and J. Collura. Modeling traffic flow under emergency
evacuation situations: Current practice and future directions. In 86th Transportation
Research Board Annual Meeting, Washington, D.C., pages Paper 07–0745, 15 pages,
2007.

[147] R.A. Murphey and P.M. Pardalos, editors. Cooperative Control and Optimization.
Springer, 2002.

[148] P.M. Murray and H.S. Mahmassani. Model for household trip chain sequencing in
an emergency evacuation. In In the proceedings of 82nd TRB Annual Meeting, pages
21–29, 2004.

[149] Y.S. Myung and H.J. Kim. A cutting plane algorithm for computing k-edge
survivability of a network. European Journal of Operational Research, 156:579–589,
2004.

[150] A. Nagurney. Network Economics: A Variational Inequality Approach. Springer,
1999.

[151] H. Narayanan, S. Roy, and S. Patkar. Approximation algorithms for min-k-overlap
problems using the principal lattice of partitions approach. Journal of Algorithms,
21(2):306–330, 1996.

173

[152] C.A.S. Oliveira and P.M. Pardalos. An optimization approach for cooperative
communication in ad hoc networks. Technical report, School of Industrial
Engineering and Management, Oklahoma State University, 2005.

[153] C.A.S. Oliveira, P.M. Pardalos, and T.M. Querido. Integer formulations for
the message scheduling problem on controller area networks. In D. Grundel,
R. Murphey, and P. Pardalos, editors, Theory and Algorithms for Cooperative
Systems, pages 353–365. World Scientific, 2004.

[154] C.A.S. Oliveira, P.M. Pardalos, and T.M. Querido. A combinatorial algorithm for
message scheduling on controller area networks. International Journal of Operations
Research, 1(1/2):160–171, 2005.

[155] S. Opasanon. On finding paths and flows in multicriteria, stochastic, and time-
varying networks. PhD thesis, Department of Civil Engineering and Environmental
Engineering, University of Maryland, College Park, 2004.

[156] J. B. Orlin. Maximum-throughput dynamic network flows. Mathematical Program-
ming, 27:214–231, 1983.

[157] K. Ozbay and E.E. Ozguven. A stochastic humanitarian inventory control model
for disaster planning. In 86th Transportation Research Board Annual Meeting,
Washington, D.C., pages 63–75, 2007.

[158] M. Padberg and T. Sung. An analytical comparison of different formulations of the
traveling salesman problem. Mathematical Programming, 52:315–357, 1991.

[159] C.H. Papadimitriou. Computational Complexity. Addison-Wesley, 1994.

[160] C.H. Papadimitriou and S. Vempala. On the approximability of the traveling
salesman problem. In Proceedings of the 32nd Annual ACM Symposium on Theory
of Computation, pages 126–133, 2000.

[161] V. Pareto. Cours d’economie politique. Geneva: Libraire Drott, 1964.

[162] M.J. Parker and A. Ryan. A column generation algorithm for bandwidth packing.
Telecommunications Systems, 2:185–195, 1993.

[163] H.J. Payne. Models of freeway traffic and control. In Math. Models Publ. Sys.,
Simul. Council Proc., volume 28, pages 51–61, 1971.

[164] S. Peeta and A. Ziliaskopoulos. Foundations of dynamic traffic assignment: Past,
present and the future. Networks and Spatial Economics, 1(3-4):233–265, 2001.

[165] M.E. Pfetsch and R.Borndrfer. Routing in line planning for public transport.
In Herbert Kopfer Hans-Dietrich Haasis and Jrn Schnberger, editors, Operations
Research Proceedings, pages 405–410. Springer, 2005.

174

[166] M. Pidd, F.N. de Silva, and R.W. Eglese. Cemps: A configurable evacuation
management and planning system. In Proceedings of the Winter Simulation
Conference, pages 1319–1323, Dec 1993.

[167] F. Raciti and L.Scrimali. Time-dependent variational inequalities and applications to
equilibrium problems. J. of Global Optimization, 28(3-4):387–400, 2004.

[168] A.E. Radwan, A.G. Hoebeika, and D. Sivasailam. A computer simulation model
for rural network evacuation under natural disaster. Institute of Transportation
Engineers Journal, 55(9):25–30, September 1985.

[169] E. Radwan, S. Mitchell, and G. Yildirim. Framework for modeling emergency
evacuation. Technical report, Center for Advanced Transportation Systems
Simulation. University of Central Florida, April 2005.

[170] B. Ran and D. Boyce. Modelling Dynamic Transportation networks. Springer, 2
edition, 1996.

[171] S. Rebennack, A. Arulselvan, L. Elefteriadou, and P.M. Pardalos. Complexity
analysis for maximum flow problems with arc reversals. Submitted, 2008.

[172] M.G.C. Resende and P.M. Pardalos. Handbook of Optimization in Telecommunica-
tions. Springer, 2006.

[173] M.G.C. Resende and C.C. Ribeiro. Greedy randomized adaptive search procedures.
In F. Glover and G. Kochenberger, editors, Handbook of Metaheuristics, pages
219–249. Kluwer Academic Publishers, 2003.

[174] M.G.C. Resende and R.F. Werneck. A hybrid multistart heuristic for the
uncapacitated facility location problem. European Journal of Operations Research,
174:54–68, 2006.

[175] M.G.C. Resende and R.F. Werneck. A fast swap-based local search procedure
for location problems. Annals of Operations Research, published online, DOI:
10.1007/s10479-006-0154-0, 2007.

[176] D.M. Ryan and B. A. Foster. An integer programming approach to scheduling. In
A. Wren, editor, Computer Scheduling of Public Transport: Urban Passenger Vehicle
and Crew Scheduling, pages 269–280. Elsevier Science Ltd., 1981.

[177] H. Sakakibara, Y. Kajitani, and N. Okada. Road network robustness for
avoiding functional isolation in disasters. Journal of transportation Engineering,
130(5):560–567, 2004.

[178] G. Santos and B.E. Aguirre. A critical review of emergency evacuation simulation
models. In Proceedings of Building Occupant Movement during Fire, pages 27–52.
National Institute of Standards and Technology, 2004.

175

[179] P. Sattayhatewa and B. Ran. Developing a dynamic traffic management model for
nuclear power plant evacuation. In 83rd Transportation Research Board Annual
Meeting, Washington, D.C., page CDROM, 2004.

[180] H. Sbayti and H.S. Mahmassani. Optimal scheduling of evacuation operations.
Transportation Research Record, 1964:238–246, 2006.

[181] Y. Sheffi, H. Mahmassani, and W. Powell. NETVAC: A transportation Network
Evacuation Model. Center for Transportaion Studies, MIT, 1980.

[182] V.P. Sisiopiku, S.L. Jones, A.J. Sullivan, S.S. Patharkar, and X. Tang. Regional
traffic simulation for emergency preparedness. Technical report, University
Transportation Center for Alabama, The University of Alabama, The University
of Alabama in Birmingham, and The University of Alabama in Huntsville, April
2004.

[183] J.M. Smith. Qnet-c: An interactive graphics computer program for evacuation
planning. In Proceedings of the conference on Emergency plannning, SCS multicon-
ference, 14-16, pages 19–24, Jan 1987.

[184] J.M. Smith. Multiobjective routing in stochastic evacuation network. In
P.M. Pardalos D-Z. Du, editor, Network Optmization Problem, volume 2, pages
263–281. World Scientific, 1993.

[185] J.M. Smith and D. Towsley. The use of queueing networks in the evacuation of
egress from buildings. Environment and Planning, B-8:125–139, 1981.

[186] W.M. Spears and K.A. DeJong. On the virtues of parameterized uniform crossover.
In Proceedings of the Fourth International Conference on Genetic Algorithms, pages
230–236, 1991.

[187] A. Stathopoulos and T. Tsekeris. Enhanced dynamic origin-destination matrix
updating with long term flow information. Transportation Research Record,
1882:159–166, 2004.

[188] A. P. Tagliaferri. Use and Comparison of Traffic Simulation Models in the Analysis
of Emergency Evacuation Conditions. PhD thesis, Department of Civil Engineering,
North Carolina State University, 2005.

[189] K. Talebi and J.M. Smith. Stochastic network evacuation models. Computers and
Operations Research, 12(6):559–577, 1985.

[190] G. Theodoulou and B. Wolshon. Alternative methods to increase the effectiveness
of freeway contraflow evacuation. The Journal of Transportation Research Board,
1865:48–56, 2004.

[191] P.M. Tuite and H.S. Mahmassani. Methodology for determining vulnerable links in
transportation network. Transportation Research Record, 1882:88–96, 2004.

176

[192] H. Tuydes and A. Ziliaskopoulos. Network re-design to optimize evacuation
contraflow. Transportation Research Record: Journal of the Transportation Research
Board, 1964:157–168, 2006.

[193] H. Tuydes and A. Ziliaskopoulos. Tabu-based heuristic approach for optimization of
network evacuation contraflow. Transportation Research Record, 1964:157–168, 2006.

[194] S.T. Waller and A.K. Ziliaskopoulos. Stochastic dynamic network design problem.
Transportation Research Records, 1771:106–113, 2001.

[195] S. Warshall. A theorem on boolean matrices. Journal of the ACM, 9(1):11–12, 1962.

[196] W. L. Wilkinson. An algorithm for universal maximal dynamic flows in a network.
OPerations Research, 19:1602–1612, 1971.

[197] B. Williams, A. Tagliaferri, S. Meinhold, J. Hummer, and N. Rouphail. Simulation
and analysis of freeway lane reversal for coastal hurricane evacuation. J. Urban Plng.
and Devel., 133(1):61–72, 2007.

[198] J.M. Wislon. A genetic algorithm for the generalised assignment problem. Journal of
the Operational Reswearch Society, 48:804–809, 1997.

[199] L. Wolsey. Integer Programming. Wiley, 1998.

[200] B. Wolshon, E. Urbina, and M. Levitan. National review of hurricane evacuation
plans and policies. louisiana. Technical report, State University Hurricane Center,
2001.

[201] F. Yuan and L.D. Han. Evacuation modeling and operations using dynamic traffic
assignment and most-desirable destination approaches. In Proceedings of TRB 84th
Annual Meeting, Transportation Research Board, page CDROM, 2005.

[202] F. Yuan, L.D. Han, S-M. Chin, and H. Hwang. Proposed framework for simultaneous
optimization of evacuation traffic destination and route assignment. Transportation
Research Record, 1964:50–58, 2006.

[203] F. Yuan, L.D. Han, S-M. Chin, and H. Hwang. Does noncompliance with route and
destination assignment compromise evacuation efficiency? In 86th Transportation
Research Board Annual Meeting, Washington, D.C., pages paper 07–2396, 25 pages,
2007.

[204] T. Zhou, Z-Q. Fu, and B-H. Wang, editors. Epidemic dynamics on complex networks.
452-457, Progress in Natural Science, 2006 16.

[205] X. Zhou, S. Erdogan, and H.S. Mahmassani. Dynamic origin-destination trip
demand estimation for subarea analysis. In 85th Transportation Research Board
Annual Meeting, Washington, D.C., pages 176–184, 2006.

177

[206] A.K. Ziliaskopoulos. A linear programming model for the single destination system
optimum dynamic traffic assignment problem. Transportation science, 34(1):37–49,
February 2000.

[207] N. Zou, S-T. Yeh, G-L. Chang, A. Marquess, and M. Zezeski. Simulation-based
emergency evacuation system for ocean city, maryland, during hurricanes. Trans-
portation Research Record, 1922:138148, 2005.

178

BIOGRAPHICAL SKETCH

The author of this dissertation, Mr. Ashwin Arulselvan, is a graduate student at the

University of Florida in industrial and systems engineering.

179

	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	ABSTRACT
	1 INTRODUCTION
	2 CRITICAL NODE DETECTION PROBLEMS
	2.1 Introduction
	2.2 Critical Node Detection Problem
	2.2.1 Problem Definition
	2.2.2 Computational Complexity
	2.2.3 Integer Programming Formulations
	2.2.4 Heuristic for Detecting Critical Nodes
	2.2.5 Computational Results

	2.3 Cardinality Constrained Problem
	2.3.1 CC-CNP Heuristic
	2.3.2 Genetic Algorithm for the CC-CNP
	2.3.3 Computational Results
	2.3.4 CC-CNP Results

	2.4 Concluding Remarks

	3 PATH PLANNING PROBLEMS
	3.1 Target Visitation Problem
	3.1.1 Introduction
	3.1.1.1 Motivation

	3.1.2 Problem Description
	3.1.2.1 Related Problems
	3.1.2.2 Target Visitation Problem

	3.1.3 Genetic Algorithm
	3.1.3.1 Evolutionary Mechanisms
	3.1.3.2 Local Search

	3.1.4 Computational Results
	3.1.4.1 Numerical Results
	3.1.4.2 Time-to-Target Plots

	3.2 Communication Models for a Cooperative Network of Autonomous Agents
	3.2.1 Problem Formulation
	3.2.2 Previous Work
	3.2.3 Continuous Formulations
	3.2.3.1 Formulation 1: A Continuous Analog of CCPM-D
	3.2.3.2 Formulation 2: A Continuous Formulation Ensuring Location Visitations

	3.2.4 Case Studies
	3.2.5 Conclusion

	4 REVIEW OF EVACUATION PROBLEMS
	4.1 Introduction
	4.2 Optimization Techniques
	4.2.1 Maximum Dynamic Flow
	4.2.2 Dynamic Traffic Assignment
	4.2.3 Non-deterministic methods

	4.3 Significant Features in Optimization techniques
	4.3.1 Contra Flows
	4.3.2 Evacuee Behavior
	4.3.3 Dynamic origin-destination demands
	4.3.4 Multimodal Transportation
	4.3.5 Miscellaneous factors

	4.4 Simulation Techniques
	4.4.1 Microscopic Simulation Techniques
	4.4.2 Macroscopic Simulation Techniques
	4.4.3 Meso-Simulation Techniques
	4.4.4 Integrated Techniques

	4.5 Significant Features in Simulation techniques
	4.5.1 Reviewed Features
	4.5.2 Lane reversals and Traffic Control
	4.5.3 Dynamic Demand Estimation
	4.5.4 Miscellaneous Factors

	4.6 Conclusions

	5 NETWORK FLOW PROBLEMS WITH LANE REVERSALS
	5.1 Introduction
	5.2 Background
	5.3 Maximum Static Contraflow Problems
	5.4 Maximum Dynamic Contraflow Problems
	5.4.1 Single Source and Single Sink
	5.4.2 Multiple Sources and Multiple Sinks
	5.4.2.1 DTCF is NP-complete in the strong sense
	5.4.2.2 What Makes DTCF so Tough to Solve?

	5.5 Contraflow Problems with Arc Switching Cost
	5.6 Conclusions

	6 MULTIMODAL SOLUTIONS FOR EVACUATION PROBLEMS
	6.1 Introduction
	6.2 Multimodal Problem
	6.2.1 Problem Definition
	6.2.2 Assumptions and realization

	6.3 Formulation and discussion
	6.4 Branch and Price Mechanism
	6.4.1 Restricted Master Problem (RMP)
	6.4.2 People-Path Subproblem
	6.4.3 Car-Path Subproblem
	6.4.4 Branching Strategy

	6.5 Computational Results
	6.6 Conclusion

	7 CONCLUSIONS
	REFERENCES
	BIOGRAPHICAL SKETCH

