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Chapter 1

Models and Issues in
Consistent Biclustering

O. Erhun Kundakcioglu, Artyom Nahapetyan,
Stanislav Busygin, and Panos M. Pardalos

1.1 Introduction

Biclustering is a methodology allowing simultaneous partitioning of a set
of samples and their features into classes. Samples and features classified
together are supposed to have a high relevance to each other which can
be observed by intensity of their expressions. The notion of consistency
for biclustering is defined using interrelation between centroids of sample
and feature classes. Consistent biclustering also implies separability of the
classes by convex cones (see [Busygin et al. (2005)]). Previous works on
biclustering concentrated on unsupervised learning and did not consider
employing a training set, whose classification is given. However, with the
introduction of consistent biclustering, significant progress has been made
in supervised learning as well.

A dataset (e.g., from microarray experiments) is normally given as a
rectangular m× n matrix A, where each column represents a data sample
(e.g., patient) and each row represents a feature (e.g., gene)

A = (aij)m×n

where aij is the expression of ith feature in jth sample.
Biclustering is applied by simultaneous classification of the samples

and features (i.e., columns and rows of matrix A, respectively) into k

classes. Let S1, S2, . . . , Sk denote the classes of the samples (columns) and
F1, F2, . . . , Fk denote the classes of features (rows). Formally biclustering
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can be defined as follows.

Definition 1.1. A biclustering is a collection of pairs of sample and feature
subsets B = {(S1, F1), (S2, F2), . . . , (Sk, Fk)} such that

S1, S2, . . . , Sk ⊆ {aj}j=1,...,n,

k⋃
r=1

Sr = {aj}j=1,...,n,

Sζ

⋂
Sξ = ∅ ⇔ ζ 6= ξ,

F1, F2, . . . , Fk ⊆ {ai}i=1,...,m,

k⋃
r=1

Fr = {ai}i=1,...,m,

Fζ

⋂
Fξ = ∅ ⇔ ζ 6= ξ,

where {aj}j=1,...,n and {ai}i=1,...,m denote the set of columns and rows of
the matrix A, respectively.

By reordering the columns and rows of the matrix according to
their classifications, the result of biclustering can be visualized using the
Heatmap Builder Software, where a high value of aij corresponds to a
darker grid (see [Heatmap Builder Software (2003)] for more details). The
ultimate goal in a biclustering problem is to find a classification for which
samples from the same class have similar values for that class’ character-
istic features. The visualization of a reasonable classification should reveal
a block-diagonal or “checkerboard” pattern as seen on Figure 1.1.

One of the early algorithms to obtain an appropriate biclustering is
proposed by Hartigan, which is known as block clustering (see [Hartigan
(1972)]). Given a biclustering B, the variability of the data in the block
(Sr, Fr) is used to measure the quality of the classification. A lower vari-
ability in the resulting problem is preferable. The number of classes should
be fixed in order to avoid a trivial, zero variability solution in which each
class consists of only one sample. A more sophisticated approach for biclus-
tering was introduced in [Cheng and Church (2000)], where the objective
is to minimize the mean squared residual. They prove that the problem is
NP-hard and propose a greedy algorithm to find an approximate solution to
the problem. A simulated annealing technique for this problem is discussed
in [Bryan (2005)].

Dhillon discusses another biclustering method for text mining using a
bipartite graph (see [Dhillon (2001)]). In the graph, the nodes represent
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Fig. 1.1 An example of biclustering: “checkerboard” pattern.

features and samples, and each feature i is connected to a sample j with a
link (i, j), which has a weight aij . The total weight of all links connecting
features and samples from different classes is used to measure the quality
of a biclustering. A lower value corresponds to a better biclustering. A
similar method for microarray data is suggested in [Kluger et al. (2003)].

The input data is treated as a joint probability distribution between
two discrete sets of random variables in [Dhillon et al. (2003)]. The goal
of the method is to find disjoint classes for both variables. A Bayesian
biclustering technique based on the Gibbs sampling can be found in [Sheng
et al. (2003)].

The concept of consistent biclustering is introducted in [Busygin et al.
(2005)]. Formally speaking, a biclustering B is consistent if in each sample
(feature) from any set Sr (set Fr), the average expression of features (sam-
ples) that belong to the same class r is greater than the average expression
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of features (samples) from other classes. It has been shown that consistent
biclustering implies cone separability of samples and features. The model
for supervised biclustering involves solution of a special case of fractional 0-
1 programming problem whose consistency is achieved by feature selection.
Computational results on microarray data mining problems are obtained
by reformulating the problem as a linear mixed 0-1 programming problem.

An improved heuristic procedure is proposed in [Nahapetyan et al.
(2006)], where a linear programming problem with continuous variables
is solved at each iteration. Numerical experiments on the same data con-
firm that the algorithm outperforms the previous result in the quality of
solution as well as computation time.

Section 1.2 contains a brief discussion of consistent biclustering. Section
1.3 introduces the application of the technique in the supervised bicluster-
ing problem. Complexity results for consistent biclustering are shown in
Section 1.4. The heuristic algorithm described in [Nahapetyan et al. (2006)]
are mentioned in Section 1.5 with numerical results. Finally, Section 1.6
concludes this chapter.

1.2 Consistent Biclustering

Given a classification of the samples, Sr, let S = (sjr)n×k denote a 0-1
matrix where sjr = 1 if sample j is classified as a member of the class r

(i.e., aj ∈ Sr), and sjr = 0 otherwise. Similarly, given a classification of
the features, Fr, let F = (fir)m×k denote a 0-1 matrix where fir = 1 if
feature i belongs to class r (i.e., ai ∈ Fr), and fir = 0 otherwise. Construct
corresponding centroids for the samples and features using these matrices
as follows

CS = AS(ST S)−1 = (cS
iξ)m×r (1.1)

CF = AT F (FT F )−1 = (cF
jξ)n×r (1.2)

The elements of the matrices, cS
iξ and cF

jξ, represent the average expres-
sion of the corresponding sample and feature in class ξ, respectively. In
particular,

cS
iξ =

∑n
j=1 aijsjξ∑n

j=1 sjξ
=

∑
j|aj∈Sξ

aij

|Sξ| ,
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and

cF
jξ =

∑m
i=1 aijfiξ∑m

i=1 fiξ
=

∑
i|ai∈Fξ

aij

|Fξ| .

Using the elements of matrix Cs, one can assign a feature to a class
where it is over-expressed. Therefore feature i is assigned to class r̂ if
cS
ir̂ = maxξ{cS

iξ}, i.e.,

ai ∈ F̂r̂ =⇒ cS
ir̂ > cS

iξ, ∀ξ, ξ 6= r̂. (1.3)

Note that the constructed classification of the features, F̂r, is not nec-
essarily the same as classification Fr. Similarly, one can use the elements
of matrix CF to classify the samples. Sample j is assigned to class r̂ if
cF
jr̂ = maxξ{cF

jξ}, i.e.,

aj ∈ Ŝr̂ =⇒ cF
jr̂ > cF

jξ, ∀ξ, ξ 6= r̂. (1.4)

As before, obtained classification Ŝr does not necessarily coincide with clas-
sification Sr.

Definition 1.2. Biclustering B is referred to as a consistent biclustering if
relations (1.3) and (1.4) hold for all elements of the corresponding classes,
where matrices CS and CF are defined according to (1.1) and (1.2), respec-
tively.

A data set is biclustering-admitting if some consistent biclustering for
it exists. Furthermore, the data set is called conditionally biclustering-
admitting with respect to a given (partial) classification of some samples
and/or features if there exists a consistent biclustering preserving the given
(partial) classification.

Following is the theorem of conic seperability for consistent biclustering.

Theorem 1.1. Let B be a consistent biclustering. Then there exist convex
cones P1, P2, . . . , Pk ⊆ Rm such that only samples from Sr belong to the
corresponding cone Pr, r = 1, . . . , k. Similarly, there exist convex cones
Q1, Q2, . . . , Qk ⊆ Rn such that only features from class Fr belong to the
corresponding cone Qr, r = 1, . . . , k.

Proof. Let Pk be the conic hull of the samples of class Sk, that is, a
vector x ∈ Pk if and only if it can be represented as

x =
∑

j∈Sk

γja·j ,



May 7, 2007 16:46 World Scientific Book - 9in x 6in biclustering

6 Clustering Challenges in Biological Networks

where all γj ≥ 0. Note that, Pk is convex and all samples of class Sk belong
to it. Suppose that, there is a sample ĵ ∈ S`, ` 6= k that belongs to cone
Pk. Then there exists representation

a·ĵ =
∑

j∈Sk

γja·j ,

where all γj ≥ 0. Next, consistency of the biclustering implies that in the
matrix of feature centroids D, the component dĵ` > dĵk. This implies

∑
i∈F`

aiĵ

|F`| >

∑
i∈Fk

aiĵ

|Fk|
Plugging in aiĵ =

∑
j∈Sk

γjaij ,
∑

i∈F`

∑
j∈Sk

γjaij

|F`| >

∑
i∈Fk

∑
j∈Sk

γjaij

|Fk|
Changing the order of summation,

∑

j∈Sk

γj

(∑
i∈F`

aij

|F`|
)

>
∑

j∈Sk

γj

(∑
i∈Fk

aij

|Fk|
)

,

or
∑

j∈Sk

γjdj` >
∑

j∈Sk

γjdjk

On the other hand, for any j ∈ Sk, the biclustering consistency implies
dj` < djk, which contradicts the obtained inequality. Hence, sample ĵ

cannot belong to cone Pk.
Similarly, it can be shown that the stated conic separability holds for

the classes of features. ¤

It also follows from the proved conic separability that convex hulls of
classes do not intersect.

By definition, a biclustering is consistent if Fr = F̂r and Sr = Ŝr.
Theorem 1.1 proves that a consistent biclustering implies separability by
cones. However, a given data set might not have these properties. The
features and/or samples in the data set might not clearly belong to any of
the classes and hence a consistent biclustering might not be constructed. In
such cases, one can remove a set of features and/or samples from the data
set so that there is a consistent biclustering for the truncated data. Selection
of a representative set of features that satisfies certain properties is a widely
used technique in data mining applications. This feature selection process
may incorporate various objective functions depending on the desirable
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properties of the selected features, but one general choice is to select the
maximal possible number of features in order to lose minimal amount of
information provided by the training set.

A problem with selecting the most representative features is the follow-
ing. Assume that there is a consistent biclustering for a given data set, and
there is a feature, i, such that the difference between the two largest values
of cS

ir is negligible, i.e.,

min
ξ 6=r̂
{cS

ir̂ − cS
iξ} ≤ α,

where α is a small positive number. Although this particular feature is
classified as a member of class r̂ (i.e., ai ∈ Fr̂), the corresponding relation
(1.3) can be violated by adding a slightly different sample to the data set.
In other words, if α is a relatively small number, then it is not statistically
evident that ai ∈ Fr̂, and feature i cannot be used to classify the samples.
The significance in choosing the most representative features and samples
comes with the difficulty of problems that require feature tests and large
amounts of samples that are expensive and time consuming. Some stronger
additive and multiplicative consistent biclusterings can replace the weaker
consistent biclustering.

In lieu of (1.3) and (1.4) consider the relations

ai ∈ Fr̂ =⇒ cS
ir̂ > αS

i + cS
iξ, ∀ξ, ξ 6= r̂, (1.5)

and

aj ∈ Sr̂ =⇒ cF
jr̂ > αF

j + cF
jξ, ∀ξ, ξ 6= r̂, (1.6)

respectively, where αF
j > 0 and αS

i > 0. Let α denote the vector of αF
j and

αS
i .

Definition 1.3. A biclustering B is called an additive consistent bicluster-
ing with parameter α or α-consistent biclustering if relations (1.5) and (1.6)
hold for all elements of the corresponding classes, where matrices CS and
CF are defined according to (1.1) and (1.2), respectively.

Similarly, instead of (1.3) and (1.4) consider the relations

ai ∈ Fr̂ =⇒ cS
ir̂ > βS

i cS
iξ, ∀ξ, ξ 6= r̂, (1.7)

and

aj ∈ Sr̂ =⇒ cF
jr̂ > βF

j cF
jξ, ∀ξ, ξ 6= r̂, (1.8)
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respectively, where βF
j > 1 and βS

i > 1. Let β denote the vector of βF
j and

βS
i .

Definition 1.4. A biclustering B is called a multiplicative consistent bi-
clustering with parameter β or β-consistent biclustering if relations (1.7)
and (1.8) hold for all elements of the corresponding classes, where matrices
CS and CF are defined according to (1.1) and (1.2), respectively.

An α-consistent biclustering is a consistent biclustering for all values of
cS
iξ and cF

jξ. Also, a β-consistent biclustering is a consistent biclustering if
cS
iξ ≥ 0 and cF

jξ ≥ 0. Note that β-consistent biclustering instances can be
found in DNA microarray problems.

The two definitions above can be used to formulate two ways of choosing
the most representative subsets of features and samples. In an α-consistent
(β-consistent) biclustering problem, the smallest number of features and/or
samples is removed from a data set, so that an α-consistent (β-consistent)
biclustering exists. Since vectors α and β decrease the number of selected
features and/or samples, large values can cause the data set to be restricted.
Unfortunately, some important features and/or samples may be left out
because of this limitation. In order to overcome this problem, parameters
α and β should be chosen based on experimental results.

1.3 Supervised Biclustering

One of the most important problems in real-life data mining applications
is supervised classification of test samples. Many real problems already
have data sets with known classifications. These data sets are extremely
useful in application to the rest of the problem. Supervised classification
refers to the capability of a system to learn from these set of examples
which is known as the training set. The aim in this setup is to classify test
samples given the training set and its classification. This is achieved by first
processing the training set for feature selection, then classifying the test
samples based on these features. In most of the data mining applications,
feature selection is crucial since high-dimensionality of data makes complete
search computationally infeasible and only a subset of features is expected
to be relevant to the classification of interest.

Supervised biclustering uses these accurate data sets to classify features
to formulate consistent, α-consistent and β-consistent biclustering prob-
lems. Then, the information obtained from these solutions can be used to
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classify additional samples. This information is also useful for adjusting
the values of vectors α and β to produce more characteristic features and
decrease the number of misclassifications.

Given a set of training data, construct matrix S and compute the values
of cS

iξ using (1.1). Classify the features according to the following rule:
feature i belongs to class r̂ (i.e., ai ∈ Fr̂), if cS

ir̂ > cS
iξ, ∀ξ 6= r̂. Finally,

construct matrix F using the obtained classification. Let xi denote a binary
variable, which is one if feature i is included in the computations and zero
otherwise. Consistent, α-consistent and β-consistent biclustering problems
are formulated as follows.

CB:

max
x

m∑

i=1

xi (1.9a)

subject to
∑m

i=1 aijfir̂xi∑m
i=1 fir̂xi

>

∑m
i=1 aijfiξxi∑m

i=1 fiξxi
, ∀r̂, ξ ∈ {1, . . . , k}, r̂ 6= ξ, j ∈ Sr̂

(1.9b)

xi ∈ {0, 1}, ∀i ∈ {1, . . . , m} (1.9c)

α-CB:

max
x

m∑

i=1

xi (1.10a)

subject to
∑m

i=1 aijfir̂xi∑m
i=1 fir̂xi

> αj +
∑m

i=1 aijfiξxi∑m
i=1 fiξxi

, ∀r̂, ξ ∈ {1, . . . , k}, r̂ 6= ξ, j ∈ Sr̂

(1.10b)

xi ∈ {0, 1}, ∀i ∈ {1, . . . , m} (1.10c)

β-CB:

max
x

m∑

i=1

xi (1.11a)

subject to
∑m

i=1 aijfir̂xi∑m
i=1 fir̂xi

> βj

∑m
i=1 aijfiξxi∑m

i=1 fiξxi
, ∀r̂, ξ ∈ {1, . . . , k}, r̂ 6= ξ, j ∈ Sr̂

(1.11b)

xi ∈ {0, 1}, ∀i ∈ {1, . . . , m} (1.11c)
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The goal in the CB problem is to find the largest set of features that can
be used to construct a consistent biclustering. The α-CB and β-CB prob-
lems are similar to the original CB problem but the aim is to select features
that can be used to construct α-consistent and β-consistent biclusterings,
respectively.

1.4 Complexity of Feature Selection

In (1.9), xi, i = 1, . . .m are the decision variables. xi = 1 if i-th feature is
selected, and xi = 0 otherwise. fik = 1 if feature i belongs to class k, and
fik = 0 otherwise. The objective is to maximize the number of features
selected and (1.9b) ensures that the biclustering is consistent with respect
to the selected features.

The optimization problem above is a specific type of fractional 0-1 pro-
gramming problem which is defined as

max
m∑

i=1

wixi (1.12a)

subject to
ns∑

j=1

αs
j0 +

∑m
i=1 αs

jixi

βs
j0 +

∑m
i=1 βs

jixi
≥ ps, s = 1, . . . , S (1.12b)

This problem is NP-hard since linear 0-1 programming is a special class
of Problem (1.12) when βs

ji = 0 and βs
j0 = 1 for j = 1, . . . , ns, i = 1, . . .m

and s = 1 . . . , S. A typical way to solve a fractional 0-1 programming
problem is to reformulate it as a linear mixed 0-1 programming problem,
and solve new problem using standard linear programming solvers (see [T.-
H.Wu (1997); Tawarmalani et al. (2002)]).

In [Busygin et al. (2005)], a linearization technique is applied to solve
(1.9) due to the NP-hardness of the generalization but whether (1.9) itself
is NP-hard or not was an open question.

Theorem 1.2. Feature selection for consistent biclustering (i.e. formula-
tion (1.9)) is NP-hard.

Proof. To prove that the problem is NP-hard, a special case of the prob-
lem is proved to be NP-hard. In the case considered, there are two classes,
and all but one feature belong to the same class. Without loss of generality,
assume that m-th feature belongs to one class alone and hence it is selected
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in the optimal solution unless the problem is infeasible (i.e., xm = 1). Then
(1.9b) becomes

∑m−1
i=1 ai1xi∑m−1

i=1 xi

> am1 (1.13)

∑m−1
i=1 ai2xi∑m−1

i=1 xi

< am2 (1.14)

It has to be proven that the decision problem is NP-complete in or-
der to prove that the corresponding optimization problem is NP-hard (see
[Garey and Johnson (1979)]). The decision version of feature selection for
consistent biclustering problem is

D-CB: Is there a set of features that ensures biclustering is consistent,
i.e., satisfies (1.13)-(1.14)?

Clearly, D-CB is in NP since the answer can be checked in O(m) time
for a given set of features.

Next, the KNAPSACK problem will be reduced to D-CB in polynomial
time to complete the proof.

In a knapsack instance, a finite set U1, a size s(u) ∈ Z+ and a value
v(u) ∈ Z+ for each u ∈ U1, a size constraint B ∈ Z+, and a value goal
K ∈ Z+ are given. The question is

KNAPSACK: Is there a subset U ′ ⊆ U1 such that
∑

u∈U ′ s(u) ≤ B and∑
u∈U ′ v(u) ≥ K.
We can modify the knapsack problem as
Π: Is there a subset U ′ ⊆ U such that∑

u∈U ′
s(u) ≤ 0 (1.15)

∑

u∈U ′
v(u) ≥ 0 (1.16)

(1.17)
Obviously, Π remains NP-complete, since KNAPSACK can be reduced

to its modified variant if we define U = U1 ∪ t, s(t) = −B, and v(t) = −K.
Defining s′(u) = s(u) + α, v′(u) = v(u) + β for each u ∈ U and it can

easily be seen that

∑

u∈U ′
s(u) ≤ 0 ⇔

P
u∈U′ s′(u)

|U ′| ≤ α (1.18)

∑

u∈U ′
v(u) ≥ 0 ⇔

P
u∈U′ v′(u)

|U ′| ≥ β (1.19)



May 7, 2007 16:46 World Scientific Book - 9in x 6in biclustering

12 Clustering Challenges in Biological Networks

The inequality sign in (1.18)-(1.19) can be changed to strong inequality
as follows

∑
u∈U ′ s

′(u)
|U ′| ≤ α ⇔

P
u∈U′ s′(u)

|U ′| < α + ε1 (1.20)
∑

u∈U ′ v
′(u)

|U ′| ≥ β ⇔
P

u∈U′ v′(u)

|U ′| > β − ε2 (1.21)

where 0 < ε1 < minu,w∈U,s′(u)6=s′(w){|s′(u) − s′(w)|}/|U | and 0 < ε2 <

minu,w∈U,v′(u) 6=v′(w){|v′(u)− v′(w)|}/|U |
As a result the problem is reduced to selecting a subset U ′ ⊆ U such

that

∑
u∈U ′ s

′(u)
|U ′| < α + ε1 (1.22)

∑
u∈U ′ v

′(u)
|U ′| > β − ε2 (1.23)

(1.24)

which is in the form of (1.13)-(1.14). The reduction is polynomial and
(1.22-1.23) holds true if and only if (1.15-1.16) holds true. Thus D-CB is
NP-complete and the proof is complete. ¤

Corollary 1.1. Problems (1.10) and (1.11) are NP-hard.

Proof. Problem (1.9) is a special class of Problem (1.10) when αj = 0 for
j ∈ Sr̂. Similarly Problem (1.9) is a special class of Problem (1.11) when
βj = 1 for all j ∈ Sr̂. Hence both (1.10) and (1.11) are NP-hard. ¤

1.5 Application

1.5.1 Heuristic Algorithm

Problems (1.9),(1.10), and (1.11) are difficult to solve in the sense that
no polynomial time algorithm that finds the optimal solution exists unless
P = NP . As mentioned earlier, an approach is to reformulate and solve
a linearization of the problem. An iterative heuristic procedure has been
introduced in [Busygin et al. (2005)], which is required to iteratively solve
a linear 0-1 problem of smaller size. However, commercial mixed integer
programming (MIP) solvers are not able to solve it due to the excessive
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number of variables and constraints. Another heuristic procedure which
iteratively solves continuous linear problems is introduced in [Nahapetyan
et al. (2006)]. The algorithm’s versatility and efficiency allows it to be
applied to all three problems.

In the problems the expression
∑m

i=1 fiξxi describes the cardinality of
the set of features in the truncated data. In particular, if xi = 1, ∀i ∈
{1, . . . , m} such that fiξ = 1, then it is equal to the cardinality of Fξ. Given
a vector x, let Fξ(x) denote the truncated set of features, i.e., Fξ(x) ⊆ Fξ

such that the features are included in the Fξ(x) only if xi = 1. If the optimal
cardinalities of sets Fξ(x) are known, they can be fixed at those values, thus
the problem turns out to be linear. A series of linear programming problems
are iteratively solved, and meanwhile the cardinalities are updated with
each available solution.

The first step of Algorithm 1.1 assigns x0
i = 1, ∀i ∈ {1, . . . ,m}, Fξ(x0) =

Fξ, ∀ξ ∈ {1, . . . , k}, and p = 0. In the second step, CB Problem (1.25) is
solved, where the cardinalities of the feature sets are fixed at values |Fξ(xp)|
and integrality of the variables xi are relaxed.

max
x

m∑

i=1

xi (1.25a)

subject to
∑m

i=1 aijfir̂xi

|Fr̂(x
p
i )|

≥
∑m

i=1 aijfiξxi

|Fξ(x
p
i )|

, ∀r̂, ξ ∈ {1, . . . , k}, r̂ 6= ξ, j ∈ Sr̂

(1.25b)

xi ∈ [0, 1], ∀i ∈ {1, . . . ,m} (1.25c)

Let p← p+1 and xp denote the vector solution of the problem. Accord-
ing to solution xp, construct sets Fξ(xp), where the features are included in
the set if xp

i = 1 (i.e., Fξ(xp) ⊆ Fξ such that xp
i = 1). If ∃ξ ∈ {1, . . . , k} such

that Fξ(xp) 6= Fξ(xp−1), then go to Step 2 and solve problem (1.25) with
updated values of cardinalities. On the other hand, if Fξ(xp) = Fξ(xp−1),
∀ξ ∈ {1, . . . , k}, then constraint (1.25b) should be checked for x∗i = bxp

i c. If
the constraint is satisfied, the algorithm is stopped, and the value of vector
x∗ is returned. Otherwise, the variables xp

i with fractional values cannot
take value one and hence those features are permanently removed from the
data set.

Observe that solution x∗ is feasible to CB problem. In particular, x∗i
takes a value of either one or zero. The sets Fξ(xp) include only the features
with x∗i = 1. Validity of inequality (1.25b) implies validity of inequality
(1.9b). The strict inequality in (1.9b) leads to the following observation.
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Algorithm 1.1 Improved heuristic procedure [Nahapetyan et al. (2006)]
Step 1: Let x0

i = 1, ∀i ∈ {1, . . . ,m}, Fξ(x0) = Fξ, ∀ξ ∈ {1, . . . , k}, and
p = 0.
Step 2: Solve Problem (1.25). Let p ← p + 1 and xp denote the vector
solution of the problem.
Step 3: Construct the set of features Fξ(xp) ⊆ Fξ such that xp

i = 1.
Step 4: If Fξ(xp) 6= Fξ(xp−1) then go to Step 2.
Step 5: x∗i ← bxp

i c. If (1.25b) is satisfied for x∗i then stop. Otherwise,
permanently remove all features with fractional values of xp

i , and proceed
with Step 2.

The number of features in the truncated data set is maximized with
objective (1.25a), and it is beneficial to have the values of variables xi

very close to one. Yet, some variables become fractional at optimality
due to constraint (1.25b) and some of the constraints (1.25b) are tight
at optimality. If x∗ = bxpc satisfies (1.25b), then it is unlikely that the
constraints remain tight.

1.5.2 Computational Results

The experiments in this section consider a well known data set, which con-
sists of samples from patients diagnosed with acute lymphoblastic leukemia
(ALL) or acute myeloid leukemia (AML) diseases (see [Golub et al. (1999)]).
This data set is used in [Nahapetyan et al. (2006); Busygin et al. (2005);
Ben-Dor et al. (2000, 2001); Weston et al. (2000); Xing and Karp (2001)].
The results we present is obtained by Algorithm 1.1.

The data set is divided into two groups, where the first group is used as
a training set, and the second one, test data set, is used to verify the quality
of the obtained classification. The training set consists of 38 samples from
which 27 are ALL and 11 are AML samples. The test data set consist of
20 ALL and 14 AML samples. Each sample consists of 7070 features.

CB 10-CB 20-CB 30-CB 40-CB 50-CB 60-CB 70-CB 130-CB

# features 7024 7021 7018 7014 7010 6959 6989 6960 4639
# errors 2 2 2 2 1 1 1 1 1

The heuristic algorithm is run to solve CB as well as α-CB and β-CB
problems with different values for parameters α and β. Although param-
eters αj and βj can take different values for different features, in these
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CB 1.05-CB 1.1-CB 1.2-CB 1.5-CB 2-CB 3-CB 5-CB 7-CB

# features 7024 7017 7010 6937 6508 5905 5458 5173 5055
# errors 2 2 1 1 1 1 1 2 3

experiments it is assumed that they are all equal. In all cases, a “checker-
board” pattern is obtained that is similar to Figure 1.2.

Fig. 1.2 “Checkerboard” pattern for ALL and AML samples.

Table 1.5.2 illustrates the results for the additive consistent bicluster-
ing with different values of the vector parameter α. The first row in the
table represents the maximum number of features in the truncated data
that allow constructing corresponding biclustering. Using the obtained set
of features, the samples from the second group of data is classified, and
the second row in the table represents the number of misclassifications. It
can be noticed that a higher value of the parameter α better classifies the
samples. In particular, for α values more than or equal to 40, there is only
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one error detected in the classification of the test data. In addition, observe
that the number of selected features decreases with the increase of the pa-
rameter. Based on these observations, we can conclude that as α increases,
fewer but more representative features can be used to classify the data. The
highest value of the parameter α for which an α-consistent biclustering is
obtained is 130. When α is between 40 and 70, each experiment took at
most 90 seconds which is reasonable for most practical purposes. On the
other hand, it took at most 7 seconds, when α is out of this interval.

Table 1.5.2 reflects the results for β-consistent biclustering. In particular
a higher value of β provides a better classification. However, the values of
β grater than or equal to 5 turns out to be restrictive and the quality of
the classification decreases. The heuristic algorithm proposed in [Busygin
et al. (2005)] converges after 15 minutes and is able to select 6681 features
for βj = 1.1, ∀j ∈ {1, . . . , n}. Using the same parameter, Algorithm 1.1
outperforms the previous one by selecting 7010 features within 1.68 seconds
of CPU time.

Despite a small number of deleted features1, the consistent biclustering
is crucial to obtain a good classification for the features. If all features
are classified using (1.3) and tested using the second group of data, then
usually the number of misclassifications is larger. In the case of AML and
ALL samples, the number of misclassifications is 19 using this technique.
Practically all ALL samples from the test set are classified as AML.

Algorithm 1.1 is also tested on Human Gene Expression (HuGE) Index.
The samples are collected from healthy tissues of different parts of human
body. The main purpose of the classification is to identify the features that
are highly expressed in a particular tissue. Table 1.5.2 illustrates the com-
putational results of the CB and α-CB problems for different values of α. It
is interesting to observe that in most of the tissues (e.g., Blood, Brain, and
Breast), the number of selected features do not change for different values
of α. On the other hand, some tissues (e.g., Ovary) are more sensitive to
changes in the parameter. Table 1.5.2 introduces the results for the mul-
tiplicative consistent biclustering. Although in these problems the set of
sensitive tissues is larger than in the case of α-CB problems, some tissues
such as Cervix, Kidney, Placenta, Prostate, Spleen, Stomach preserve the
same number of selected features. The last column in the table provides
benchmarking data from [Busygin et al. (2005)] where a multiplicative con-
sistent biclustering problem with parameter βj = 1.1, ∀j ∈ {1, . . . , n} is

1In CB problem, 46 features are deleted.
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CB α-CB
Tissue type # samples α = 10 α = 70
Blood 1 472 472 472
Brain 11 615 615 615
Breast 2 903 903 903
Colon 1 367 366 355
Cervix 1 155 155 155
Endometrium 2 226 225 211
Esophagus 1 281 280 272
Kidney 6 159 159 159
Liver 6 440 440 440
Lung 6 102 102 102
Muscle 6 533 533 532
Myometrium 2 162 161 153
Ovary 2 257 255 240
Placenta 2 519 519 519
Prostate 4 281 281 281
Spleen 1 438 438 438
Stomach 1 447 447 447
Testes 1 522 521 515
Vulva 3 187 187 187
Total 59 7066 7059 6996

considered. Observe that for the same value of the parameter, Algorithm
1.1 finds 162 more features.

1.6 Closing Remarks

The concept of consistent biclustering and feature selection for consistent
biclustering have been discussed. The aim in this setting is to select a sub-
set of features in the original data set such that the obtained subset of data
becomes conditionally biclustering-admitting with respect to the given clas-
sification of training samples. The additive and multiplicative variations of
the problem are introduced to extend the possibilities of choosing the most
representative set of features. The NP-hardness of the original problem
and the extensions have been proved. A heuristic algorithm proposed in
[Nahapetyan et al. (2006)] is presented that allows computing the set of
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CB β-CB Busygin et al.
Tissue type # samples β = 1.1 β = 2 β = 1.1
Blood 1 472 472 467 472
Brain 11 615 615 610 614
Breast 2 903 903 900 902
Colon 1 367 365 348 367
Cervix 1 155 155 155 107
Endometrium 2 226 224 190 225
Esophagus 1 281 278 259 289
Kidney 6 159 159 159 159
Liver 6 440 440 421 440
Lung 6 102 102 101 102
Muscle 6 533 533 515 532
Myometrium 2 162 160 142 163
Ovary 2 257 253 225 272
Placenta 2 519 519 519 514
Prostate 4 281 281 281 174
Spleen 1 438 438 438 417
Stomach 1 447 447 447 442
Testes 1 522 520 506 512
Vulva 3 187 187 182 186
Total 59 7066 7051 6865 6889

truncated data. Unlike the previously presented algorithm where it is re-
quired to solve a sequence of integer programming problems, this approach
iteratively solves continuous linear problems. Computational results on the
same data set conform that this heuristic algorithm outperforms the pre-
vious result in the quality of the solution as well as computational time.
Although for most values of α and β the heuristic algorithm is likely to con-
verge to a solution, theoretically these parameters might need to be tuned
for some instances.
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