
Bilinear Programming: Applications in the Supply
Chain Management

Artyom G. Nahapetyan
Center for Applied Optimization

Industrial and Systems Engineering Department
University of Florida

Gainesville, Florida 32611-6595
Email address: artyom@ufl.edu

1 Introduction

Many problems in the supply chain management can be formulated as a network flow
problem with specified arc cost functions. Let G(N, A) represent a network where N and
A are the sets of nodes and arcs, respectively, and fa(xa) denotes an arc cost function. In
the network, there are supply and demand nodes, and the main objective of the problem
is to minimize the total cost by satisfying the demand from the available supply. In
addition, one can assume that the arc flows are bounded, which corresponds to the cases
where a shipment along an arc should not exceed a specified capacity. The mathematical
formulation of the problem can be stated as

min
x

f(x) =
∑
a∈A

fa(xa) (1)

s.t. Bx = b (2)

xa ∈ [0, λa] ∀a ∈ A (3)

where B is the node-arc incident matrix of network G, and b is a suplly/demand vector.
In the next section, we discuss two formulations where fa(xa) is either a concave piecewise
linear or fixed charge function of the arc flow. The concave piecewise linear functions
are typically used in the cases where merchandisers encourage to buy more products by
offering discounts in the unit price for large orders. The fixed charge functions are used in
the cases where regardless the quantity of the shipment it is required to pay a fixed cost
to ship along an arc. The fixed cost might be the cost of renting a truck, ship, airplane, or

1

train to transport goods between nodes of the network. In both cases, we show that the
problems are equivalent to a bilinear problem with a disjoint feasible region.

In addition to choosing a proper production level, sometimes managers have to make
pricing decisions as well. In particular, one can assume that the satisfied demand is a
function of the price, i.e., lower prices generate an additional demand. Such functional
relationship between the prices and the satisfied demand is commonly used by economists.
However, because of the production capacity restrictions, fixed costs related to the pro-
duction process, seasonality and other factors, often it is not feasible to satisfy the optimal
level of demand, and managers should consider optimal production and inventory levels
in combination with pricing decisions to maximize the net profit during a specified time
period. One of such problems and an equivalent bilinear formulation are discussed in the
next section as well.

In addition to the bilinear formulations of the supply chain problems, in Section 3
we explore the structure of the bilinear problems and discuss difficulties in applying the
standard computational methods. Despite the intricacy, the section proposes some heuristic
methods to find a near optimum solution to the problems. The solution obtained by a
heuristic procedure can also be used to expedite exact algorithms.

2 Formulation

2.1 Concave Piecewise Linear Network Flow Problem

In the problem (1)-(3), assume that fa(xa) is a piecewise linear concave function, i.e.,

fa(xa) =

c1
axa + s1

a(= f 1
a (xa)) xa ∈ [0, ξ1

a)
c2
axa + s2

a(= f 2
a (xa)) xa ∈ [ξ1

a, ξ
2
a)

· · · · · ·
cna
a xa + sna

a (= fna
a (xa)) xa ∈ [ξna−1

a , λa]

,

with c1
a > c2

a > · · · > cna
a . Let Ka = {1, 2, . . . , na}. Because of the concavity of fa(xa), it

can be written in the following alternative form

fa(xa) = min
k∈Ka

{fk
a (xa)} = min

k∈Ka

{ck
axa + sk

a}. (4)

By introducing additional variables yk
a ∈ [0, 1], k ∈ Ka, construct the following bilinear

problem.

min
x,y

g(x, y) =
∑
a∈A

[∑

k∈Ka

ck
ay

k
a

]
xa +

∑
a∈A

∑

k∈Ka

sk
ay

k
a =

∑
a∈A

∑

k∈Ka

fk
a (xa)y

k
a (5)

s.t. Bx = b (6)
∑

k∈Ka

yk
a = 1 ∀a ∈ A (7)

2

xa ∈ [0, λa], y
k
a ≥ 0 ∀a ∈ A and k ∈ Ka (8)

In [2], the authors show that at any local minima of the bilinear problem, (x̂, ŷ), ŷ is either
binary vector or can be used to construct a binary vector with the same objective function
value. Although the vector ŷ may have a fractional components, the authors note that in
practical problems it is highly unlikely. The proof of the theorem below follows directly
from (4). Details on the proof as well as transformation of the problem (1)-(3) into (5)-(8)
can be found in [2].

Theorem 1 If (x∗, y∗) is a global optima of the problem (5)-(8) then x∗ is a solution of
the problem (1)-(3).

According to the theorem, the concave piecewise linear network flow problem is equivalent
to a bilinear problem in a sense that the solution of the later is a solution of the former.
It is important to notice that the problem (5)-(8) does not have binary variables, i.e., all
variables are continuous. However, at optimum y∗ is a binary vector, which makes sure
that in the objective only one linear piece is employed.

2.2 Fixed Charge Network Flow Problem

In the case of the fixed charge network flow problem, we assume that the function fa(xa)
has the following structure.

fa(xa) =

{
caxa + sa xa ∈ (0, λa]
0 xa = 0

,

Observe that the function is discontinuous at the origin and linear on the interval (0, λa].
Let εa ∈ (0, λa], and define

φεa
a (xa) =

{
caxa + sa xa ∈ [εa, λa]
cεa
a xa xa ∈ [0, εa)

where cεa
a = ca + sa/εa. It is easy to see that φεa

a (xa) = fa(xa), ∀xa ∈ {0}⋃
[εa, λa]

and φεa
a (xa) < fa(xa), ∀xa ∈ (0, εa), i.e., φεa

a (xa) approximates the function fa(xa) from
below. (see Figure 1). Let us construct the following concave two-piece linear network flow
problem.

min
x

φε(x) =
∑
a∈A

φεa
a (xa) (9)

s.t. Bx = b, (10)

xa ∈ [0, λa], ∀a ∈ A, (11)

where ε denotes the vector of εa. Function φε(x) as well as the problem (9)-(11) depends
on the value of the vector ε. In the paper [3], the authors show that for any value of
εa ∈ (0, λa], a global solution of the problem (9)-(11) provides a lower bound for the fixed
charge network flow problem, i.e., φε(xε) ≤ f(x∗), where xε and x∗ denote the solutions of
the corresponding problems.

3

)(aa xf

aλaε

)(aa xaεφ

as

Figure 1: Approximation of function fa(xa).

Theorem 2 (see [3]) For all ε such that εa ∈ (0, λa] for all a ∈ A, φε(xε) ≤ f(x∗).

Furthermore, by choosing a sufficiently small value for εa one can ensure that both problems
have the same solution. Let δ = min{xv

a|xv ∈ V (x), a ∈ A, xv
a > 0}, where V (x) denotes

the set of vertices of the polyhedra (10)-(11). Observe that δ is the minimum among all
positive components of all vectors xv ∈ V (x); therefore, δ > 0.

Theorem 3 (see [3]) For all ε such that εa ∈ (0, δ] for all a ∈ A, φε(xε) = f(x∗).

Theorem 3 proves the equivalence between the fixed charge network flow problem and the
concave two-piece linear network flow problem (9)-(11) in a sense that the solution of the
later is a solution of the former. As we have seen in the previous section, concave piecewise
linear network flow problems are equivalent to bilinear problems. In particular, problem
(9)-(11) is equivalent to the following bilinear problem.

min
x,y

∑
a∈A

[caxa + sa] ya + cεa
a xa [1− ya] (12)

s.t. Bx = b, (13)

xa ≥ 0, and ya ∈ [0, 1], ∀a ∈ A, (14)

where εa ∈ (0, δ].

2.3 Capacitated Multi-Item Dynamic Pricing Problem

In the problem, we assume that a company during a discrete time period ∆ is able to
produce different commodities from a set P . In addition, we assume that at each point
of time j ∈ ∆ and for each product p ∈ P a functional relationship f(p,j)(d(p,j)) between
the satisfied demand and the price is given, i.e., in order to satisfy the demand d(p,j) of
the product p, the price of the product at time j should be equal to f(p,j)(d(p,j)). As a

4

result, the revenue generated from the sales of the product p at time j is g(p,j)(d(p,j)) =
f(p,j)(d(p,j))d(p,j). Although we do not specify the function f(p,j)(d(p,j)), it should ensure that
g(p,j)(d(p,j)) is a concave function (see Figure 2a). Because of the concavity of g(p,j)(d(p,j)),

there exists a point d̃(p,j), such that the function reaches its maximum, and producing

and selling more than d̃(p,j) is not profitable. Therefore, without lost of generality, we can

assume that d(p,j) ∈ [0, d̃(p,j)]. According to the definition of g(p,j)(d(p,j)), it is a concave

monotone function on the interval [0, d̃(p,j)]. To avoid nonlinearity in the objective, one

can approximate it by a concave piecewise linear function. Doing so, divide [0, d̃(p,j)] into
intervals of equal length, and let dk

(p,j), k ∈ {1, . . . , N}⋃{0} = K
⋃{0}, denote the end

points of the intervals. Then the approximation can be defined as

g̃(p,j)(λ(p,j)) =
N∑

k=1

gk
(p,j)λ

k
(p,j),

where gk
(p,j) = g(p,j)(d

k
(p,j)) = f(p,j)(d

k
(p,j))d

k
(p,j),

∑N
k=0 λk

(p,j) = 1, and λk
(p,j) ≥ 0,∀p ∈ P , j ∈ ∆

(see Figure 2b).
Let xk

(p,i,j) denote the amount of product p that is produced at time i and sold at time j

using the unit price gk
(p,j)/d

k
(p,j) = fk

(p,j) = f(p,j)(d
k
(p,j)). In addition, let y(p,i) denote a binary

variable, which equals one if
∑

k

∑
j xk

(p,i,j) > 0 and zero otherwise. Costs associated with

the production process include inventory costs cin
(p,i,j), production costs cpr

(p,i), and setup

costs cst
(p,i). At last, let Ci represent the production capacity at time i, which is “shared” by

all products. Using those definitions, one can construct a linear mixed integer formulation
of the problem. Below we provide a simplified formulation of the problem, where the
variables λ(p,j) are eliminated from the formulation. For the details on the mathematical
formulation of the problem and its simplification we refer to [4].

max
x,y

∑
p∈P

∑
i∈∆

 ∑

j∈∆|i≤j

∑

k∈K

qk
(p,i,j)x

k
(p,i,j) − cst

(p,i)y(p,i)

 (15)

),(jpd

()
),(),(jpjp dg

max

),(jpd),(

~
jpd),(jpd

()
),(),(

~
jpjp dg

),(

~
jpd

a) The Revenue Function b) Approximation of the Revenue Function

Figure 2: The revenue function and its approximation.

5

∑
p∈P

∑

j∈∆|i≤j

∑

k∈K

xk
(p,i,j) ≤ Ci, ∀i ∈ ∆, (16)

∑

j∈∆|i≤j

∑

k∈K

xk
(p,i,j) ≤ Ciy(p,i), ∀p ∈ P and i ∈ ∆, (17)

∑

k∈K

∑

i∈∆|i≤j

xk
(p,i,j)

dk
(p,j)

≤ 1, ∀p ∈ P and j ∈ ∆, (18)

xk
(p,i,j) ≥ 0, y(p,i) ∈ {0, 1}, ∀p ∈ P, i, j ∈ ∆ and k ∈ K, (19)

where qk
(p,i,j) = fk

(p,j) − cin
(p,i,j) − cpr

(p,i).

Let X = {x|x ≥ 0 and xk
(p,i,j) be feasible to (16) and (18)}, and Y = [0, 1]|P ||∆|. Con-

sider the following bilinear problem.

max
x∈X,y∈Y

ϕ(x, y) =
∑
p∈P

∑
i∈∆

 ∑

j∈∆|i≤j

∑

k∈K

qk
(p,i,j)x

k
(p,i,j) − cst

(p,i)

 y(p,i) (20)

Theorem 4 (see [4]) A global maxima of the bilinear problem (20) is a solution or can be
transformed into a solution of the problem (15)-(19).

3 Methods

In the previous section, we have discussed several problems arising in the supply chain
management. To solve the bilinear formulations of the problems, one can employ techniques
applicable for general bilinear problems. In particular, a cutting plain algorithm proposed
by Konno can be applied to find a global solution of the problems. In addition, he proposes
an iterative procedure, which converges to a local minimum of the problem in a finite
number of iterations. For details on the procedure, which is also known as “mountain
climbing” procedure (MCP), and the cutting plain algorithm we refer to the paper [1] or
Bilinear Programming section of this encyclopedia.

Below, we discuss problem specific difficulties of applying the above mentioned algo-
rithms and some effective heuristic procedures, which are able to provide a near optimum
solution using negligible computer resources. The MCP, which is used by the heuristics
to find a local minimum/maximum of the problems, is very fast due to a special struc-
ture of both LP problems employed by the procedure. However, to obtain a high quality
solution, in some problems it is necessary to solve a sequence of approximate problems.
The bilinear formulations of the supply chain problems typically have many local minima.
Therefore, cutting plain algorithms may require many cuts to converge. By combining the
heuristic procedures with the cutting plain algorithm, one can reduce the number of cuts
by generating deep cuts.

One of the main properties of a bilinear problem with a disjoint feasible region is that
by fixing vectors x or y to a particular value, the problem reduces to a linear one. The

6

“mountain climbing” procedure employs this property and iteratively solves two linear
problems by fixing the corresponding vectors to the solution of the corresponding linear
programs. In the case of concave piecewise linear network flow problem, given the vector
x̂, the problem (5)-(8) can be decomposed into |A| problems,

min
{yk

a |k∈Ka}

∑

k∈Ka

[ck
ax̂a + sk

a]y
k
a

s.t.
∑

k∈Ka

yk
a = 1, yk

a ≥ 0 ∀k ∈ Ka.

Furthermore, it can be shown that a solution of the problem is a binary vector, which has
to satisfy the inequality ∑

k∈Ka

ξk−1
a yk

a ≤ x̂a ≤
∑

k∈Ka

ξk
ayk

a .

As a result, one can employ a search technique by assigning yk̂
a = 1 if ξk̂−1

a ≤ x̂a ≤ ξk̂
a and

yk
a = 0, ∀k ∈ Ka, k 6= k̂. On the other hand, by fixing the vector y to the value of the

constructed vector ŷ, the problem (5)-(8) reduces to the following network flow problem.

min
x

∑
a∈A

[∑

k∈Ka

ck
aŷ

k
a

]
xa

s.t. Bx = b, xa ≥ 0, ∀a ∈ A

Observe that
∑

k∈Ka
ck
aŷ

k
a = ck̂

a, and different vectors ŷ change the cost vector in the
problem.

Although the MCP converges to a local minimum, it can provide a near optimum
solution for the problem (5)-(8) if the initial vector ŷ is such that ŷna

a = 1 and ŷk
a = 0,

∀k ∈ Ka, k 6= na. The effectiveness of the procedure is partially due to the fact that in
the supply chain problems fa(xa) is an increasing function. In addition, the procedure
requires less computer resources to converge because both linear problems are relatively
easy to solve. A detailed description of the procedure, properties of the linear problems,
and computational experiments can be found in [2].

In the case of fixed charge network flow problems, it is not obvious how to choose
the vector ε. Theorem 3 guarantees the equivalence between the fixed charge network
flow problem and the bilinear problem (12)-(14) if εa ∈ (0, δ]. However, according to the
definition, it is necessary to find all vertices of the feasible region to compute the value of
δ, which is computationally expensive. Even if the correct value of δ is known, typically it
is a very small number. As a result, the value of εa is close to zero, and cεa

a is very large
compared to the value of ca. The later creates some difficulties for finding a global solution
of the bilinear problem. In particular, the MCP may converge to a local minimum, which
is far from being a global solution.

To overcome those difficulties, [3] proposes a procedure where it gradually decreases the
value of ε (see Algorithm 1). The algorithm starts from an initial value for the vector ε,

7

Algorithm 1 :

Step 1: Let εa ← λa, x0
a ← 0, y0

a ← 0, and m ← 1.
Step 2: Find a local minimum of the problem (12)-(14) using the MCP. Let (xm, ym)
denote the solution found by the algorithm.
Step 3: If ∃a ∈ A such that xm

a ∈ (0, εm
a) then εa ← αεa, m ← m + 1, and go to step 2.

Otherwise, stop.

i.e., εa = λa. After constructing the corresponding bilinear problem, it employs the MCP
to find a local minimum of the problem. If the stopping criteria is not satisfied, the value
of ε is updated, i.e., εa = αεa where α ∈ (0, 1), and the algorithm again solves the updated
bilinear problem using the current solution as an initial vector for the MCP.

The choice of α has a direct influence on the CPU time of the algorithm and the quality
of the solution. Specifically, if the value of α is closer to one, then due to the fact that
ε decreases slowly, the algorithm requires many iterations to stop. On the other hand, if
the values of the parameter is closer to zero, it may worsen the quality of the solution. A
proper choice of the parameter depends on the problem, and it should be chosen by trials
and errors. In the paper [3], the authors test the algorithm on various randomly generated
test problems and found satisfactory to choose α = 0.5.

As for the stopping criteria, it is possible to show that the solution of the final bilinear
problem is the solution of the fixed charge network flow problem if on Step 2 one is able to
find a global solution of the corresponding bilinear problems. For details on the numerical
experiments, stopping criteria and other properties of the algorithm, we refer to [3].

In the problems with pricing decisions, one may also experience some difficulties to
employ the MCP for finding a near optimum solution. To explore the properties of the
problem, consider the following two linear problems, which are constructed from the prob-
lem (20) by fixing either vector x or y to the value of the vector x̂ or ŷ, respectively.

LP1 : max
y∈Y

∑
p∈P

∑
i∈∆

[∑
j∈∆|i≤j

∑
k∈K qk

(p,i,j)x̂
k
(p,i,j) − cst

(p,i)

]
y(p,i)

LP2 : max
x∈X

∑
p∈P

∑
i∈∆

∑
j∈∆|i≤j

∑
k∈K

[
qk
(p,i,j)ŷ(p,i)

]
xk

(p,i,j).

The MCP solves iteratively LP1 and LP2 problems, where the solution of the first problem
is used to fix the corresponding vector in the second problem. However, if one of the
components of the vector y equals to zero during one of the iterations, e.g., ŷ(p,i) = 0, then
in the second problem coefficients of the corresponding variables xk

(p,i,j) are equal to zero
as well. As a result, changes in the values of those variables do not have any influence on
the objective function value. Furthermore, because the products “share” the capacity and
other products may have positive coefficients in the objective, it is likely that at optimum
of LP2, x̂k

(p,i,j) = 0, ∀j ∈ ∆, k ∈ K. From the later, it follows that ŷ(p,i) = 0 during the
next iteration, and one concludes that if some products are eliminated from the problem
during the iterative process, the MCP does not consider them again. Therefore, it is likely
that the solution returned by the algorithm is far from being a global one. To avoid zero
coefficients in the objective of LP2, [4] proposes an approximation to the problem (20),

8

which can be used in the MCP to find a near optimum solution.
To construct the approximate problem, let

ϕ1
(p,i)(x(p,i)) =

∑

j∈∆|i≤j

∑

k∈K

qk
(p,i,j)x

k
(p,i,j) − cst

(p,i), and

ϕ2
(p,i)(x(p,i)) =

ε(p,i)

ε(p,i) + cst
(p,i)

∑

j∈∆|i≤j

∑

k∈K

qk
(p,i,j)x

k
(p,i,j),

where ε(p,i) > 0, and x(p,i) is the vector of xk
(p,i,j). Using those functions, construct the

following bilinear problem

max
x∈X,y∈Y

ϕε(x, y) =
∑
p∈P

∑
i∈∆

[
ϕ1

(p,i)(x(p,i))y(p,i) + ϕ2
(p,i)(x(p,i))(1− y(p,i))

]
, (21)

where the feasible region is the same as in the problem (20). The authors show that ϕε(x, y)
approximates the function ϕ(x, y) from above.

Theorem 5 (see [4]) There exists a sufficiently small ε > 0 such that a solution of the
problem (20) is a solution of the problem (21).

Algorithm 2 starts from a sufficiently large value of ε(p,i) and finds a local maximum
of the corresponding bilinear problem (21) using the MCP. If the stopping criteria is not
satisfied then it updates the value of ε to αε, updates the bilinear problem (21), and employs
the MCP to find a better solution. Similar to the fixed charge network flow problem, the
choice of α has a direct influence on the CPU time of the algorithm and the quality of the
returned solution. The running time of the algorithm and the quality of the solution for
the different values of α are studied in [4].

In addition to α, one has to find a proper initial value for the parameter ε(p,i). Ideally,
it should be equal to the maximum profit that can be generated by producing only product
p at time i. However, it requires solving a linear problem for each pair (p, i) ∈ P × ∆,
which is computationally expensive. On the other hand, it is not necessary to find an
exact solution of those LPs, and one might consider a heuristic procedure which provides
a quality solution within a reasonable time. One of such procedures is discussed in [4].

Algorithm 2 :

Step 1: Let ε(p,i) be a sufficiently large number, y0
(p,i) = 1, ∀p ∈ P , i ∈ ∆, and m ← 0.

Step 2: Construct the approximation problem (21), and find a local maximum of the
problem using the MSP. Let (xm+1, ym+1) denote the solution returned by the algorithm.

Step 3: If ∃p ∈ P and i ∈ ∆ such that
∑

j∈∆|i≤j

∑
k∈K qk

(p,i,j)x
(m+1)k
(p,i,j) − cst

(p,i) ≤ εm
(p,i) and∑

j∈∆|i≤j

∑
k∈K x

(m+1)k
(p,i,j) > 0 then ε ← αε, m ← m+1 and go to Step 2. Otherwise, stop.

9

References

[1] Konno H. A Cutting Plane Algorithm for Solving Bilinear Programs. Mathematical
Programming 1976;11:14-27.

[2] Nahapetyan A, Pardalos P. A Bilinear Relaxation Based Algorithm for Concave Piece-
wise Linear Network Flow Problems. Journal of Industrial and Management Optimiza-
tion 3(1), pp. 71-85, 2007.

[3] Nahapetyan A, Pardalos P. Adaptive Dynamic Cost Updating Procedure for Solving
Fixed Charge Network Flow Problems. Computational Optimization and Applica-
tions, submitted for publication.

[4] Nahapetyan A, Pardalos P. A Bilinear Reduction Based Algorithm for Solving Ca-
pacitated Multi-Item Dynamic Pricing Problems. to appear in the Computers and
Operations Research journal, 2007.

10

