PROBLEM 6-20

A ±100 N-m torque is applied to a 1-m-long, solid round steel shaft. Design it to limit its Statement: angular deflection to 2 deg and select a steel alloy to have a fatigue safety factor of 2 for infinite life.

Units:	N := newton	$kN := 10^3 \cdot N$	$MPa := 10^6 \cdot Pa$	$GPa := 10^9 \cdot Pa$
Given:	Applied torque	$T_a := 100 \cdot N \cdot m$	$T_m := 0 \cdot N \cdot m$	
	Shaft length	$L := 1000 \cdot mm$		
	Max deflection	$\theta_{max} \coloneqq 2 \cdot deg$		
	Design safety factor	$N_{fd} := 2$		
	Modulus of rigidity	$G := 80.8 \cdot GPa$		

Assumptions: There are no stress-concentrations anywhere on the shaft. The shaft is machined, reliability is 99.9%, and the it is at room temperature.

Solution: See Mathcad file P0620.

1. This is a case of fully reversed torsion. We will use the von Mises effective stress so the load factor will be 1.

The maximum torque is
$$T_{max} := T_a + T_m$$
 $T_{max} = 100 N \cdot m$

2. The diameter of the shaft can be found from equations 4.24 and 4.25 with $\theta = \theta_{max}$.

$$\theta_{max} = \frac{T_{max} \cdot L}{J \cdot G} = \frac{32 \cdot T_{max} \cdot L}{\pi \cdot d^4 \cdot G}$$

Solving for d,
$$d := \left(\frac{32 \cdot T_{max} \cdot L}{\pi \cdot \theta_{max} \cdot G}\right)^{\frac{1}{4}} \qquad d = 24.514 \, mm$$

Rounding, let

$$d := 24.5 \cdot mm$$

3. Now, we can solve for the stress in the shaft.

Polar moment
of inertia
$$J := \frac{\pi}{32} \cdot d^4$$
 $J = 3.537 \times 10^4 mm^4$ Torsional stress $\tau_a := \frac{T_a \cdot d}{2 J}$ $\tau_a = 34.632 MPa$

The corresponding von Mises normal stress is

a

von Mises stress
$$\sigma'_a := \sqrt{3} \cdot \tau_a$$
 $\sigma'_a = 59.984 MPa$

4. Using the factor of safety equation for reversed loading, calculate the required endurance limit

 $2 \cdot J$

$$N_f = \frac{S_e}{\sigma_a} \qquad \qquad S_e := N_{fd} \cdot \sigma_a \qquad \qquad S_e = 119.967 \, MPa$$

5. This endurance limit is a function of the unknown ultimate tensile strength. Use the endurance limit modification equation to determine the required S_{ut} .

$$S_e = C_{load} \cdot C_{size} \cdot C_{surf} \cdot C_{temp} \cdot C_{reliab} \cdot S'_e$$

MACHINE DESIGN - An Integrated Approach

6. Calculate the endurance limit modification factors for a solid, round steel shaft.

Load	$C_{load} := 1$		
Size	$C_{size} \coloneqq 1.189 \cdot \left(\frac{a}{m}\right)$	$\left(\frac{l}{m}\right)^{-0.097}$	$C_{size} = 0.872$
Surface	A := 4.51	<i>b</i> := -0.265	(machined)
	$C_{surf} = A \cdot \left(\frac{S_{ut}}{MPa}\right)$	$\Big)^{b}$	
Temperature	$C_{temp} := 1$		
Reliability	$C_{reliab} \coloneqq 0.753$	(<i>R</i> = 99.9%)	
Uncorrected endurance strength	$S'_e = 0.5 \cdot S_{ut}$		

7. Substituting these into the equation above and solving for S_{ut} ,

$$S_{ut} := \left(\frac{S_e}{0.5 \cdot A \cdot C_{size} \cdot C_{reliab} \cdot MPa}\right)^{\frac{1}{b+1}} \cdot MPa \qquad S_{ut} = 395 MPa$$

Based on this requirement, choose AISI 1020 cold-rolled steel that will be machined to size.

8. Check the actual factor of safety based on the material chosen. For this material, $S_{MW} = 469 MPa$

Surface factor
$$C_{surf} := A \cdot \left(\frac{S_{ut}}{MPa}\right)^b$$
 $C_{surf} = 0.884$ Uncorrected
endurance strength $S'_e := 0.5 \cdot S_{ut}$ $S'_e = 234.5 \, MPa$ Corrected
endurance strength $S_{AA} := C_{load} \cdot C_{size} \cdot C_{surf} \cdot C_{temp} \cdot C_{reliab} \cdot S'_e$
 $S_e = 136.046 \, MPa$ Factor of safety $N_f := \frac{S_e}{\sigma'_a}$ $N_f = 2.3$