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Summary 
 A simple closed-form procedure is presented for designing minimum-weight spur 
and helical gear sets. The procedure optimizes bending and surface fatigue strengths of 
gear teeth, to arrive at minimum weight gears. The method does not take into account 
effects of scuffing, heat generation, and lubrication conditions like oil temperature, 
elasto-hydrodynamic film thickness and flash temperature, since they are outside the 
scope of the class. 
 
Introduction 
 Gear design is a process of synthesis where gear geometry, materials, heat 
treatment, manufacturing methods and lubrication are selected to meet the performance 
requirements of a given application. The designer must design the gearset with adequate 
resistance to contact fatigue (pitting resistance) and bending fatigue to transmit the 
required power for design life. With the simple procedure presented here, one can select 
materials and heat treatment and optimize gear geometry to satisfy constraints of weight, 
size and configuration. It is assumed that the gear ratio mG is known. The gear designer 
can minimize noise level and operating temperature by minimizing the pitchline velocity 
and sliding velocity. This is done by specifying high gear accuracy and selecting material 
strengths consistent with maximum material hardness, to obtain minimum size gearsets 
with teeth no larger than necessary to balance pitting resistance and bending strength. 
 Gear design is not the same as gear analysis. Existing gear sets can only be 
analyzed, not designed. While design is more challenging than analysis, current textbooks 
do not provide procedures for designing minimum weight gears. They usually 
recommend that the number of teeth in the pinion be chosen based solely on avoiding 
undercut. This does not result in minimum weight gearsets. 
 
Optimum Number of Pinion Teeth 
 
 The optimum number of teeth maximizes the load capacity of a gearset. Figure 1 
shows that load capacity is limited by surface fatigue (contact stress), bending fatigue and 
scuffing failure depending on the number of teeth. There is also a lower limit to the 
number of teeth, below which undercut occurs. The shaded zone in Fig. 1 is bounded by 
all three-failure modes curves and the undercut limit. We will only consider bending and 
contact fatigue for optimal design. Notice that the surface fatigue curve is not a function 
of number of teeth, while in contrast the bending fatigue curve depends strongly on the 
number of pinion teeth and decreases rapidly with increasing number of teeth.. Maximum 
load capacity occurs at point “A” where pitting resistance and bending strength are 
balanced. With more pinion teeth (to the right of point A) load capacity is controlled by 
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bending fatigue, while for fewer teeth (to the left of point A) load capacity is controlled 
by surface fatigue. 
 Failure modes due to surface fatigue and bending fatigue are quite different. 
Surface fatigue usually progresses relatively slowly, starting with a few pits which may 
increase in number and coalesce into larger spalls. As the tooth profiles deteriorate with 
pitting, the gears generate noise, which warns of surface fatigue failure. In contrast, 
bending fatigue may progress rapidly as a fatigue crack propagates across the base of a 
tooth, breaking the tooth with little or no warning. Hence, surface fatigue is often less 
serious than bending fatigue, which is frequently catastrophic. 
 Considering the difference between surface and bending fatigue failures, it is 
prudent to select the number of pinion teeth somewhat to the left of point A, where 
surface fatigue controls the failure process. With this approach, load capacity is not 
reduced because surface fatigue curve is flat, while a margin of safety against bending  
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Figure 1. Load Capacity (Wt) Vs. Pinion Tooth Number (NP)  
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fatigue is gained. To avoid scuffing failure, pinion teeth fewer than point B should not be 
chosen. A pinion number of teeth near optimum (NP) provides a good balance between 
pitting and bending fatigue resistance, while scuffing resistance is also obtained because 
the teeth are not larger than necessary. 
 
 
OPTIMUM GEAR DESIGN PROCEDURE 
 
For the gearbox design project, the input gear diameter will likely be chosen based on the 
physical dimensions of the gearbox, center distance allowable between countershaft and 
input shaft, etc. For this problem we will assume that we know the input pinion diameter, 
dP, which is typically in the range of 5-6 inches. We then need to determine the facewidth 
and the number of pinion teeth, NP. 
 
1. Calculating Pinion Facewidth F (knowing dP) 
 
The AGMA bending and contact stress equations are given by: 
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A convenient equation to compute the tangential tooth load Wt in lbf is given by: 
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where dP must be in inches. RPMP is the pinion rpm. 
 
The allowable bending stress is given by AGMA bending-fatigue strength formula: 
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The allowable contact stress is given by AGMA surface-fatigue strength formula: 
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The life factors, KL, and CL, will be calculated based on the cumulative fatigue damage 
and equivalent number of fatigue cycles. 
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Since the limiting values for bending and contact stress are given by Sfb and Sfc, we can 
find the minimum facewidths Fb and Fc from equations (11.15) and (11.21) as follows: 
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The design facewidth would be the larger of the two values Fb and Fc. 
 
2. Calculating Optimum number of Pinion Teeth, NP 
 
The facewidths, Fb and Fc , calculated using Eqs. (2) and (3) will generally not be equal 
because we have made no effort to equate bending and contact fatigue strengths in the 
design. Therefore the design will be biased toward failure from either bending or contact 
fatigue. To effectively utilize the material we will now find the optimum number of teeth 
based on equating bending and contact strengths. 
 
The maximum transmitted tooth load, Wt, for allowable bending stress is obtained from 
Eq. (11.15), as follows (note, pD = dP/NP): 
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Similarly, the maximum transmitted tooth load, Wt, for allowable contact stress is 
obtained from Eq. (11.21), as follows: 
 

 
fsma

v

P

Pfc
t CCCC

C
C

IFdS
ContactW 2

2

)( =  (5) 

 
Equating equations 4 and 5, so that Wt due to bending and contact stresses are equal, we 
obtain the optimum number of pinion teeth, NP : 
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The above result must be rounded off to the nearest integer number. Note that the 
optimum number of teeth is a function of material and geometric factors only, and is 
independent of load and diameter. 
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Life Factors KL and CL: 
 
The life factors, KL and CL, are a function of the number of fatigue cycles, N. The number 
of fatigue cycles, N, is calculated based on cumulative fatigue damage cycles, explained 
in the next section. 
 
From Figure 11.24, we can see that KL = 1.6831 N -0.0323 
From Figure 11.26, we can see that CL = 2.466 N -0.056 
Note that KL =1 and CL =1 when N = 107 cycles. 
 
 

Equivalent Load And Life Calculation 
(Fatigue Life for Variable Loading) 

 
Instead of a single reversed stress cycle of σ for n cycles, a machine element could be 
subjected to σ1 for n1 cycles, σ2 for n2 cycles, etc. If we need to estimate the fatigue life of 
the machine element subjected to these reversed stresses, we need to calculate a single 
load cycle equivalent to the combined stress cycle. The theory that is in greatest use at the 
present time to explain cumulative damage is called the Miner’s rule. It can be stated as 
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where n is the number of cycles of stress σ applied to the specimen and N is the fatigue 
life corresponding to σ. This theory is in wide use even though it has some shortcomings. 
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Fig.2 Use of Miner’s rule to predict cumulative fatigue damage  
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We are now in a position to calculate the equivalent life LE (hours) at a given base 
condition, which is equal to the entire duty cycle. 
 
LE   = Equivalent life in hours at the base condition which is equal to the entire load or   
duty cycle. 
 
LB   = Time spent at the base condition, in hours. 
 
T     = Torque transmitted at a given condition. 
 
N    = Life, in cycles, at a given condition. 
 
a    = Slope of the Log S - Log N curve. 
 
Subscript 1, 2, 3,…..i identify multiple duty cycles. Using Miner’s rule we can write 
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where 
nB    = actual number of cycles at base condition B = LB * RPMB *60 
NE  = Life, in cycles, at the base condition = LE * RPMB *60 
 
Fatigue also obeys the relation 
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From Eqs. (17-18) we can write 
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Multiplying throughout by LE, we have the expression for the “equivalent life” LE as  
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The S-N curve exponent “a” is  
 
a = 9.0 (for compressive loading or surface fatigue) 
   = 29.0 (for bending fatigue) 
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We can also calculate “Equivalent horsepower” at RPMB, for LE hours of life, from 
Eqs.(20). 
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Once torque (in-lbf) is calculated, equivalent H.P can be easily calculated. 
 
Calculate equivalent hours LE for the base condition 2947 HP at 19545 rpm, for the four 
load cycles shown in table. LE is required to compressive or contact stress life 
calculations. 
 
  
CONDITION HOURS RPM H.P TORQUE (in-lb) 

1-Base 8.33 19545 2947 9505 
2 50 18371 2574 8831 
3 5 6692 106 998 
4 9 7434 94.6 802 
 Total = 73.3 hrs    

 
TB= 9505 in-lbf,   LB = 8.33 hours,   a = 9.0 
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 = 8.33 +      24.24              +  2.65E-09               +    7.4E-10 
 
LE = 32.6 hours 
 
The interpretation for the result is that the given load cycle is equivalent to a single 32.6 
hour cycle at 2947 HP (19545 rpm). 
 
Similarly equivalent HP for 72.33 hours, at 19545 rpm can also be calculated using 
Eqs.(21), LE= 72.33 hours, LB= 8.33 hours. 
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TB = 8802 in- lbf 
 
HPB = 2729  
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ie., the given loading cycle is equivalent to a single 72.33 hour cycle at 2729 HP (19545 
rpm). 
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