
University of Florida EEL 4744 – Spring 2011 Dr. Eric M. Schwartz
Electrical & Computer Engineering Dept. Revision 2 Brandon Cerge, TA

Page 1/5 Lab 5: Interrupts, Serial Communication, External Memory 3-Mar-11

OBJECTIVES
In this lab you will learn how interrupts function, how to
utilize serial communication, and to how to interface
external memory, specifically on the F28335. To learn
interrupts on the DSP, you will learn how to use the
Peripheral Interrupt Expansion (PIE). You will
communicate with your computer with the serial
communication interface (SCI) on the DSP. Lastly, you
will add external memory onto your DSP board.

REQUIRED MATERIALS
 You WILL need the following documentation:

o System Control and Interrupts Reference Guide
(sprufb0c.pdf)

o Serial Communications Interface (SCI)
Reference Guide (sprufz5a.pdf)

o CY62256 Datasheet
 Wire wrap tool, UF DSP Board, two USB cables
 Br@y++ Terminal (provided on website)
 32K x 8 CY62256 SRAM (provided)
 QUARTUS II, USB Byte Blaster
 0.01 F ceramic capacitor

INTRODUCTION
Note: Do NOT wait until the night before to attempt this
lab, you WILL fail miserably … and lose a night of
sleep.

Read carefully the ENTIRE lab document before you
get started!!

In the first part of the lab, you will create your first
completely interrupt driven program for this course. To
do this you will break this down into two steps.
Approaching a bigger problem is easier to do by breaking
it down into multiple smaller steps. First you will
configure the Serial Communication Interface (SCI) and
Br@y++ terminal program and use them to send
characters from your computer to display on your LED’s
via polling. Note you can always use the LED’s in this
way for debugging purposes. In the next part of the lab,
you will write a program to receive a character from your
computer and then send it back to your computer for
viewing, all via an interrupt service routine.

In the second part of the lab, you will add a 32k x 8
external SRAM into the DSP memory map. You will
place the SRAM in ZONE7 of the memory map, starting
at address 0x2C8000. We would like to have only one
image, therefore you will need to do full address
decoding. Once you have your SRAM interfaced, you
will then write a simple test program to test its
functionality.

Lastly, you will transfer an entire JPEG image
(‘tebow_322.jpg’) from your computer into your SRAM.
To do this, you will combine what you have learned from
parts, A, B, and C. The data file that you will transfer to

your SRAM will be provided for you. This part of the lab
will most likely take you the longest, so do not take any
shortcuts in understanding Parts A, B, or C.

PRELAB REQUIREMENTS
NOTE: Prelab requirements MUST be accomplished
PRIOR coming to lab. Your TA will not allow you to
enter lab without the prelab complete.

PARTA: SERIAL COMMUNICATION VIA POLLING
In this part of the lab, the goal is to transmit a character
from your computer by a “key press” and to display this
character on your LED’s array. You will use a terminal
called Br@y++ to transmit the characters. Read through
the SCI documentation and determine all of the registers
that you will need to use.

Figure 1 (on the last page) shows that the SCI on the DSP
is connected to an FTDI USB controller. Since there are
multiple SCI modules on the DSP, the only thing you
should take away from this schematic is that the FTDI
USB controller is hard wired to use SCIB.

Write a program that:
1. Configures the SCI module for the following:

a. 9600 BUAD
b. 8 Data Bits
c. No Parity
d. 1 Stop Bit

2. Constantly check the receive buffer flag’s status to
see if a character has been received. (This is known
as polling.)

3. Display the received character ASCII value on your
LED’s.

4. Repeat this forever.

After you write your program, you will need to configure
the Br@y++ terminal as follows:

1. With your UF DSP Board powered, connect the
additional USB cable up to the DSP UART port on
your board. Once you plug it into your computer,
Windows may ask you to install the drivers, you will
need to verify that the FTDI drivers have installed
correctly. To do this:
a. Right click My Computer
b. Select Properties
c. Click Device Manager
d. Check to see if there is a COM PORT associated

with the UART:

University of Florida EEL 4744 – Spring 2011 Dr. Eric M. Schwartz
Electrical & Computer Engineering Dept. Revision 2 Brandon Cerge, TA

Page 2/5 Lab 5: Interrupts, Serial Communication, External Memory 3-Mar-11

2. Open up Br@y++ terminal and match the settings

that your wrote in your program, and the COM Port.
Note: Set handshaking (not shown below) to none.

3. Select “Connect.” If everything is installed correctly,

you should NOT get a warning, and be ready to
transmit and receive data.

4. There are two ways you can transmit data to your
DSP:
a. Single Key Press: Place your cursor at the

bottom of the Br@y++ terminal in the Transmit
section and begin typing:

b. Send Queued Data: Place your cursor in the

white box and type a message; when done press
“-> Send’ on the right side (not shown below) to
send the entire message:

The characters are transmitted in ASCII through the SCI,
so when you display your output on the LED, it should be
the corresponding ASCII value of the key press. Example,
you press a “7” on your computer, 0x37 should show up
on your LED’s.

PARTB: SERIAL COMMUNICATION VIA INTERRUPT
In this part of the lab, we would like to take Part A one
step further. The goal is to transmit data from your
computer, this time you will not display it on your LED’s,
but echo it back to the computer for display in Br@y++

Terminal. Additionally, you will write this using an
interrupt service routine, NOT polling.

Read over the PIE documentation and determine all of the
registers that you will need to use to configure interrupts.
Additionally, re-read the SCI documentation and
determine any new registers that you did not use in Part A
that you will need in Part B.

Write a program that:

1. Configures the SCI module for the following:
a. 9600 BAUD
b. 8 Data Bits
c. No Parity
d. 1 Stop Bit

2. Generate an interrupt when a character has been
received and branch to an interrupt service routine.

3. In the interrupt service routine, send back the
character to the Br@y++ terminal for viewing.

4. To demonstrate the concept of an interrupt driven
program, toggle an LED with a 1/4 second delay in
the main loop, and nothing else!

5. Repeat forever.

A properly interrupt driven program should have the
following format:

When Br@y++ terminal receives data, it will be displayed
in the receive section, the data can be viewed in ASCII or
HEX:

PARTC: ADDING EXTERNAL MEMORY
In this part of the lab, you are going to add external
memory to the DSP memory map. The goal is to interface
the SRAM, and then write a simple program that will fill
up the contents of the SRAM to verify its functionality.

 NOTE: You SHOULD already have your SRAM
soldered onto your board at this point.

 IMPORTANT: In the previous lab, you were not
allowed to use the XZCS0N signal when adding your
ports. What addresses, if any, in ZONE7, are
affected by reads or writes to your I/O ports? Since

University of Florida EEL 4744 – Spring 2011 Dr. Eric M. Schwartz
Electrical & Computer Engineering Dept. Revision 2 Brandon Cerge, TA

Page 3/5 Lab 5: Interrupts, Serial Communication, External Memory 3-Mar-11

we will be using a ZONE7 in this lab for your
SRAM, we do not want any read/writes in ZONE7
with your I/O ports. You will therefore NEED to add
XZCS0N to your decode equation in Quartus II for
your I/O ports. (If A21 and A20 were available on
your board, this would NOT have been necessary.)

BEFORE you wire wrap, perform a continuity test with a
multimeter to ensure that you have solid connections to
your SRAM.

SOLDER a 0.01 uF ceramic capacitor between VCC and
GND of the SRAM.

Read through the datasheet of the 32k x 8 CY62256
SRAM and look at the pin out diagram.

1. Place the 32Kx8 SRAM in ZONE7 starting at
0x2C8000.

2. To have ONE image, you will need to do full address
decoding. You will need to create the necessary
decode circuit in QUARTUS II (schematic or VHDL)
and place it into your CPLD.

3. You MUST use XZCS7N in your decode circuit.
4. Draw the wiring diagram on paper and find the

functional block diagram of the SRAM in the
datasheet and VERIFY THAT YOU WILL NOT
BLOW UP THE SRAM. If you do blow up your
SRAM, you will have to buy another one and you
will lose significant lab points.

5. Create a timing diagram for the SRAM and the DSP,
show a read and a write cycle.

6. Wire wrap the SRAM to your UF DSP board.
7. To test the functionality of the SRAM you will write

a program that does the following:
a. Create a subroutine that writes 0x55 to EVERY

address in the SRAM.
b. Once you have written this data, go back and

read each value, one at a time, and check to see if
the value is in fact 0x55. If you make it through
the entire SRAM without any errors, place 0x55
on your LED’s; otherwise place 0xFF on your
LED’s.

c. Create a subroutine that writes 0xAA to every
address in the SRAM.

d. Once you have written this data, go back and
read each value, one at a time, and check to see if
the value is in fact 0xAA. If you make it through
the entire SRAM without any errors, place 0xAA
on your LED’s; otherwise place 0xFF on your
LED’s.

e. For the TA to check this, they will ask you to
place a break point in your code after you fill up
the SRAM with either 0x55 or 0xAA, they will
pick an address at random and corrupt the value.
They will then ask you to finish running your
program to see if it catches the error check.

PARTD: LOADING AN IMAGE INTO MEMORY
In this final part of the lab, the goal is to transfer the
“tebow_322.jpg” image file from your computer into your
SRAM. To do this you will use the Br@y++ terminal and
the “tebow_data.txt” file that contains the image data.

Many images used today use a 24 bit color map: that is 8
bits for red, 8 bits for blue, and 8 bits for green (also
known as RGB888).

R7R6R5R4R3R2R1R0 | G7G6G5G4G3G2G1G0 | B7B6B5B4B3B2B1B0

For each pixel, this gives us 28 * 28 *28 = 224 = 16.7
million color combinations! Since our external SRAM
only has an 8 bit data length, it would be difficult to store
a 24 bit image into memory without sacrificing resolution.
To get around this, a MATLAB program was written to
convert a RGB888 image into an 8-bit JPEG image, or
RGB332. You will load the 8 bit image into your SRAM.
Using the 24 bit map, we can take the most significant
bits:

R7R6R5XXXXX | G7G6G5XXXXX | B7B6XXXXXX

This can be expressed in 8 bits as:

R2R1R0 | G2G1G0 | B1B0 or R7R6R5 | G4G3G2 | B1B0

So a RGB888 image such as:

Would look like this as a RGB332 image:

Not too bad! We would like to transfer the above
“tebow_322.jpg” image into our SRAM. Since the
resolution of the image is 256 x 128 pixels, you will fill
up the entire contents of your SRAM! The file
“tebow_data.txt” file contains the extracted JPG data
information. The file contains 2048 rows of 16 unsigned
8-bit numbers in hexadecimal. You are encouraged to
open the text file and scroll through it. Each byte is

University of Florida EEL 4744 – Spring 2011 Dr. Eric M. Schwartz
Electrical & Computer Engineering Dept. Revision 2 Brandon Cerge, TA

Page 4/5 Lab 5: Interrupts, Serial Communication, External Memory 3-Mar-11

separated by a space, and at the end of each row there is a
space and a newline character. We are not interested in
the white spaces, new lines, OR carriage return
characters.

Write a program that does the following:

1. Configures the SCI module for the following:
a. 128000 BAUD
b. 8 Data Bits
c. No Parity
d. 1 Stop Bit

2. Use Br@y++ terminal to initiate the file transfer. The
file will begin to send one byte at a time
(corresponding to the ASCII for each hex nibble) at
the appropriate speed until the file has been
completely transferred.

3. Generate an interrupt when a character is received.
4. In the interrupt service routine, create a method for

transferring the sampled data into the SRAM.
5. This program needs to be completely interrupt

driven. Again to verify that this actually works,
toggle an LED with every 1/4 second in the main
loop. There should be nothing else in your main
loop.

6. Once the file has transferred, verify that the contents
of the SRAM looks EXACTLY like that of the
tebow_data.txt file. It should take approximately
35 seconds to transfer the entire file!

7. Before you attempt to send the entire
“tebow_data.txt” file, a smaller “practice.txt” file
that only contains two lines of data has been provided
to test your code. A great way to see how the file
transfer works is to use Part B of the lab, and transfer
the file so you can view the incoming data in both
ASCII and hex.

Remember, the Br@y++ terminal transfers data in ASCII,
and NOT hex.

To initialize a file transfer using Br@y++ Terminal:

The number that is directly to the right of the ‘Send File’
box is a millisecond delay, make sure that is a 0 or you
will be waiting for a while to fill up your SRAM.

PRELAB QUESTIONS
1. What does the peripheral clock that is connected to

SCI directly affect?
2. How does an interrupt service routine work?
3. What happens if the BAUD rate is different between

two communicating devices?
4. Why did you place a 0.01 F capacitor between VCC

and GND of the SRAM?
5. What is the range of the SRAM that you added in the

DSP memory map?
6. How many bits is an ASCII character?
7. Why do you need the FTDI bridge?
8. What is the total time that the file transfer should

require. Hints: At the end of each line is a space, a
carriage return and a line-feed. There are two ASCII
values representing a single hex value. A single
space is inserted between each set of ASCII values
(representing a single hex value).

PRELAB PROCEDURE
1. Email the following to the class gmail account:

a. Your list files to from parts A,B,C and D.
b. Your Quartus archive file from part C.

2. Bring the following printed document to turn in to
your TA:
a. Answer the prelab questions.
b. Pseudo-code/flowcharts for parts A,B,C and D.
c. The timing diagrams from Part C

LAB PROCEDURE
1. Demonstrate Part A to the TA. If it does not fully

work, show your TA the code that you have
completed, and explain the possible errors.

2. Demonstrate Part B to the TA. Place a breakpoint in
the interrupt service routine to show the TA that you
used an ISR.

3. Demonstrate Part C to your TA. The TA will verify
that the SRAM is functioning correctly.

4. Demonstrate Part D to your TA. The TA will verify
that the SRAM contents contain the exact data of the
tebow_data.txt file. If this portion of your code is
not working, demonstrate what you have and explain
the possible errors.

University of Florida EEL 4744 – Spring 2011 Dr. Eric M. Schwartz
Electrical & Computer Engineering Dept. Revision 2 Brandon Cerge, TA

Page 5/5 Lab 5: Interrupts, Serial Communication, External Memory 3-Mar-11

Figure 1: FTDI Schematic for UF DSP Board

