
University of Florida EEL 4744 – Spring 2011 Dr. Eric M. Schwartz
Electrical & Computer Engineering Dept. Revision 3 Matt Emigh, TA

Page 1/2 Lab 1: Programming the GCPU 26-Jan-11

OBJECTIVES
In this lab you will review the GCPU, a good example of
a simple instruction set processor. You will gain practice
in both programming a microprocessor and understanding
the timing in the execution of an instructions set (through
a timing simulation). You will also re-learn the process
of converting an assembly language program into
machine code.

REQUIRED MATERIALS
 GCPU Documentation

o Lab on GCPU from 3701 (Fall 2010)
o Archived G-CPU Quartus files
o GCPU documentation distributed in class (also

on the web as Documentation and Design Files)
 Read/save the following document:

o Pre-laboratory Report Guidelines
o Create an ASM CCS Project

 ex0.asm, KG_RAM_Link1.cmd
o SPRU430E – the F28335 CPU and instruction

set guide

PRELAB REQUIREMENTS
It is required that you make a flowchart or write pseudo-
code before writing any program in this course. This will
help you formulate a plan of attack for the code.

PART A. SIMULATING PROGRAM FROM 3701 -
Complete part A from the 3701 Lab 9 document (from
fall 2010) using the G-CPU assembly language.

PART B. ANOTHER GCPU PROGRAM
Write a program, using the G-CPU assembly language,
to filter data from an array in memory and to copy that
data to a specified memory location. Your program can
assume that the data is already placed in memory prior to
execution, i.e., your program will not have to insert the
array into memory.

The array will be in ASCII code and will contain the data
in Table 1. An ASCII table can be found at
www.asciitable.com. ASCII is a 7-bit coded version of
numbers, letters and symbols. The most significant bit
(bit 7) is set to zero in our example and the in given
website.

Note that the end of the array is indicated by the “null”
character. Your program should filter the data in the
array shown in Table 1 such that only characters with a
hex value less than 0x5B are copied. Your program
should end after it copies the “null” character. The data in
the original array should not be corrupted.

Copy the filtered data into consecutive memory locations
starting at address 0x0A00 0x1A00.

When you write your program, be sure to make your code
modular and use relocatable variables, i.e., make it easy to
change the location of both your input and output tables
and use equ, dc.b, and ds.b appropriately. Use ds.b for
the output table. The given input table has only 21 bytes

of data; you may assume that any new input table given
will have no more than 256 characters of data. Try to
make it easy to change the “null” value and the
comparison value (0x5B).

PART C. CREATE AN ASM CCS PROJECT
Go through the Create an ASM CCS Project tutorial.
Obtain a screen shot on your laptop of the results of step
11, that also shows your name in big letters on the same
screen. To do a screen shot in Windows, press Ctrl-
PrtScrn (i.e., select Ctrl and PrtScrn at the same time).
Copy this screen shot into PowerPoint, Word, or similar;
save this document and print it.

PRELAB PROCEDURE
1. It is required that you make a flowchart or write

pseudo-code before writing any program in this
course. This will help you formulate a plan of attack
for the code.

2. Create your program (in a file on your computer)
using the GCPU instruction set.

3. Hand assemble your code, and create a MIF file for
Quartus. The MIF file should be created with a text
editor, not with MS-Word.

4. Run and simulate your code in Quartus. Print out and
annotate key parts of your simulation, indicating
what is happening in your program. (You do not
need to print or annotate the entire simulation.) Be
sure to label the ASCII characters in your copied
array. Make an archive file of the Quartus project.

Table 1: Memory Array

Address
Data

(ASCII)
Data
(Hex)

0x0B00 4 0x34
0x0B01 \ 0x5C
0x0B02 7 0x37
0x0B03 4 0x34
0x0B04] 0x5D
0x0B05 4 0x34
0x0B06 (space) 0x20
0x0B07 I 0x49
0x0B08 S 0x53
0x0B09 n 0x6E
0x0B0A o 0x6F
0x0B0B (space) 0x20
0x0B0C t 0x74
0x0B0D F 0x46
0x0B0E ^ 0x94
0x0B0F U 0x55
0x0B10 N 0x4E
0x0B11 k 0x6B
0x0B12 y 0x79
0x0B13 ! 0x21
0x0B14 NUL 0x00

University of Florida EEL 4744 – Spring 2011 Dr. Eric M. Schwartz
Electrical & Computer Engineering Dept. Revision 3 Matt Emigh, TA

Page 2/2 Lab 1: Programming the GCPU 26-Jan-11

5. Answer all prelab questions (including the questions
from part A in the 3701 GCPU lab document).

6. Bring the following printed documents to turn in to
your TA: part B pseudo-code/flowchart, program,
and mif file; annotated simulations from part A and
from part B, screen shot from part C; and answers to
the prelab questions (both below and in part A of the
Lab on GCPU from 3701 document)

7. Email the following to the class gmail account: your
Quartus archive file from part B, screen shot from
part C.

Note: Prelab requirements MUST be accomplished
PRIOR to coming to your lab.

PRELAB QUESTIONS
1. What are the ASCII values of the data in the copied

array?

2. You can find the F28335 instruction set in
SPRU430E (the F28335 CPU and instruction set
guide), starting on page 159 (document page 6-1).
Find three F28335 instructions that you might have
used had you written your program in F28335
assembly. Give a short explanation of what each of
these instructions do and the GCPU instructions that
they replace.

LAB PROCEDURE
Demonstrate that your program works to the TA. The TA
will ask you to change the data file and then re-simulate
your program. Be prepared to answer questions about
your program.

